Data Filtering, Smoothing,
and Prediction

Kalman Filter + Particle Filter




Relation to This Course

< The famous KF Is based on parametric
estimation

« The advanced PK is based on density
estimation (non-parametric estimation)

« Both use Bayesian frameworks we just
discussed




Problem Statement

« A recurring theme in many online analysis
and prediction tasks

<« How can information
a from different sources
Q with different accuracy (corrupted by noise)
Qmay even be time varying
Be Integrated?

» Estimating the position of a line from multiple sample points
> Estimating shape using information from multiple sensors

» Estimating moving robot location from sensor data and dead
reckoning

Computer Vision and Image Analysis




Complication

< There are many more examples, where
Q not all data (observation) are gathered at the same time
Q not all data (observation) are equally reliable
Q the estimated quantities (state) change
0 The state variables may not be single-peaked (PF)




Progression -KF

« We will progress through a number of
scenarios

Q Static state, observation data available all at
once, of the same quality

Q Static state, observation data available all at
once, of different quality

Q Static state, observation data not all at once, of
the same or different quality

a Dynamic state, observation data not all at once,
of the same or different quality




General Principles

« Bayesian principle underlies all of the
analysis

« Two things to remember (because we will
use them over and over again)

0 Data should be trusted based on their expected
accuracy

» Weighted sum based on covariance

0 State should be trusted based on their ability to
explain the sensor observation

» Covariance can change




Simplest Case

« Two (or multiple) measurements with the
same or different uncertainty

« States are directly measured
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Some Important Intuition

« Information is good
2 Variance will always decrease

< All information can and should be used

0 The worst case Is to ignore totally uncertain
Information

+ Information integration can be incremental
2 In terms of innovation
a Properly weighed innovation
2 Not all data at once, not saving all past data




Linear Least Squares

« Second simplest of all formulations
Q States (X) are not directly measured
0 Observation (B) or measurements relate to state linearly
0 Observation are equally reliable
Q gathered at the same time
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Weighted Least Square

< Slightly more complicated
Q data are not equally reliable

Q gathered at the same time
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Weighted Least Square (cont.)

< Weights (W) do not appear directly but only
Indirectly in C
« What are the right choice of weights?

« It can be shown that the right weights are
Inversely proportional to the standard
deviation In the scalar case and covariance In
the vector case

< Kind of make sense - the larger the
uncertainty the less you will trust the data




BLUE

(best linear unbiased estimator)
% C=V1gives BLUE (V: variance of “noise” in
the measurements)
Q Matrix operator Is certainly linear

0 Unbiased means that expected error Is neither
positive or negative E(X-X)=0

0 Or an unbiased estimator must be such as it is the
left inverse of A

E(X-X)=E(X-LB)=E(X-LAX -Le)=E[(I-LA)X]=0
—1=LA

a Non-square matrices can have multiple left inverse




Proof of Optimality

< Unbiased — all unbiased operators are similar
and satisfy

< Optimality
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Final Equations
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Recursive Least Squares

<« More complicated

D data are not equally reliable (the same reliability
IS a special case)

Qgathered not at the same time
Q But for the same state

<« How can we build estimates recursively
without recomputing everything from scratch?
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Final Equations
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Dynamic States

< State evolves over time
< Two mechanisms

Ell Observation: | noise white and Gaussian
Ell State propagation: | noise white and Gaussian
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Dynamic States

< Each time instance
a Add one column (Xx;)
a Add one row Ax;=B;

< Solution
0 Gauss said least square
0 Kalman said recursive
0 Kalman wins

Q Do remember that X_o, x_1, X_2, etc are affected by
new datab 2
» X oandx_1givenb 0,b 1, b 2asmoothing problem
» X_2givenb _o,b 1, b 2 a filtering problem




Kalman's Iterative Formulation

« To understand it, you actually need to
remember just two things

Q Rule 1: Linear operations on Gaussian random
variables remain Gaussian

Q Rule 2: Linear combinations of jointly Gaussian
random variables are also Gaussian
Y = AX Z=AX+BY+C
m,=Am +Bm +C
P =AP_A" +AP _B' +BP, A" +BP, B’
Pyy S APXXAT X: states ¢ : ”

Y: observations
Z: prediction based on states + observations

m, =Am,

A, B, C: linear prediction mechanism (from X, Y to Z)
P: covariance matrix




More Rules

« Rule 3: Any portion of a Gaussian random
vector is still a Gaussian

-




Intuition

« Initial state estimate Is Gaussian
« State propagation mechanism is linear

« Propagation of state over time is corrupted
by Gaussian noise

< Sensor measurement is linearly related to
State

< Sensor measurement also corrupted by
Gaussian noise

« Updated state estimate Is again Gaussian




Kalman Filter Properties

« For linear system and white Gaussian
errors, Kalman filter is “best” estimate
based on all previous measurements

< For non-linear system optimality Is
‘qualified’ (EKF, SKEF, etc.)
< Doesn’t need to store all previous

measurements and reprocess all data each
time step




Graphic lllustration

< When noise is white and uncorrelated

« Starting out as a Gaussian process the
evolution will stay a Gaussian process

X =FX+BU +Gw ()
4= ti ‘ t — ti+1
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Z(t;) =H(t)X() + v(t;)




Math Detalls

« If Gaussian assumption is assumed, all we
need to derive are the mechanisms for
propagating mean and variance Using the
now familiar update equation of

aNew = old + gain * innovation
0 Goal: determine the right gain expression

Xi :Xi+—1+Ki (Zi _Hixi—)




Starting Condition
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State Propagation
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State Update
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Conceptual Overview

<

% Lost on the 1-dimensional Ithe (Imagine that you are
guessing your position by looking at the stars using
sextant)

< Position — y(t)

< Assume Gaussian distributed measurements
29




Conceptual Overview
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« Sextant Measurement at t;: Mean = z, and Variance = ¢,; Sextant Is
« Optimal estimate of position is: y(t,) = z, not perfect
« Variance of error in estimate: ¢, (;) = 62,;

 Boat in same position at time t, - Predicted position is z,
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Conceptual Overview

0.16¢

0.14 -

prediction y-(t,) 0.12
State (by looking

at the stars at t2)\o.1
‘ 0.08

0.06

Measurement
usign GPS z(t,)

0.04

0.02

Real-time Differential GPS

% 10 20 @ 4 s 60 0 0 0 100

* So we have the prediction y(t,)

 GPS Measurement at t,: Mean = z, and Variance = c,,

* Need to correct the prediction by Sextant due to measurement to
get y(t,)

should we d%hi_near




Conceptual Overview

prediction y(t,)
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you’ve ‘updated’ the predicted position by Sextant using GPS
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More Example

< Suppose you have a hydrologic model that predicts river
water level every hour (using the usual inputs).

< You know that your model 1s not perfect and you don’t
trust it 100%. So you want to send someone to check the
river level in person.

<« However, the river level can only be checked once a day
around noon and not every hour.

< Furthermore, the person who measures the river level can
not be trusted 100% either.

< S0 how do you combine both outputs of river level (from
model and from measurement) so that you get a ‘fused’
and better estimate? — Kalman filtering
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Navigation using PF

< Autonomous Land Vehicle (ALV), Google’s
Self-Driving Car, etc.

« One Important requirement: track the
position of the vehicle

« Kalman Filter, loop of
3 (Re)initialization
0 Prediction
0 Observation
2 Correction







Interestl

ng YouTube Videos

< Introduction to Autonomous Vehicle

< Introduction to

Robot Localization

< Introduction to

Particle Filters

+ Example of Pro

pabilistic Localization

«+ Example of Pro

pabilistic Localization Using

Particle Filters

< Monte Carlo Localization Formulation for \VVehicle

|_ocalization

« Particle Filters Algorithms



http://youtu.be/nDbgXE_WcKw
http://youtu.be/ZuMpjdkFQzw
http://youtu.be/IzIp80MQOhM
http://youtu.be/BzJze1Xwhn4
http://youtu.be/nkeWdOV_H4o
http://youtu.be/0IsxscfWh90
http://youtu.be/lwg_KI3UewY

Navigation

« Hypothesis and verification

Q Classic Approach like Kalman Filter maintains
a single hypothesis

Q Newer approach like particle filter maintains
multiple hypotheses (Monte Carlo sampling of
the state space)




Single Hypothesis

< If the “distraction’” — noise — is white and
Gaussian

« State-space probability profile remains
Gaussian (a single dominant mode)

« Evolving and tracking the mean, not a
whole distribution

Probability density function
T T 1 ML ""_|'||'_'|_




Multi-Hypotheses

« The distribution can have multiple modes

« Sample the probability distribution with
“1mportance” rating

< Evolve the whole distribution, instead of
just the mean




Key — Baeys Rule

P(Si |O) it p(O,Si) — p(olsi)P(Si) me p(0|3i)P(Si)
p(0) p(0)

S : state
0 : observation

Q In the day time, some animal runs in front of
you on the bike path, you know exactly what it
IS (p(o|si) Is sufficient)

2 In the night time, some animal runs in front of
you on the bike path, you can hardly distinguish
the shape (p(o|si) Is low for all cases, but you
know It Is probably a squirrel, not a lion
because of p(si))




Initialization: before observation and measurement

Observation: after seeing a door

P(s) probablllty of state
== )P pRPbably of observation given current state




Prediction : internal mechanism saying that robot moves right

Correction : prediction is weighed by confirmation with observation







Particles + weights
controls

measurements

new particle
+ weights




