Introduction to
Reinforcement Learning

XIN WANG
UCSB CS2818B

Slides adapted from Stanford CS231n
R mmmmmm——

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: learn a functiontomapx 2 vy
Examples:

Classification, regression, object
detection, semantic segmentation,

image captioning, etc. Classification

Unsupervised Learning

Data: x

Just data, no label! e e Tl m e e

1-d density estimation

Goal: learn some underlying hidden

structure of the data ° :
Examples: .
Clustering, dimensionality reduction, N |

feature learning, density estimation, etc. 2.4 density estimation

Reinforcement Learning

Problems involving an agent
interacting with an environment,
which provides numeric reward

signals

State S,

Reward r,
Next state s,

Action a,

Environment

Goal: Learn how to take actions
in order to maximize reward

Overview

What is Reinforcement Learning?
Markov Decision Process
Q-Learning
Policy Gradient

Actor Critic

R

state action
ﬁ
S; A,

reward Rt

environment

Sequential Decision Making

* Goal: select actions to maximize total future reward

* Actions may have long term consequences

 Reward may be delayed

* It may be better to sacrifice immediate reward to gain more long-term
reward

 Examples:
* Afinancial investment (may take months to mature)
* Refueling a helicopter (might prevent a crash in several hours)
e Blocking opponent moves (might help winning chances many moves from now)

Cart-Pole Problem

Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal
velocity

Action: horizontal force applied on the cart
Reward: 1 at each time step if the pole is upright

L7777 7777777777777777777777777

Robot Locomotion

Objective: Make the robot move forward

State: Angle and position of the joints
Action: Torques applied on joints
Reward: 1 at each time step upright +
forward movement

Atari Games

Objective: Complete the game with the highest reward

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Go

ABCDEFGH)]KLMNOPQRST

-
~

-
L

5 Objective: Win the game

E | § State: Positions of all pieces

’ . Action: Where to put the next piece down
Reward: 1 if win at the end of the game, 0
otherwise

N W e e N®
N WA Ve NS

ABCDEFGH)KLMNOPAQRST

Markov Decision Process

- Mathematical formulation of the RL problem

- Markov property: Current state completely characterises the state of the
world

Defined by: (S, A, ,R«;]P, '7)

. set of possible states
. set of possible actions
: distribution of reward given (state, action) pair

. transition probability i.e. distribution over next state given (state, action) pair
. discount factor

LRLEFA X0

Markov Decision Process

- Attime step t=0, environment samples initial state s, ~ p(s)
- Then, for t=0 until done:

- Agent selects action a,

- Environment samples reward r,~ R(. | s, @)

- Environment samples next state s, ~P(. | s, a)

t+1
- Agent receives reward r, and next state s, ,

A policy it is a function from S to A that specifies what action to take in
each state

t
- Objective: find policy n* that maximizes cumulative discounted reward: Z’Y Tt
t>0

A Simple MDP: Grid World

actions = { states

1. right «~— .

2. left <«— Set a negative “rre:ward”
3. up [for ?:;IT I’t.rin-:-‘;l)tn:::n

4. down I
}

Objective: reach one of terminal states (greyed out) in
least number of actions

A Simple MDP: Grid World

L EEEEE L
-1 B
- =N
Random Policy Optimal Policy

Optimal Policy r*

We want to find optimal policy n* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?

Optimal Policy r*

We want to find optimal policy n* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?
Maximize the expected sum of rewards!

Formally: 7" = a.rgmfoE [Z 7t'rt|1r] with sg ~ p(8g), a; ~ 7(-|8¢), 8¢41 ~ p(-|s¢,a4)
t>0

Value Function and Q-value Function

Following a policy produces sample trajectories (or paths) s, a,, r,, s,, a,, Iy, ...

Value Function and Q-value Function

Following a policy produces sample trajectories (or paths) s, a,, r,, s,, a,, r,,

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy

from state s: [

=E Z'ytrdsa = s,ﬂ']

t>0

Value Function and Q-value Function

Following a policy produces sample trajectories (or paths) s, a,, r,, s,, a,, I,

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy

from state s: [

=E Z'ytrdsﬂ = S,ﬂ']

t>0

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from

taking action a in state s and then following the policy:

Q" (s,a) =E [Z *}'trt|30 = 8,ap = Q, ﬂ']

t>0

Bellman Equation

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Q*(Saa) = IIlél.XIE Z’)’t?"t|80 = S8,a90 =Q,T
>0

Bellman Equation

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Q*(s,a) = mfra.x]E nytrt|so = 8, By ='a,
t>0

Q* satisfies the following Bellman equation:
Q*(s,a) =Eg ¢ [r + Yy max Q*(s',ad)|s, a]

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

r+vQ*(s',a’)

Bellman Equation

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Q"(s,a) = mgxIE Z’Yt'f‘dso =8,a0 =Q,T
t>0

Q* satisfies the following Bellman equation:
Q*(5,0) = Egrng |7+ ymaxQ*(s',a)|s, al

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

r+vQ*(s',a’)

The optimal policy m* corresponds to taking the best action in any state as specified by Q*

Solving The Optimal Policy

Value iteration algorithm: Use Bellman equation as an iterative update

Qir1(s,0) =E |r + ymax Qi(s',a)ls,a

Q. will converge to Q* as i -> infinity

Solving The Optimal Policy

Value iteration algorithm: Use Bellman equation as an iterative update
!
Qi+1(s,0) =E |r + ymax Qi(s',)3, a]

Q, will converge to Q* as i -> infinity

What's the problem with this?

Solving The Optimal Policy

Value iteration algorithm: Use Bellman equation as an iterative update
/1
Qit1(s,0) = E |r + ymax Qi(s',a')|s, a]

Q, will converge to Q* as i -> infinity

What's the problem with this?

Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state
pixels, computationally infeasible to compute for entire state space!

Solving The Optimal Policy

Value iteration algorithm: Use Bellman equation as an iterative update
!
Qit1(s,0) = E |r + ymax Qi(s', a')|s,a]

Q, will converge to Q* as i -> infinity

What's the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state
pixels, computationally infeasible to compute for entire state space!

Solution: use a function approximator to estimate Q(s,a). E.g. a neural network!

Solving The Optimal Policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Q(s,a;0) ~ Q" (s, a)

If the function approximator is a deep neural network => deep qg-learning!

Solving The Optimal Policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Qerai6) % Q" (3,0)

function parameters (weights)

If the function approximator is a deep neural network => deep qg-learning!

Solving The Optimal Policy: Q-learning

Remember: want to find a Q-function that satisfies the Bellman Equation:
Q*(s,a) =Egn~g [r + ymax Q* (s, a’)|s, a]
a

Solving The Optimal Policy: Q-learning

Remember: want to find a Q-function that satisfies the Bellman Equation:
Q*(s,a) =Eg e ['r + ymax Q*(s’,a’)|s, a]
a

Forward Pass
Loss function: L;(0;) = Eg apy [(vi — Q(s, a3 6;))?]

where ¥; = Eg g [r +ymax Q(s',a’;0;_1)|s, a,]
a

Solving The Optimal Policy: Q-learning

Remember: want to find a Q-function that satisfies the Bellman Equation:
Q"(5,0) = Eve [+ ymaxQ*(s',a')|s,a]
a

Forward Pass
Loss function: L;(6;) = Eg o py [(vi — Q(s, a3 6;))?]

where ¥; = Eg g [r +ymax Q(s',a’;0;1)|s, a,]
a

Backward Pass
Gradient update (with respect to Q-function parameters 06):

Vo,Li(0:) = Eg amp()isime ['r + 7y max Q(s',a";0i-1) — Q(s,a;0;))Ve,Q(s,a; 99:)]

Solving The Optimal Policy: Q-learning

Remember: want to find a Q-function that satisfies the Bellman Equation:
QR*(s,a) =Eg ¢ [,,. + ymax Q*(s',a’)|s, a}
a

Forward Pass
Loss function: L;(0;) = Eg aup() [(wi = Q(s,a;56;))?]

Iteratively try to make the Q-value
where y; = Eg g [7' + ymax Q(Sla a'; 9i—1)|35 a close to the target value (y,) it
a should have, if Q-function
corresponds to optimal Q* (and
Backward Pass optimal policy m*)

Gradient update (with respect to Q-function parameters 0):

V&,-Li(gi) = Es,awp(-);s’rvé' |:T + II}]'E}X Q(s’a CL’; 9‘5—1) - Q(Sa as &,;))Vgi Q(Sa a, 9%)]

Case Study: Playing Atari Games

Objective: Complete the game with the highest reward

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Deep Q-Network

Q(Sa a, 9) : —
neural network FC-4 (Q-values)
with weights @ FC-056

32 4x4 conv, stride 2

16 8x8 conv, stride 4

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

Deep Q-Network

Q(Sa a, 9) : —
neural network FC-4 (Q-values)
with weights @ FC-056

32 4x4 conv, stride 2

16 8x8 conv, stride 4

1
J”= Input: state s,

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

Deep Q-Network

Q(Sa a, 9) : —
neural network FC-4 (Q-values)
with weights @ FC-056

32 4x4 conv, stride 2 Conv + FC layers

16 8x8 conv, stride 4

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

Deep Q-Network

Q(s,a;0):

FC-4 (Q-values) < Last FC layer has 4-d
neural network tout (if 4 acti
with weights FC-256 output (i ac ions),
. corresponding to
32 4x4 conv, stride 2 Q(St, al)’ Q(St, az)’
16 8x8 conv, stride 4 Q(s,, a5), Q(s,, a,)

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

Deep Q-Network

Q(S’ a, 9) : FC-4 (Q-values) < Last FC layer has 4-d
neural network tout (if 4 acti
with weights FC-256 output (i ac ions),
o - corresponding to
, Stri
X4 Cconyv, strige Q(St; 31); Q(St; az)’
16 8x8 conv, stride 4 Q(s,, a3), Qls,, a4)

mn Number of actions between 4-18
l” depending on Atari game

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

Deep Q-Network

Q(S’ @ 9) : FC-4 (Q-values) < Last FC layer has 4-d
neural network . :
with weights 6 FC-256 output (if 4 actions),
; corresponding to
32 4x4 conv, stride 2
A single feedforward pass . Q(s;, a1), Qls,, a,),
to compute Q-values for 16 8x8 conv, stride 4 Q(s;, a3), Qls;, a,)

all actions from the o

current state => efficient! 1 Number of actions between 4-18
l” depending on Atari game

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

Training DQN: Loss Function

Remember: want to find a Q-function that satisfies the Bellman Equation:
QR*(s,a) =Eg ¢ [,,. + ymax Q*(s',a’)|s, a}
a

Forward Pass
Loss function: L;(0;) = Eg aup() [(wi = Q(s,a;56;))?]

Iteratively try to make the Q-value
where y; = Eg g [7' + ymax Q(Sla a'; 9i—1)|35 a close to the target value (y,) it
a should have, if Q-function
corresponds to optimal Q* (and
Backward Pass optimal policy m*)

Gradient update (with respect to Q-function parameters 0):

V&,-Li(gi) = Es,awp(-);s’rvé' |:T + II}]'E}X Q(s’a CL’; 9‘5—1) - Q(Sa as &,;))Vgi Q(Sa a, 9%)]

Training DQN: Experience Replay

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing
action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

Training DQN: Experience Replay

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing
action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions (s, a, r,, s, ,) as game
(experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory,
instead of consecutive samples

Deep Q-learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N o
Initialize action-value function Q with random weights ¢ Initialize replay memory, Q-network
for episode = 1, M do
Initialise sequence s; = {x; } and preprocessed sequenced ¢; = ¢(s1)
fort=1,T do
With probability e select a random action a;
otherwise select a; = max, Q*(¢(s¢),a;0)
Execute action a; in emulator and observe reward r; and image T
Set s¢+1 = S, G¢, Ty+1 and preprocess ¢i11 = P(S¢41)
Store transition (¢¢, as, ¢, $z11) in D
Sample random minibatch of transitions (¢;, a;,7;, ¢;+1) from D
Set 1, — { T; for terminal ¢;4 1
9=\ r; + ymaxy Q(¢ji1,a';6) for non-terminal ¢, 4

Perform a gradient descent step on (y; — Q(¢;, a;; 9))? according to equation 3
end for
end for

Deep Q-learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights

for episode = 1, M do - Play M episodes (full games)
Initialise sequence s; = {x;} and preprocessed sequenced ¢; = ¢(s1)
fort=1,T do

With probability e select a random action a;

otherwise select a; = max, Q*(¢(s¢),a;0)

Execute action a; in emulator and observe reward r; and image T
Set s¢+1 = S, G¢, Ty+1 and preprocess ¢i11 = P(S¢41)

Store transition (¢¢, as, ¢, $z11) in D

Sample random minibatch of transitions (¢;, a;,7;, ¢;+1) from D
Set y; = { T; for terminal ¢;4 1

J r; +ymaxq Q(Pj+1,a’;0) for non-terminal ¢, 4

Perform a gradient descent step on (y; — Q(¢;, a;; 9))? according to equation 3
end for
end for

Deep Q-learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {x; } and preprocessed sequenced ¢; = ¢(s;) <= Initialize state (starting game

fort =1,Tdo . screen pixels) at the
With probability € select a random action a; beginning of each episode

otherwise select a; = max, Q*(¢(s¢),a;0)

Execute action a; in emulator and observe reward r; and image T
Set s¢+1 = S, G¢, Ty+1 and preprocess ¢i11 = P(S¢41)

Store transition (¢¢, as, ¢, $z11) in D

Sample random minibatch of transitions (¢;, a;,7;, ¢;+1) from D
Set y; = { T; for terminal g.bj+1

J r; +ymaxq Q(Pj+1,a’;0) for non-terminal ¢, 4

Perform a gradient descent step on (y; — Q(¢;, a;; 9))? according to equation 3
end for
end for

Deep Q-learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {x; } and preprocessed sequenced ¢; = ¢(s1)
fort=1,T do :
With probability e select a random action a; b For each timestep t of the game
otherwise select a; = max, Q*(¢(s¢),a;0)
Execute action a; in emulator and observe reward r; and image T
Set s¢+1 = S, G¢, Ty+1 and preprocess ¢i11 = P(S¢41)
Store transition (¢¢, as, ¢, $z11) in D
Sample random minibatch of transitions (¢;, a;,7;, ¢;+1) from D
Set 1, — { T; for terminal ¢;4 1
9=\ r; + ymaxy Q(¢ji1,a';6) for non-terminal ¢, 4

Perform a gradient descent step on (y; — Q(¢;, a;; 9))? according to equation 3
end for
end for

Deep Q-learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {x; } and preprocessed sequenced ¢; = ¢(s1)
fort=1,T do
With probability e select a random action a;
otherwise select a; = max, Q*(¢(s¢),a;0)
Execute action a; in emulator and observe reward r; and image T

< With small probability, select a
random action (explore),

Set sy41 = S¢, at, L4111 and preprocess ¢y1 = A(S441) otherwise select_ greedy action
Store transition (¢¢, a¢, ¢, ¢411) in D from current policy
Sample random minibatch of transitions (¢;, a;,7;, ¢;+1) from D

Set y; = T; ; for terminal %—.,.1
J r; +ymaxy Q(dj+1,0a’;0) for non-terminal ¢;4
Perform a gradient descent step on (y; — Q(¢;, a;; 9))? according to equation 3

end for
end for

Deep Q-learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {x; } and preprocessed sequenced ¢; = ¢(s1)
fort=1,T do
With probability e select a random action a;
otherwise select a; = max, Q*(¢(s¢),a;0)
Execute action a; in emulator and observe reward 7; and image z;1 <= Take the action (a:), and
Set 541 = $¢, Gy, T1+1 and preprocess .1 = @(st+1) observe the reward r.and
Store transition (¢¢, as, ¢, $z11) in D next state Su.
Sample random minibatch of transitions (¢;, a;,7;, ¢;+1) from D
Set 1, — { T; for terminal ¢;4 1
9=\ r; + ymaxy Q(¢ji1,a';6) for non-terminal ¢, 4
Perform a gradient descent step on (y; — Q(¢;, a;; 9))? according to equation 3
end for
end for

Deep Q-learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {x; } and preprocessed sequenced ¢; = ¢(s1)
fort=1,T do
With probability e select a random action a;
otherwise select a; = max, Q*(¢(s¢),a;0)
Execute action a; in emulator and observe reward r; and image T
Set s¢+1 = S, G¢, Ty+1 and preprocess ¢i11 = P(S¢41)
Store transition (¢, a;, ¢, ¢¢+1) in D < Store transition in replay memory
Sample random minibatch of transitions (¢;, a;,7;, ¢;+1) from D
Set 1, — { T; for terminal ¢;4 1
9=\ r; + ymaxy Q(¢ji1,a';6) for non-terminal ¢, 4

Perform a gradient descent step on (y; — Q(¢;, a;; 9))? according to equation 3
end for
end for

Deep Q-learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {x; } and preprocessed sequenced ¢; = ¢(s1)
fort=1,T do
With probability e select a random action a;
otherwise select a; = max, Q*(¢(s¢),a;0)
Execute action a; in emulator and observe reward r; and image T
Set s¢+1 = S, G¢, Ty+1 and preprocess ¢i11 = P(S¢41)
Store transition (¢¢, as, ¢, $z11) in D
Sample random minibatch of transitions (¢, a;,7;, ¢;+1) fromD g———
Set 1, — { T; for terminal ¢;4 1
9=\ r; + ymaxy Q(¢ji1,a';6) for non-terminal ¢, 4

Perform a gradient descent step on (y; — Q(¢;, a;; 9))? according to equation 3
end for
end for

Experience Replay:
Sample a random
minibatch of transitions
from replay memory and
perform a gradient
descent step

Value-based and Policy-based RL

* Value Based
* Learnt Value Function
* Implicit Policy (e.g. e-

greedy)

* Policy Based
 No Value Function Value-Based Policy-Based
* Learnt Policy

* Actor-Critic
e Learnt Value Function
* Learnt Policy

Value Fungtion Palicy

Advantages of Policy-Based RL

Advantages:
* Better convergence properties
e Effective in high-dimensional or continuous action spaces
e (Can learn stochastic policies

Disadvantages:
* Typically converge to a local rather than global optimum
* Evaluating a policy is typically inefficient and high variance

Policy Gradient

Formally, let's define a class of parametrized policies: II = {7y,0 € R™}

For each policy, define its value:

J(@) =E Z'ytrthrg

Policy Gradient

Formally, let's define a class of parametrized policies: II = {7y,0 € R™}

For each policy, define its value:

J(@) =E Z'ytrtkrg

We want to find the optimal policy 6* = arg max J(0)

How can we do this?

Policy Gradient

Formally, let's define a class of parametrized policies: I = {7y,0 € R™}

For each policy, define its value:

J(O) =E Z’)’t’f‘t|ﬂ'0

We want to find the optimal policy 6* = arg max J(0)

How can we do this?
Gradient ascent on policy parameters!

REINFORCE algorithm

Mathematically, we can write:
J(0) = Ernp(r0) [r(7)]

= /r(T)p(T; 0)dr

-

Where r(7) is the reward of a trajectory 7 = (g, ag, 7o, S1,- - -)

REINFORCE algorithm

Expected reward: J(0) = E,p(r0) [7(7)]

= /T(T)p(T; 0)dr

T

Now let’s differentiate this: V,.J(6) = / r(7)Vep(T;0)dr

T

REINFORCE algorithm

Expected reward: J(0) = E,p(r0) [7(7)]

= /T(T)p(T; 0)dr

T

Now let's differentiate this: V,.J(0) = / r(7)Vep(T;0)dT Difficult to compute!!!

T

REINFORCE algorithm

Expected reward: J(6) = E,p(r0) [r(7)]

= /Tr(T)p(*r; 0)dr

Now let's differentiate this: V,.J(0) = f r(7)Vep(;0)dr Difficult to compute!!!

T

However, we can use a nice trick: Vop(T;0) = p(7;0) Vop(7;0) = p(1;0)Vglogp(T;0)
If we inject this back: p(7;6)
Vo J(0) = / (r(T)Velog p(;0)) p(; 6)dT
4 Can estimate with
=]Er~p(r;e) [T(T)VG log p(’r; 0)] Monte Carlo sampling

REINFORCE algorithm

Can we compute those quantities without knowing the transition probabilities?

We have: p(’.";g) = Hp(3t+1|8t, at)ﬂg(at|8t)

t>0

REINFORCE algorithm

Can we compute those quantities without knowing the transition probabilities?

We have: p(T;G) = Hp(3t+1|8t, at)ﬂg(at|8t)
t>0

Thus: logp(r;0) = > " log p(se11(s, ar) + log mg(ar|st)

t>0
Doesn’t depend on
And when differentiating: Vologp(r;0) = > Vplogms(arls:) tansition probabilities!
t>0

REINFORCE algorithm

Can we compute those quantities without knowing the transition probabilities?

We have: p(’r; 9) = Hp(3t+1|8t, at)ﬂ'g(atl.gt)
t>0

Thus: logp(7;0) =) _log p(se11|s, ar) + log mg(ax|st)

t>0
Doesn’t depend on
And when differentiating: Ve logp(7;6) = Z Vglogmo(at|st) transition probabilities!
t>0

Therefore when sampling a trajectory =, we can estimate J(0) with

VodJ(0) ~ Zr('r)V log mg(a|st)

t>0

Intuition

Gradient estimator: ~ VyJ () ~ Z r(7)Ve log mo(as|st)
>0

Interpretation:
- If r(z) is high, push up the probabilities of the actions seen
- If r(z) is low, push down the probabilities of the actions seen

Intuition

Gradient estimator: ~ Vj.J(0) =~ Zfr)V log mg(at|st)

t>0
Interpretation:
- If r(z) is high, push up the probabilities of the actions seen

- If r(z) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

Intuition

Gradient estimator: ~ Vj.J(0) =~ Zfr)V logmg(at|st)

t>0
Interpretation:
- If r(z) is high, push up the probabilities of the actions seen

- Ifr(z) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is
really hard. Can we help the estimator?

Policy Gradient with Baseline

Idea: Introduce a baseline function dependent on the state to reduce the
variance (whether a reward is better or worse than what you expect to get)

VoJ (0 Z (Z S b(s¢)) Vo log mg(at|st)

t>0 \t'>t

Policy Gradient with Baseline

Idea: Introduce a baseline function dependent on the state to reduce the
variance (whether a reward is better or worse than what you expect to get)

VeJ (0 Z (Z 'yt ey — b(se) Vo log mg(a|st)

t>0 \t'>t

A simple baseline: constant moving average of rewards
experienced so far from all trajectories

Actor-Critic

A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of?

Actor-Critic

A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of?

A: Q-function and value function!

Intuitively, we are happy with an action a, in a state s, if Q" (s¢,ar) — V" (st)
is large. On the contrary, we are unhappy with an action if it's small.

Using this, we get the estimator: V,J(0) ~ Z(Q’”’(st, at) — V™ (s4)) Ve log me(a|st)
t>0

Actor-Critic

Problem: we don’t know Q and V. Can we learn them?

Yes, using Q-learning! We can combine Policy Gradients and Q-learning
by training both an actor (the policy) and a critic (the Q-function).

- The actor decides which action to take, and the critic tells the actor
how good its action was and how it should adjust

- Can also incorporate Q-learning tricks e.g. experience replay
- Remark: we can define by the advantage function how much an
action was better than expected
& A"(s,a) = Q"(s,a) — V7 (s)

Actor-Critic

Initialize policy parameters 0, critic parameters ¢
For iteration=1, 2 ... do
Sample m trajectories under the current policy

Al 0
Fori=1, ..., mdo
Fort=1,..., Tdo

Ay =Y 27t — V(s

A «— NG+ A,V log(ails)
A 33,14
0 all
¢ < BAY

End for

Case Study:
Image Captioning with Policy Gradient

Supervised Learning:
 GT word as the input (the previous word) of the RNN language
model
 Maximize the probability of the GT word given the current hidden
state

Reinforcement Learning (Policy Gradient):
 Sampled word as the previous word
* Maximize the defined reward (e.g. CIDEr score) of the whole
sentence

| -

~ conv-64

~ conv-64

__maxpool

 conv-128

_ conv-128

" maxpool

~ conv-256

 conv-256

~ maxpool

. conv-512

 conv-512

. conv-512

~ conv-512

~ FC-4096

test image

0 1 2

y y y \ sample

ot <END> token
=> finish.

hO | h1 h2

RT=

<START>

Summary

- Policy gradients: very general but suffer from high variance so requires

a lot of samples. Challenge: sample-efficiency
- Q-learning: does not always work but when it works, usually more

sample-efficient. Challenge: exploration

- Guarantees:
- Policy Gradients: Converges to a local minima of J(8), often good

enough!
- Q-learning: Zero guarantees since you are approximating Bellman

equation with a complicated function approximator

Thank You !

Xin Wang
Xxwang@cs.ucsb.edu
http://www.cs.ucsb.edu/~xwang

mailto:xwang@cs.ucsb.edu
http://www.cs.ucsb.edu/~xwang

Reference

Stanford Course CS231n: http://cs231n.stanford.edu/syllabus.htm]
Course materials by David Silver:

http://wwwO0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html

Log derivative trick: http://blog.shakirm.com/2015/11/machine-learning-
trick-of-the-day-5-log-derivative-trick/

http://cs231n.stanford.edu/syllabus.html
http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html
http://blog.shakirm.com/2015/11/machine-learning-trick-of-the-day-5-log-derivative-trick/

