
Visual Motion

Analysis and Representation

Example

� Ullman’s concentric counter-rotating cylinder experiment

� Two concentric cylinders of different radii

� W. a random dot pattern on both surfaces (cylinder

surfaces and boundaries are not displayed)

� Stationary: not able to tell them apart

� Counter-rotating: structures apparent

� Motion helps in

� segmentation (two structures)

� identification (two cylinders)

Example (cont.)

Classes of Techniques

� Feature-based methods

� Extract visual features (corners, textured areas) and track them

� Sparse motion fields, but possibly robust tracking

� Suitable especially when image motion is large (10s of pixels)

� Direct-methods (Pixel-based methods)

� Directly recover image motion from spatio-temporal image brightness

variations

� Global motion parameters directly recovered without an intermediate

feature motion calculation

� Dense motion fields, but more sensitive to appearance variations

� Suitable for video and when image motion is small (< 10 pixels)

Szeliski

Optical flow and motion analysis

� Now we move to considering images that vary over time –

image sequences

� Typical case is video – images captured at 30 frames/second (or

15, or 60, or ...)

� I(x, y, t) � I1(x,y) = I(x, y, t1) , I2(x,y) = I(x, y, t2) , etc.

� “Spatial-temporal space” describes (x, y, t)

t

x

y

What can change between It

and It+1?

What do images close in time

have in common?

Spatio-temporal image data

(examples)

Frames

x-t slice

t

x

Optical flow and motion analysis

� Optical flow is the apparent motion of brightness patterns

in the image sequence

� A 2D vector at each point – a vector field

� The motion field is the true motion (3D) at each point,

mapped onto the 2D image

� A vector field

� They are not always

the same

� E.g., white, featureless ball?

In general, we estimate the motion field by

computing the optical flow

The motion field is not directly

observed

Example

Example

Caveats

� Motion analysis a very important and popular area in

computer vision

� A large body of literature exits with maybe hundreds of

different formulations (At CVPR, you will find at least 2 or 3 sessions on

motion)

� Many of them can be very mathematical

� Apparent motion != True motion

Rigid vs. nonrigid motion

� Camera motion is 6 DOF rigid motion

� Object motion may be rigid or nonrigid

� Rigid: coffee mugs, silverware, baseballs, jets, ...

� Nonrigid: humans, face, medical imagery, beach

balls, scissors, grass, ...

� Includes articulated motion

Nonrigid motion

� Nonrigid motion is complicated and difficult, especially

with little prior knowledge on what is being viewed

� Typical problem: What are the parameters of the known nonrigid

model of the object being viewed?

We’ll just focus on rigid motion

The barber’s pole illusion

Motion

field

Optical

flow

Web example

The aperture problem

� In local processing, we can only measure

motion perpendicular to the image

gradient

First steps

� Motion processing starts with estimating optical flow from
frame to frame, either densely or sparsely

� The typical approaches are:

� Dense correspondence:

� Differential methods, local area/correlation based

� This could be hierarchical (coarse-to-fine approach)

� Sparse correspondence

� Matching methods, feature based

� Asumption: Points/features can be matched in nearby
images

Brightness constancy equation

0
)),(),((

==
td

ttytxId

td

Id

0
)),(),((

=
∂

∂
+

∂

∂
+

∂

∂
=

dt

dt

t

I

dt

dy

y

I

dt

dx

x

I

td

ttytxId

0,, =
∂

∂
+
















∂

∂

∂

∂

t

I

dt

dy

dt

dx

y

I

x

I
T

0=+⋅∇ tII v

I∇

v

tI

Image gradient

Optical flow

Time difference

For a given scene point
Total

derivative

Brightness constancy equation

(method #2)

),,(),,(ttyyxxItyxI δ+δ+δ+= For a given scene point

0),,(),,(=−δ+δ+δ+ tyxIttyyxxI

dt
t

tyxI
dy

y

tyxI
dx

x

tyxI
zyxI

∂

∂
+

∂

∂
+

∂

∂
+

),,(),,(),,(
),,(

0
),,(),,(),,(

=
∂

∂
+

∂

∂
+

∂

∂
dt

t

tyxI
dy

y

tyxI
dx

x

tyxI

by Taylor expansion

≈

0=
∂

∂
+

∂

∂
+

∂

∂

t

I

dt

dy

y

I

dt

dx

x

I
0=+⋅∇ tIvI

Brightness constancy equation

(method #2)

),,(ttyyxxI δ+δ+δ+),,(tyxI

Image at time t Image at time t+δt

=

Back to the aperture problem

0=+⋅∇ tIvI

I∇

2v

tI

1v

tIvI −=⋅∇

Many vectors v satisfy this

Only the normal direction is constrained

3v

On images…

t

x

y
x

I

∂

∂

y

I

∂

∂

t

I

∂

∂

t

x

y
x

I

∂

∂

y

I

∂

∂

t

I

∂

∂









dt

dy

dt

dx
,

0=+⋅∇ tIvI

This equation defines and constrains the optical flow v (x, y)

What is the image gradient?

Image gradient – the first derivative (slope) of the intensity variation in (x, y)

What is the temporal gradient?

t1 t2

t

I

∂

∂

Brightness constancy of a point

Scene

I1 I2 I3

I(x(t1),y(t1),t1)

I(x(t2),y(t2),t2)

I(x(t2),y(t2),t2)

I(x(t3),y(t3),t3)

= =

Image

sequence

Difficulty

� One equation with two unknowns

� Aperture problem

� spatial derivatives use only a few adjacent pixels (limited aperture

and visibility)

� many combinations of (u,v) will satisfy the equation

Constraint line

u

v

intensity gradient is zero

no constraints on (u,v)

interpolated from other places

intensity gradient is nonzero

but is constant

one constraints on (u,v)

only the component along the gradient

are recoverable

intensity gradient is nonzero

and changing

multiple constraints on (u,v)

motion recoverable

(,) (,)0 0 0⋅ =u v

(,) (,)
∂

∂

∂

∂

∂

∂

I

x

I

y
u v

I

t
⋅ = −

(,) (,)

(,) (,)

(,)

(,)

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

I

x

I

y
u v

I

t

I

x

I

y
u v

I

t

x y

x y

1 1

2 2

1 1

2 2

⋅ = −

⋅ = −

()∑
Ω∈

++=
yx

tyx IvyxIuyxIvuE
,

2
),(),(),(

Minimizing

Assume a single velocity for all pixels within an image patch











−=





















∑
∑

∑∑
∑∑

ty

tx

yyx

yxx

II

II

v

u

III

III
2

2

() t

T
IIUII ∑∑ ∇−=∇∇

r

LHS: sum of the 2x2 outer product of the gradient vector

Patch Translation [Lucas-Kanade]

Szeliski

Image motion

How do we determine correspondences?

Assume all change between frames is due to motion:

),(),(),(),(yxyx vyuxIyxJ ++≈

I J

The Aperture Problem

()()∑ ∇∇=
T

IIMLet

• Algorithm: At each pixel compute by solving

• M is singular if all gradient vectors point in the same direction

• e.g., along an edge

• of course, trivially singular if the summation is over a single pixel
or there is no texture

• i.e., only normal flow is available (aperture problem)

• Corners and textured areas are OK

and












−

−
=

∑
∑

ty

tx

II

II
b

U bMU=

Szeliski

SSD Surface – Textured area

SSD Surface -- Edge

SSD – homogeneous area

Limits of the gradient method

Fails when intensity structure in window is poor

Fails when the displacement is large (typical operating range is

motion of 1 pixel)

Linearization of brightness is suitable only for small displacements

� Also, brightness is not strictly constant in images

actually less problematic than it appears, since we can pre-filter images

to make them look similar

Szeliski

image Iimage J

a
v

Jwwarp refine

a
v

aΔ
v

+

Pyramid of image J Pyramid of image I

image Iimage J

Coarse-to-Fine Estimation

u=10 pixels

u=5 pixels

u=2.5 pixels

u=1.25 pixels

Szeliski

Iterative Refinement

� Estimate velocity at each pixel using one iteration of Lucas

and Kanade estimation

� Warp one image toward the other using the estimated flow

field

(easier said than done)

� Refine estimate by repeating the process

Szeliski

Optical Flow: Iterative Estimation

xx0

Initial guess:

Estimate:

estimate

update

(using d for displacement here instead of u)

Szeliski

Optical Flow: Iterative Estimation

xx0

estimate

update
Initial guess:

Estimate:

Szeliski

Optical Flow: Iterative Estimation

xx0

Initial guess:

Estimate:

Initial guess:

Estimate:

estimate

update

Szeliski

Temporal coherency

t t t+ δ t t+ 2δ

(,)u v
(,)u v

(,) (,)
∂

∂

∂

∂

∂

∂

I

x

I

y
u v

I

t
⋅ = − (,) (,)

∂

∂

∂

∂

∂

∂

I

x

I

y
u v

I

t
⋅ = −

• Caveat:
– (u,v) must stay the same across several frames

– scenes highly textured

– (u,v) at the same location actually refers to
different object points

Spatial coherency

� neighboring pixels should have “similar” flow vector

� Q: What do you mean by “similar”

� A1: identical

� A2: change slowly ∂

∂

∂

∂

∂

∂

∂

∂

u

x

u

y

v

x

v

y
= = = = 0

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

u

x

u

y

v

x

v

y

u

x

u

y

v

x

v

y

, , ,

() () () ()

≅

+ + +

0

2 2 2 2 sm all

Mathematical formulation

� Based on Lagrange Multiplier

� Incorporate smoothness as an additional constraint

� Can be thought of as a weighting of two terms:

� optical flow constraint

� smoothness constraint

(,) (,)
∂

∂

∂

∂

∂

∂

I

x

I

y
u v

I

t
⋅ = −

() () () ()
∂

∂

∂

∂

∂

∂

∂

∂

u

x

u

y

v

x

v

y

2 2 2 2+ + +

E
I

x
u

I

y
v

I

t

u

x

u

y

v

x

v

y
dxdy= + + + + + +∫∫ () [() () () ()]

∂

∂

∂

∂

∂

∂
λ

∂

∂

∂

∂

∂

∂

∂

∂

2 2 2 2 2

� Optimize over all image plane:

� Discretize the governing equation, at (i,j):

∂

∂

∂

∂
∂

∂

∂

∂

u

x
u u

u

y
u u

v

x
v v

v

y
v v

i j i j i j i j

i j i j i j i j

= − = −

= − = −

+ +

+ +

1 1

1 1

, , , ,

, , , ,

� Discretized expression:

E
I

x
u

I

y
v

I

t

u u u u v v v v

i j

i j

i j

i j

i jji

i j i j i j i j i j i j i j i j

= + +

+ − + − + − + −

∑∑

+ + + +

()

[() () () ()]

,

,

,

,

,

, , , , , , , ,

∂

∂

∂

∂

∂

∂

λ

2

1

2

1

2

1

2

1

2

• At a pixel location (k,l):

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

λ

E

u

I

x
u

I

y
v

I

t

I

x

u u u u u u u u

k l k l

k l

k l

k l

k l k l

k l k l k l k l k l k l k l k l

, ,

,

,

,

, ,

, , , , , , , ,

()

[() () () ()]

= + +

− − + − + − + − =− − + +

2

2 01 1 1 1

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

λ

E

v

I

x
u

I

y
v

I

t

I

y

v v v v v v v v

k l k l

k l

k l

k l

k l k l

k l k l k l k l k l k l k l k l

, ,

,

,

,

, ,

, , , , , , , ,

()

[() () () ()]

= + +

− − + − + − + − =− − + +

2

2 01 1 1 1

∂

∂ λ

E
=L

• Putting it all together:

4/)(

4/)(

0)(4)(

0)(4)(

1,,11,,1

1,,11,,1

,

,,

,

2

,

,

,,

,

,,

,

,,

,

2

,

++−−

++−−

+++=

+++=

=−−++

=−−++

lklklklk

lklklklk

lk

lklk

lk

lk

lk

lklk

lk

lklk

lk

lklk

lk

lk

vvvvv

uuuuu

vv
t

I

y

I
v

y

I
u

y

I

x

I

uu
t

I

x

I
v

y

I

x

I
u

x

I

λ
∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

λ
∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

• Or:

[()]

[()]

,

,

, ,

,

, ,

, ,

,

,

,

, ,

4 4

4 4

2

2

λ
∂

∂

∂

∂

∂

∂
λ

∂

∂

∂

∂

∂

∂

∂

∂
λ

∂

∂
λ

∂

∂

∂

∂

+ + = −

+ + = −

I

x
u

I

x

I

y
v u

I

x

I

t

I

x

I

y
u

I

y
v v

I

y

I

t

k l

k l

k l k l

k l

k l k l

k l k l

k l

k l

k l

k l k l

u u

I

x
u

I

y
v

I

t

I

x

I

y

I

x

v v

I

x
u

I

y
v

I

t

I

x

I

y

I

y

k l

k l k l k l

k l k l

k l

k l

k l k l k l

k l k l

k l

,

, , ,

, ,

,

,

, , ,

, ,

,

() ()

() ()

= −

+ +

+ +

= −

+ +

+ +

∂

∂

∂

∂

∂

∂

λ
∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

λ
∂

∂

∂

∂

∂

∂

4

4

2 2

2 2

u u

I

x
u

I

y
v

I

t

I

x

I

y

I

x

v v

I

x
u

I

y
v

I

t

I

x

I

y

I

y

k l

k l k l k l

k l k l

k l

k l

k l k l k l

k l k l

k l

,

, , ,

, ,

,

,

, , ,

, ,

,

() ()

() ()

= −

+ +

+ +

= −

+ +

+ +

∂

∂

∂

∂

∂

∂

λ
∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

λ
∂

∂

∂

∂

∂

∂

4

4

2 2

2 2

•estimate based on smoothness

•how much does the smooth estimate violate

optical flow constraint

•how much does the optical flow constraint matters

•direction for correction

Algorithms

1 . C o m p u te fro m a p a ir o f in p u t im ag es

2 . C h o o se a w eigh tin g fac to r

3 . C o m p u te (

 A t each p ix e l lo ca tio n (), d o

∂

∂

∂

∂

∂

∂

λ

∂

∂

∂

∂

∂

∂

λ
∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

I

x

I

y

I

t

u v

k ,l

u u

I

x
u

I

y
v

I

t

I

x

I

y

I

x

v v

I

x
u

I

y

k l

n n k l

n

k l

n

k l

k l k l

k l

k l

n n k l

n

, ,

,)

.

() ()
,

() () ,

()

,

()

,

, ,

,

,

() () ,

()

4

4

1

2 2

1

+

+

= −

+ +

+ +

= −

+
k l

n

k l

k l k l

k l

v
I

t

I

x

I

y

I

y

,

()

,

, ,

,() ()

.

+

+ +

∂

∂

λ
∂

∂

∂

∂

∂

∂4

5

2 2

 Ite ra te s tep s 3 an d 4 u n til n o ch an g e o r co u n t ex ceed s

Results

Motion representations

� How can we describe this scene?

Szeliski

Block-based motion prediction

� Break image up into square blocks

� Estimate translation for each block

� Use this to predict next frame, code difference (MPEG-2)

Szeliski

Layered motion

� Break image sequence up into “layers”:

� ÷ =

� Describe each layer’s motion

Szeliski

Layered motion

� Advantages:

• can represent occlusions / disocclusions

• each layer’s motion can be smooth

• video segmentation for semantic processing

� Difficulties:

• how do we determine the correct number?

• how do we assign pixels?

• how do we model the motion?

Szeliski

Layers for video summarization

Szeliski

Background modeling (MPEG-4)

� Convert masked images into a background sprite for

layered video coding

� + + +

�

=

Szeliski

Optical flow summary

� Optical flow techniques:

� Techniques that estimate the motion field from the image

brightness constancy equation

� Optical flow:

� Is best estimated (least noisy) at image points with high spatial

image gradients. (Why?)

� Works best for Lambertian surfaces (Why?)

� Works best for very high frame rates (Why?)

� From optical flow, we can compute shape/structure/depth,

motion parameters, segmentation, etc.

� But if you primarily want to track an object, other methods may be

preferred

Tracking

� Tracking is the process of updating an object’s position

(and orientation, and articulation?) over time through a

video sequence

� Estimate the object pose at each time point

� “Pose” – position and orientation

� Applications

� Surveillance

� Targeting

� Motion-based recognition (e.g., gesture recognition, computation

of egomotion)

� Motion analysis (golf swing, gait, character animation)

� ……..

Tracking vs. optical flow

� In tracking, we are generally acknowledging that some
sparse features are the points to track

� Corners, lines, regions, patterns, contours....

� Rather than computing the full motion field from optical
flow, let’s keep track of the time-varying position of these
sparse features

� Then compute {egomotion, object pose, etc.} from this

� This typically involves a loop of prediction, measurement,
and correction

� Often with presumed models of motion dynamics and
measurement noise

Tracking vs. Matching

�Tracking requires

videos

�Small displacement is

assumed

�Simple features

�Use image constraint

(similar to optical flow

constraint)

�Matching can be done

on discrete frames

�Displacement can be

large (>10 pixels)

�Often more elaborate

features

�Independent detection

in each frame and then

match

Examples LKT tracker

F(x)G(x)

KLT tracker

� An iterative update algorithm

� The estimate is more accurate if F is indeed linear

� Penalize pixels with large 2nd derivatives (w(x))

