Localization and Detection

CS 281b 02/26/2018

Image Classification

Localization and Detection

CAT

DOG, DOG, CAT

Single Object

Multiple Object

Localization

Localization

Evaluation: IoU

IoU: 66.7%

IoU: 45.0%

Object Detection

CAT DOG, DOG, CAT

Object detection as regression? Each image needs a different number of outputs!

Object Detection: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies each crop as some object or background.

Object Detection: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies each crop as some object or background.

Object Detection: Sliding Window

Apply a CNN to many different crops of the image, CNN classifies each crop as some object or background.

Problem: Need to apply CNN to huge number of locations and scales, very computationally expensive!

Object Detection: Region Proposal

Find potential image regions that are likely to contain objects.
Methods such as Selective Search, Edge Boxes etc.
Relatively fast to run; generates reasonable amount of region proposals in a few seconds on CPU
High recall rate

Region CNN

Linear Regression for bounding box offsets

[1] Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2014.

Problem with R-CNN

Ad hoc training objectives
 Inference is slow
 47s / image with VGG16 network

[1] Girshick, Ross. "Fast r-cnn." *Proceedings of the IEEE International Conference on Computer Vision*. 2015.

Faster R-CNN

Insert Region Proposal Network (RPN) to predict proposals from features. An end-to-end trainable neural network architecture using the same CNN feature map for both region proposal and proposal classification.

[1] Ren, Shaoqing, et al. "Faster R-CNN: Towards real-time object detection with region proposal networks." *Advances in neural information processing systems*. 2015.

Summary

R-CNN

□ Traditional region proposal + CNN classifier for each proposal

Generation Fast R-CNN

□ Traditional region proposal + CNN classifier for entire image

□ Faster R-CNN

□ An unified CNN architecture for region proposal & proposal classification

	R-CNN	Fast R-CNN	Faster R-CNN
Test time	50 s	2 s	0.2 s
mAP (%)	66.0	66.9	66.9

	AlexNet	VGG-16	ResNet-101
mAP (%)	62.1	73.2	76.4

Using different CNNs in faster R-CNN

Object Detection: Lots of variations

Base Network

- □ Inception V2
- □ Inception V3
- DenseNet
- □ MobileNet
- **D** ...
- Other architectures
 - **YOLO**
 - □ R-FCN

 - **D**

Thank You !