

Deep Learning Codes * Invariably w Python interface * Useful with GPU version

Tensor Flow

- As a "retained" mode operation
 Define the network graphs
 Then execute
- Vs. "immediate" mode operation like Pytorch
- Choose wisely, the investment can be hard to undo or repeat

General Prog Skeleton

Network preparation □ Define network □ Backup network □ Restore network * Data preparation \Box Read and partition (x: data, y: label) □ Randomize Batch

General Runtime Skeleton

* Book-keeping

□ Pnratio

□ Class weight, sample weight, etc.

□ Prediction from CNN

□ Cost, # correct, accuracy definition □ Optimizer

University of Celifornia Santa Barbara

General Runtime Skeleton

Repeat for # training cycles :

Evaluate current error (evaluation data set) Backup Network Get current training batch Repeat for #epochs: Repeat for #batches Sess.run([optimizer, cost], feed_dict={x: epoch_x, y:epoch_y} Update training error (premature stop condition) Re-evaluate current error (evaluation data set) If not better:

Restore Network

Else:

Save Network

Important Details

- Small problems (small networks and data sets)
 Do whatever you want and probably ok
- Large problems
 - □ Tricky convergence
 - □ Catch bad iterations early
 - > Patterns in learning indicating likely failure
 - > Validate after each learning cycle before it is too late
 - □ Annealing process
 - Large step size, more epochs, smaller training samples initially

Small step size, fewer epochs, large training samples
Subsequently