
Visual Motion 

Analysis and Representation 



Example

� Ullman’s concentric counter-rotating cylinder experiment

� Two concentric cylinders of different radii

� W. a random dot pattern on both surfaces (cylinder 

surfaces and boundaries are not displayed)

� Stationary: not able to tell them apart

� Counter-rotating: structures apparent



� Motion helps in

� segmentation (two structures)

� identification (two cylinders)

Example (cont.)



Classes of Techniques

� Feature-based methods

� Extract visual features (corners, textured areas) and track them

� Sparse motion fields, but possibly robust tracking

� Suitable especially when image motion is large (10s of pixels)

� Direct-methods (Pixel-based methods)

� Directly recover image motion from spatio-temporal image brightness 

variations

� Global motion parameters directly recovered without an intermediate 

feature motion calculation

� Dense motion fields, but more sensitive to appearance variations

� Suitable for video and when image motion is small (< 10 pixels)

Szeliski



Optical flow and motion analysis

� Now we move to considering images that vary over time –

image sequences

� Typical case is video – images captured at 30 frames/second (or 

15, or 60, or ...)

� I(x, y, t) � I1(x,y) = I(x, y, t1) , I2(x,y) = I(x, y, t2) , etc.

� “Spatial-temporal space” describes (x, y, t)

t

x

y

What can change between It

and It+1?

What do images close in time 

have in common?



Spatio-temporal image data 

(examples)



Frames

x-t slice

t

x



Optical flow and motion analysis

� Optical flow is the apparent motion of brightness patterns 

in the image sequence

� A 2D vector at each point – a vector field

� The motion field is the true motion (3D) at each point, 

mapped onto the 2D image

� A vector field

� They are not always

the same

� E.g., white, featureless ball?

In general, we estimate the motion field by 

computing the optical flow

The motion field is not directly

observed



Example



Example







Caveats

� Motion analysis a very important and popular area in 

computer vision

� A large body of literature exits with maybe hundreds of 

different formulations (At CVPR, you will find at least 2 or 3 sessions on 

motion)

� Many of them can be very mathematical

� Apparent motion != True motion



Rigid vs. nonrigid motion

� Camera motion is 6 DOF rigid motion

� Object motion may be rigid or nonrigid

� Rigid: coffee mugs, silverware, baseballs, jets, ...

� Nonrigid: humans, face, medical imagery, beach 

balls, scissors, grass, ...

� Includes articulated motion



Nonrigid motion

� Nonrigid motion is complicated and difficult, especially 

with little prior knowledge on what is being viewed

� Typical problem: What are the parameters of the known nonrigid 

model of the object being viewed?

We’ll just focus on rigid motion



The barber’s pole illusion

Motion 

field

Optical 

flow

Web example



The aperture problem

� In local processing, we can only measure 

motion perpendicular to the image 

gradient



First steps

� Motion processing starts with estimating optical flow from 
frame to frame, either densely or sparsely

� The typical approaches are:

� Dense correspondence: 

� Differential methods, local area/correlation based

� This could be hierarchical (coarse-to-fine approach)

� Sparse correspondence

� Matching methods, feature based

� Asumption: Points/features can be matched in nearby 
images



Brightness constancy equation
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Brightness constancy equation 

(method #2)
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Brightness constancy equation 

(method #2)
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Back to the aperture problem
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Only the normal direction is constrained

3v



On images…
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What is the image gradient?

Image gradient – the first derivative (slope) of the intensity variation in (x, y)



What is the temporal gradient?
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Brightness constancy of a point

Scene

I1 I2 I3

I(x(t1),y(t1),t1)

I(x(t2),y(t2),t2)

I(x(t2),y(t2),t2)

I(x(t3),y(t3),t3)

= =

Image 

sequence



Difficulty

� One equation with two unknowns

� Aperture problem

� spatial derivatives use only a few adjacent pixels (limited aperture 

and visibility)

� many combinations of (u,v) will satisfy the equation

Constraint line

u

v



intensity gradient is zero

no constraints on (u,v)

interpolated from other places

intensity gradient is nonzero 

but is constant

one constraints on (u,v)

only the component along the gradient

are recoverable

intensity gradient is nonzero

and changing

multiple constraints on (u,v)

motion recoverable
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Assume a single velocity for all pixels within an image patch
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Patch Translation [Lucas-Kanade]
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Image motion

How do we determine correspondences?

Assume all change between frames is due to motion:
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The Aperture Problem
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• Algorithm:  At each pixel compute      by solving

• M is singular if all gradient vectors point in the same direction

• e.g., along an edge

• of course, trivially singular if the summation is over a single pixel
or there is no texture

• i.e., only normal flow is available (aperture problem)

• Corners and textured areas are OK
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SSD Surface – Textured area



SSD Surface -- Edge



SSD – homogeneous area



Limits of the gradient method

Fails when intensity structure in window is poor

Fails when the displacement is large (typical operating range is 

motion of 1 pixel)

Linearization of brightness is suitable only for small displacements

� Also, brightness is not strictly constant in images

actually less problematic than it appears, since we can pre-filter images 

to make them look similar

Szeliski



image Iimage J
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Pyramid of image J Pyramid of image I

image Iimage J

Coarse-to-Fine Estimation

u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Szeliski



Iterative Refinement

� Estimate velocity at each pixel using one iteration of Lucas 

and Kanade estimation

� Warp one image toward the other using the estimated flow 

field

(easier said than done)

� Refine estimate by repeating the process

Szeliski



Optical Flow: Iterative Estimation

xx0

Initial guess: 

Estimate:

estimate 

update

(using d for displacement here instead of u)

Szeliski



Optical Flow: Iterative Estimation

xx0

estimate 

update
Initial guess: 

Estimate:

Szeliski



Optical Flow: Iterative Estimation

xx0

Initial guess: 

Estimate:

Initial guess: 

Estimate:

estimate 

update

Szeliski



Temporal coherency
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• Caveat:
– (u,v) must stay the same across several frames

– scenes highly textured 

– (u,v) at the same location actually refers to 
different object points



Spatial coherency

� neighboring pixels should have “similar” flow vector

� Q: What do you mean by “similar”

� A1: identical

� A2: change slowly ∂
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Mathematical formulation

� Based on Lagrange Multiplier

� Incorporate smoothness as an additional constraint

� Can be thought of as a weighting of two terms:

� optical flow constraint

� smoothness constraint
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� Optimize over all image plane:

� Discretize the governing equation, at (i,j):
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• At a pixel location (k,l):
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• Putting it all together:
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• Or:
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•estimate based on smoothness

•how much does the smooth estimate violate 

optical flow constraint

•how much does the optical flow constraint matters

•direction for correction



Algorithms

1 .  C o m p u te   fro m  a  p a ir o f in p u t im ag es

2 .  C h o o se  a  w eigh tin g  fac to r 
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Results



Motion representations

� How can we describe this scene?

Szeliski



Block-based motion prediction

� Break image up into square blocks

� Estimate translation for each block

� Use this to predict next frame, code difference  (MPEG-2)

Szeliski



Layered motion

� Break image sequence up into “layers”:

� ÷ =

� Describe each layer’s motion

Szeliski



Layered motion

� Advantages:

• can represent occlusions / disocclusions

• each layer’s motion can be smooth

• video segmentation for semantic processing

� Difficulties:

• how do we determine the correct number?

• how do we assign pixels?

• how do we model the motion?

Szeliski



Layers for video summarization

Szeliski



Background modeling (MPEG-4)

� Convert masked images into a background sprite for 

layered video coding

� + + +

�

=

Szeliski











Optical flow summary

� Optical flow techniques: 

� Techniques that estimate the motion field from the image 

brightness constancy equation

� Optical flow:

� Is best estimated (least noisy) at image points with high spatial 

image gradients. (Why?)

� Works best for Lambertian surfaces (Why?)

� Works best for very high frame rates (Why?)

� From optical flow, we can compute shape/structure/depth, 

motion parameters, segmentation, etc.

� But if you primarily want to track an object, other methods may be 

preferred



Tracking

� Tracking is the process of updating an object’s position 

(and orientation, and articulation?) over time through a 

video sequence

� Estimate the object pose at each time point

� “Pose” – position and orientation

� Applications

� Surveillance

� Targeting

� Motion-based recognition (e.g., gesture recognition, computation 

of egomotion)

� Motion analysis (golf swing, gait, character animation)

� ……..



Tracking vs. optical flow

� In tracking, we are generally acknowledging that some 
sparse features are the points to track

� Corners, lines, regions, patterns, contours....

� Rather than computing the full motion field from optical 
flow, let’s keep track of the time-varying position of these 
sparse features

� Then compute {egomotion, object pose, etc.} from this

� This typically involves a loop of prediction, measurement, 
and correction

� Often with presumed models of motion dynamics and 
measurement noise



Tracking vs. Matching

�Tracking requires 

videos

�Small displacement is 

assumed

�Simple features

�Use image constraint 

(similar to optical flow 

constraint)

�Matching can be done 

on discrete frames

�Displacement can be 

large (>10 pixels)

�Often more elaborate 

features

�Independent detection 

in each frame and then 

match



Examples LKT tracker

F(x)G(x)



KLT tracker 

� An iterative update algorithm 

� The estimate is more accurate if F is indeed linear

� Penalize pixels with large 2nd derivatives (w(x))


