
Data Filtering, Smoothing, 

and Prediction

Kalman Filter + Particle Filter



Relation to This Course

The famous KF is based on parametric 

estimation

The advanced PK is based on density 

estimation (non-parametric estimation)

Both use Bayesian frameworks we just 

discussed



Computer Vision and Image Analysis

Problem Statement

A recurring theme in many online analysis 

and prediction tasks

How can information 

 from different sources

with different accuracy (corrupted by noise)

may even be time varying 

Be integrated?
 Estimating the position of a line from multiple sample points

 Estimating shape using information from multiple sensors

 Estimating moving robot location from sensor data and dead 

reckoning 



 There are many more examples, where

 not all data (observation) are gathered at the same time 

 not all data (observation) are equally reliable

 the estimated quantities (state) change 

 The state variables may not be single-peaked (PF)

Complication



Progression -KF 

We will progress through a number of 

scenarios 

Static state, observation data available all at 

once, of the same quality

Static state, observation data available all at 

once, of different quality

Static state, observation data not all at once, of 

the same or different quality

Dynamic state, observation data not all at once, 

of the same or different quality



General Principles

Bayesian principle underlies all of the 

analysis 

Two things to remember (because we will 

use them over and over again)

Data should be trusted based on their expected 

accuracy

Weighted sum based on covariance

State should be trusted based on their ability to 

explain the sensor observation

Covariance can change 



Simplest Case

Two (or multiple) measurements with the 

same or different uncertainty

 States are directly measured
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Iterative Gain innovation



Some Important Intuition

 Information is good

Variance will always decrease

All information can and should be used

The worst case is to ignore totally uncertain 

information

 Information integration can be incremental 

 In terms of innovation

Properly weighed innovation

Not all data  at once, not saving all past data



Linear Least Squares
 Second simplest of all formulations

 States (X) are not directly measured 

 Observation (B) or measurements relate to state linearly

 Observation are equally reliable 

 gathered at the same time
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m: number of constraints (observations)
n: number of parameters (states)

if m<n multiple solutions
if m=n exact solution
if m>n least-squares solution
e: noise (assume white and Gaussian)
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Weighted Least Square

 Slightly more complicated

 data are not equally reliable

 gathered at the same time
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Weights (W) do not appear directly but only 

indirectly in C

What are the right choice of weights?

 It can be shown that the right weights are 

inversely proportional to the standard 

deviation in the scalar case and covariance in 

the vector case

Kind of make sense - the larger the 

uncertainty the less you will trust the data

Weighted Least Square (cont.)



BLUE 

(best linear unbiased estimator)
C=V-1gives BLUE (V: variance of “noise” in 

the measurements)

Matrix operator is certainly linear

Unbiased means that expected error is neither 

positive or negative

Or an unbiased estimator must be such as it is the 

left inverse of A

Non-square matrices can have multiple left inverse
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Proof of Optimality

 Unbiased – all unbiased operators are similar  

and satisfy

 Optimality
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Final Equations
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Recursive Least Squares

More complicated

data are not equally reliable (the same reliability 

is a special case)

gathered not at the same time

But for the same state

How can we build estimates recursively 

without recomputing everything from scratch? 
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innovationgain

If noise is uncorrelated over time



Final Equations
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Dynamic States

 State evolves over time

 Two mechanisms

 Observation:    noise white and Gaussian

 State propagation:  noise white and Gaussian
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Dynamic States

 Each time instance

 Add one column (xi)

 Add one row Axi=Bi

 Solution

 Gauss said least square

 Kalman said recursive 

 Kalman wins

 Do remember that x_o, x_1, x_2, etc are affected by 

new data b_2

 x_o and x_1 given b_0, b_1, b_2 a smoothing problem

 x_2 given b_o, b_1, b_2 a filtering problem



Kalman’s Iterative Formulation

To understand it, you actually need to 

remember just two things

Rule 1: Linear operations on Gaussian random 

variables remain Gaussian

Rule 2: Linear combinations of jointly Gaussian 

random variables are also Gaussian
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X: states

Y: observations

Z: prediction based on states + observations

A, B, C: linear prediction mechanism (from X, Y  to Z)

P: covariance matrix



More Rules

Rule 3: Any portion of a Gaussian random 

vector is still a Gaussian 
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Intuition

 Initial state estimate is Gaussian

 State propagation mechanism is linear

 Propagation of state over time is corrupted 
by Gaussian noise

 Sensor measurement is linearly related to 
state 

 Sensor measurement also corrupted by 
Gaussian noise

 Updated state estimate is again Gaussian



Kalman Filter Properties

 For linear system and white Gaussian 

errors, Kalman filter is “best” estimate 

based on all previous measurements

 For non-linear system optimality is 

‘qualified’ (EKF, SKF, etc.)

Doesn’t need to store all previous 

measurements and reprocess all data each 

time step



Graphic Illustration

When noise is white and uncorrelated 

 Starting out as a Gaussian process the 

evolution will stay a Gaussian process
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Math Details

 If Gaussian assumption is assumed, all we 

need to derive are the mechanisms for 

propagating mean and variance Using the 

now familiar update equation of 

New = old + gain * innovation

Goal: determine the right gain expression
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Starting Condition
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State Propagation
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State Update
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Conceptual Overview

 Lost on the 1-dimensional line (imagine that you are 

guessing your position by looking at the stars using 

sextant)

 Position – y(t)

 Assume Gaussian distributed measurements

y
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Conceptual Overview
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• Sextant Measurement at t1: Mean = z1 and Variance = z1

• Optimal estimate of position is: ŷ(t1) = z1

• Variance of error in estimate: 2
x (t1) = 2

z1 

• Boat in same position at time t2 - Predicted position is z1

State space – position

Measurement -

position

Sextant is 

not perfect
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Conceptual Overview

• So we have the prediction ŷ-(t2)

• GPS Measurement at t2: Mean = z2 and Variance = z2

• Need to correct the prediction by Sextant due to measurement to 

get ŷ(t2)

• Closer to more trusted measurement – should we do linear 

interpolation?

prediction ŷ-(t2)

State (by looking 

at the stars at t2)

Measurement 

usign GPS z(t2)
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Conceptual Overview

• Corrected mean is the new optimal estimate of position (basically 

you’ve ‘updated’ the predicted position by Sextant using GPS

• New variance is smaller than either of the previous two variances

measurement 

z(t2)

corrected optimal 

estimate ŷ(t2)

prediction ŷ-(t2)

Kalman filter helps 

you fuse 

measurement and 

prediction on the 

basis of how much 

you trust each

(I would trust the 

GPS more than the 

sextant)



More Example

 Suppose you have a hydrologic model that predicts river 

water level every hour (using the usual inputs). 

 You know that your model is not perfect and you don’t 

trust it 100%. So you want to send someone to check the 

river level in person.

 However, the river level can only be checked once a day 

around noon and not every hour.

 Furthermore, the person who measures the river level can 

not be trusted 100% either.

 So how do you combine both outputs of river level (from 

model and from measurement) so that you get a ‘fused’ 

and better estimate? – Kalman filtering
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Graphically speaking



Navigation using PF

Autonomous Land Vehicle (ALV), Google’s 

Self-Driving Car, etc.

One important requirement: track the 

position of the vehicle

Kalman Filter, loop of 

 (Re)initialization

Prediction

Observation

Correction





Interesting YouTube Videos

 Introduction to Autonomous Vehicle 

 Introduction to Robot Localization 

 Introduction to Particle Filters

 Example of Probabilistic Localization 

 Example of Probabilistic Localization Using 

Particle Filters

 Monte Carlo Localization Formulation for Vehicle 

Localization

 Particle Filters Algorithms 

http://youtu.be/nDbgXE_WcKw
http://youtu.be/ZuMpjdkFQzw
http://youtu.be/IzIp80MQOhM
http://youtu.be/BzJze1Xwhn4
http://youtu.be/nkeWdOV_H4o
http://youtu.be/0IsxscfWh90
http://youtu.be/lwg_KI3UewY


Navigation

Hypothesis and verification

Classic Approach like Kalman Filter maintains 

a single hypothesis

Newer approach like particle filter maintains 

multiple hypotheses (Monte Carlo sampling of 

the state space)



Single Hypothesis

 If the “distraction” – noise – is white and 

Gaussian

 State-space probability profile remains 

Gaussian (a single dominant mode)

Evolving and tracking the mean, not a 

whole distribution



Multi-Hypotheses

The distribution can have multiple modes

 Sample the probability distribution with 

“importance” rating

Evolve the whole distribution, instead of 

just the mean



Key – Baeys Rule

 In the day time, some animal runs in front of 

you on the bike path, you know exactly what it 

is (p(o|si) is sufficient)

 In the night time, some animal runs in front of 

you on the bike path, you can hardly distinguish 

the shape (p(o|si) is low for all cases, but you 

know it is probably a squirrel, not a lion 

because of p(si))
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Initialization: before observation and measurement

Observation: after seeing a door

P(s): probability of state

P(o|s): probably of observation given current state



Prediction : internal mechanism saying that robot moves right 

Correction : prediction is weighed by confirmation with observation





new particles 

+ weights

controls
measurements

Particles + weights

Total weights


