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Supervised Learning

Data: (x, y)
x is data, y is label 

Goal: learn a function to map x  y

Examples:
Classification, regression, object 
detection, semantic segmentation, 
image captioning, etc. Classification
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Unsupervised Learning

Data: x
Just data, no label! 

Goal: learn some underlying hidden 
structure of the data

Examples:
Clustering, dimensionality reduction, 
feature learning, density estimation, etc.
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Reinforcement Learning

Problems involving an agent 
interacting with an environment, 
which provides numeric reward 
signals 

Goal: Learn how to take actions 
in order to maximize reward 
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Overview

What is Reinforcement Learning?

Markov Decision Process

Q-Learning

Policy Gradient

Actor Critic
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agent

environment
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Sequential Decision Making

• Goal: select actions to maximize total future reward 
• Actions may have long term consequences
• Reward may be delayed 
• It may be better to sacrifice immediate reward to gain more long-term 

reward
• Examples: 

• A financial investment (may take months to mature) 
• Refueling a helicopter (might prevent a crash in several hours)
• Blocking opponent moves (might help winning chances many moves from now) 
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Cart-Pole Problem
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Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal 
velocity
Action: horizontal force applied on the cart
Reward: 1 at each time step if the pole is upright



Robot Locomotion
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Objective: Make the robot move forward 

State: Angle and position of the joints 
Action: Torques applied on joints
Reward: 1 at each time step upright + 
forward movement



Atari Games
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Objective: Complete the game with the highest reward 

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step



Go

11

Objective: Win the game

State: Positions of all pieces 
Action: Where to put the next piece down
Reward: 1 if win at the end of the game, 0 
otherwise



Markov Decision Process
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Markov Decision Process
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A Simple MDP: Grid World
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A Simple MDP: Grid World
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Optimal Policy 𝜋∗
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Optimal Policy 𝜋∗
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Value Function and Q-value Function

18



Value Function and Q-value Function
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Value Function and Q-value Function
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Bellman Equation
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Bellman Equation
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Bellman Equation
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Solving The Optimal Policy
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Solving The Optimal Policy
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Solving The Optimal Policy
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Solving The Optimal Policy
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Solving The Optimal Policy: Q-learning
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Solving The Optimal Policy: Q-learning
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Solving The Optimal Policy: Q-learning
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Solving The Optimal Policy: Q-learning
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Solving The Optimal Policy: Q-learning
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Solving The Optimal Policy: Q-learning
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Case Study: Playing Atari Games
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Objective: Complete the game with the highest reward 

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step



Deep Q-Network
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Deep Q-Network
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Input: state st



Deep Q-Network
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Conv + FC layers



Deep Q-Network
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Last FC layer has 4-d
output (if 4 actions), 
corresponding to 
Q(st , a1), Q(st , a2), 
Q(st , a3), Q(st , a4)



Deep Q-Network
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Last FC layer has 4-d
output (if 4 actions), 
corresponding to 
Q(st , a1), Q(st , a2), 
Q(st , a3), Q(st , a4)

Number of actions between 4-18 

depending on Atari game 



Deep Q-Network
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Last FC layer has 4-d
output (if 4 actions), 
corresponding to 
Q(st , a1), Q(st , a2), 
Q(st , a3), Q(st , a4)

A single feedforward pass 

to compute Q-values for 

all actions from the 
current state => efficient! Number of actions between 4-18 

depending on Atari game 



Training DQN: Loss Function
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Training DQN: Experience Replay
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Training DQN: Experience Replay
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Deep Q-learning with Experience Replay
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Initialize replay memory, Q-network 



Deep Q-learning with Experience Replay
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Play M episodes (full games)



Deep Q-learning with Experience Replay
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Initialize state (starting game 

screen pixels) at the 

beginning of each episode 



Deep Q-learning with Experience Replay
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For each timestep t of the game



Deep Q-learning with Experience Replay
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With small probability, select a 

random action (explore), 

otherwise select greedy action 

from current policy 



Deep Q-learning with Experience Replay

49

Take the action (at), and 

observe the reward rt and 

next state st+1 



Deep Q-learning with Experience Replay
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Store transition in replay memory 



Deep Q-learning with Experience Replay
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Experience Replay: 

Sample a random 

minibatch of transitions 

from replay memory and 

perform a gradient 

descent step 



Value-based and Policy-based RL
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• Value Based
• Learnt Value Function
• Implicit Policy (e.g. 𝜖-

greedy) 

• Policy Based
• No Value Function 
• Learnt Policy

• Actor-Critic 
• Learnt Value Function
• Learnt Policy



Advantages of Policy-Based RL
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Advantages:
• Better convergence properties
• Effective in high-dimensional or continuous action spaces
• Can learn stochastic policies

Disadvantages: 
• Typically converge to a local rather than global optimum 
• Evaluating a policy is typically inefficient and high variance 



Policy Gradient
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Policy Gradient
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Policy Gradient
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REINFORCE algorithm
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REINFORCE algorithm
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REINFORCE algorithm
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Difficult to compute!!!



REINFORCE algorithm
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Difficult to compute!!!



REINFORCE algorithm
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REINFORCE algorithm
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REINFORCE algorithm
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Intuition
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Intuition
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Intuition
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Policy Gradient with Baseline
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Idea: Introduce a baseline function dependent on the state to reduce the 
variance (whether a reward is better or worse than what you expect to get) 



Policy Gradient with Baseline
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Idea: Introduce a baseline function dependent on the state to reduce the 
variance (whether a reward is better or worse than what you expect to get) 

A simple baseline: constant moving average of rewards 
experienced so far from all trajectories 



Actor-Critic
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Actor-Critic
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Actor-Critic
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Actor-Critic
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Case Study: 
Image Captioning with Policy Gradient
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Supervised Learning:
• GT word as the input (the previous word) of the RNN language 

model
• Maximize the probability of the GT word given the current hidden 

state

Reinforcement Learning (Policy Gradient):
• Sampled word as the previous word
• Maximize the defined reward (e.g. CIDEr score) of the whole 

sentence
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Summary
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- Policy gradients: very general but suffer from high variance so requires 
a lot of samples. Challenge: sample-efficiency 

- Q-learning: does not always work but when it works, usually more 
sample-efficient. Challenge: exploration 

- Guarantees: 
- Policy Gradients: Converges to a local minima of J(𝜃), often good 
enough! 
- Q-learning: Zero guarantees since you are approximating Bellman 
equation with a complicated function approximator
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Thank You !
Xin Wang

xwang@cs.ucsb.edu
http://www.cs.ucsb.edu/~xwang

mailto:xwang@cs.ucsb.edu
http://www.cs.ucsb.edu/~xwang
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