

Artificial Neural Networks Connectionist, PDP, etc. models A biologically-inspired approach for intelligent computing machines massive parallelism distributed computing □ learning, generalization, adaptivity Tolerant of fault, uncertainty, imprecise info

Compared to Von Neumann

2/10	Von Neumann	Biological
1200	computer	neural systems
Processor	complex, high	simple, low
	speed, few	speed, many
Memory	separate from	integrated into
	processor,	processor,
	non-content	content
	addressable	addressable
Computing	centralized,	distributed,
2/2	sequential stored	parallel self-
NY AN	programs	learning
Reliability	vulnerable	fault tolerant

Anatomy and Pathway

Brain

- Cerebrum
 - > Frontal, parietal, temporal and occipital lobes
- Cerebellum
- Brainstem
- Spinal Cord
 - Housed in vertebral column

 Receptors to afferent neurons to brain (neocortex) to efferent neurons to effectors

Central Nervous System

FIGURE 1.1

Two views of the human brain: (a) cross-sectional side view showing the major parts: cerebrum, cerebellum, and brainstem; (b) view showing cortex and lobes.

CNS

Neocortex

- Gray matter (surface layer of cerebrum)
- □ White matter (connection fiber)
- A crumbled paper analogy (folded and refolded many times to fit)
- Regions (lobes) for different functions
- It is the
 - Activities of neurons (resting or depolarization)
 - Topology of the connection
 - Strength and direction (forward & backward) of connection
 In the cortex that defines intelligence

Biological Neural Networks

- soma (cell body)
- dendrites (receivers)
- axon (transmitters)
- synapses (connection points, axon-soma, axon-dendrite, axon-axon)
- Chemicals (neurotransmitters)
- 10^{11} neurons
- each makes about $10^3 \sim 10^4$ connections
- with an operating speed of a few milliseconds
- one-hundred-step rule

Different Neuron Shapes

Bipolar

- E.g., found in eyes (retinal cells)
- Pseudounipolar
 - Two axons one to spinal cord one to skin and muscle
 Pseudounipolar Neuron
- Multipolar
 - Axons + dendrites
- Anaxonic

Different Neuron Functions

Glia

Support cells

- Clean up brain debris
- Transport nutrients to neurons
- Hold neurons in place
- Digest dead neurons
- Regulate content of extracellular space
- Insulation (myelin)
- Difference
 - □ Star shaped no axons
 - No action potential
 - No synapses
 - □ A lot more (10 to 50 times more)

Signal Generation

Resting potential

Charge difference across neuron membrane approximately –70mV

Graded potential

Stimulus across synapses of post-synaptic neuron

- Action potential
 - If accumulation of graded potential across neuron membrane over a short period of time is higher than ~15mV, action potential is generated and propagated across axon
 - Same form and amplitude regardless of stimulus, signal by frequency rather than amplitude

Signal Generation

Signal Generation

Excited

Resting

A-: protein K+: potassium Can go out Cl-: cloride Na+: sodium

Cannot go out

- •Think about electrical circuit
- •Flow one way due to charge (concentration) difference
- •Flow the other way using cell's ion pumps (battery)

Summary

Two states of a neuron
Resting: negative
Firing: positive (depolarize)

Depolarization triggered by threshold potential
Opening of sodium channels to let outside Na⁺ in
Opening of Potassium channels to let inside K⁺ out
Ion pumps on the membrane will then rebalance (energy – ATP – required)
3 Na⁺ out for 2 K⁺ in

Signal Flow in Dendritic Trees and Axons

- Flow is usually one dimensional
- Longitudinal flow (little transverse flow) with no loss (active transmission line)
- Myelindated
 - □ Wrapped in sheath of myelin, 100m/s
- Unmyelinated
 - □ 1m/s

Myelin sheath

llock

ials.

(a)

(b)

FIGURE 1.4

Local currents in an axon. During the generation of an action potential, the cell membrane becomes very permeable to Na^+ (positively charged sodium) ions, which flow inside, causing the membrane potential to rise. After a short while, the membrane becomes impermeable to Na^+ ions but permeable to K^+ (positively charged potassium) ions, which move outside to restore the membrane to its resting potential. (*a*) Unmyelinated axon; (*b*) myelinated axon.

synapses

Electrical Fixed, simultaneous control

Neuron A

Neuron B

Chemical Pattern and strength can be learned and adjusted

Signal Flow Across Synapses

- Action potential causes release of neurotransmitters from synaptic vesicles
- ~100 different neurotransmitters, e.g.,
 dopamine, serotonin, and acetylcholine
- The release, diffusion and reception of neurotransmitters cause delay of 0.5 to 2ms
- Synaptic plasticity: either facilitate or inhibit chemical synapses

Signal Flow Across Synapses

FIGURE 1.5

Transmission of presynaptic axon signal across synaptic gap (cleft) to postsynaptic neuron.

Connection Patterns

Divergent (fan-out):
parallel processing, afferent neurons
Convergent (fan-in):
Efferent neurons to effectors
Chain and loop

Connection Patterns

FIGURE 1.8 Divergent connections.

(*a*) FIGURE 1.10 (*a*) Chain and (*b*) loop connections.

PR, ANN, & ML

(b)

A single neurons with thousands of synapses (light yellow dots)

Computational Network Architecture

ANN Formulation

Learning rules – Basic "workhorse" mechanism in adjusting weights of neurons Error-correcting learning (gradient descent) Memory-based learning (nearest neighbor) □ *Hebbian learning (mutual excitation)* □ *Competitive learning (winner-take-all)* Boltzmann learning (statistical mechanics)

ANN Formulation (cont.)

Learning paradigms – the big picture

- Supervised (learning w. a teacher): correct I/O association is provided
- Unsupervised (learning w/o. a teacher): discover similarity, inherent structure, and interesting patterns
- Delayed (learning w. a critic):

Theory

• capacity: how many patterns can be stored

- □ sample complexity: how many training patterns
- computational complexity: training time

Relation to Pattern Recognition

Supervised mode

Single & multi-layer perceptrons for learning complicated decision boundaries

Unsupervised mode

Competitive and self-organization maps for constructing clusters

