
Data Filtering, Smoothing, 

and Prediction

Kalman Filter + Particle Filter



Relation to This Course

The famous KF is based on parametric 

estimation

The advanced PK is based on density 

estimation (non-parametric estimation)

Both use Bayesian frameworks we just 

discussed



Computer Vision and Image Analysis

Problem Statement

A recurring theme in many online analysis 

and prediction tasks

How can information 

 from different sources

with different accuracy (corrupted by noise)

may even be time varying 

Be integrated?
 Estimating the position of a line from multiple sample points

 Estimating shape using information from multiple sensors

 Estimating moving robot location from sensor data and dead 

reckoning 



 There are many more examples, where

 not all data (observation) are gathered at the same time 

 not all data (observation) are equally reliable

 the estimated quantities (state) change 

 The state variables may not be single-peaked (PF)

Complication



Progression -KF 

We will progress through a number of 

scenarios 

Static state, observation data available all at 

once, of the same quality

Static state, observation data available all at 

once, of different quality

Static state, observation data not all at once, of 

the same or different quality

Dynamic state, observation data not all at once, 

of the same or different quality



General Principles

Bayesian principle underlies all of the 

analysis 

Two things to remember (because we will 

use them over and over again)

Data should be trusted based on their expected 

accuracy

Weighted sum based on covariance

State should be trusted based on their ability to 

explain the sensor observation

Covariance can change 



Simplest Case

Two (or multiple) measurements with the 

same or different uncertainty

 States are directly measured
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Some Important Intuition

 Information is good

Variance will always decrease

All information can and should be used

The worst case is to ignore totally uncertain 

information

 Information integration can be incremental 

 In terms of innovation

Properly weighed innovation

Not all data  at once, not saving all past data



Linear Least Squares
 Second simplest of all formulations

 States (X) are not directly measured 

 Observation (B) or measurements relate to state linearly

 Observation are equally reliable 

 gathered at the same time
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Weighted Least Square

 Slightly more complicated

 data are not equally reliable

 gathered at the same time
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Weights (W) do not appear directly but only 

indirectly in C

What are the right choice of weights?

 It can be shown that the right weights are 

inversely proportional to the standard 

deviation in the scalar case and covariance in 

the vector case

Kind of make sense - the larger the 

uncertainty the less you will trust the data

Weighted Least Square (cont.)



BLUE 

(best linear unbiased estimator)
C=V-1gives BLUE (V: variance of “noise” in 

the measurements)

Matrix operator is certainly linear

Unbiased means that expected error is neither 

positive or negative

Or an unbiased estimator must be such as it is the 

left inverse of A

Non-square matrices can have multiple left inverse
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Proof of Optimality

 Unbiased – all unbiased operators are similar  

and satisfy

 Optimality
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Final Equations
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Recursive Least Squares

More complicated

data are not equally reliable (the same reliability 

is a special case)

gathered not at the same time

But for the same state

How can we build estimates recursively 

without recomputing everything from scratch? 
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Final Equations
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Dynamic States

 State evolves over time

 Two mechanisms

 Observation:    noise white and Gaussian

 State propagation:  noise white and Gaussian
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Dynamic States

 Each time instance

 Add one column (xi)

 Add one row Axi=Bi

 Solution

 Gauss said least square

 Kalman said recursive 

 Kalman wins

 Do remember that x_o, x_1, x_2, etc are affected by 

new data b_2

 x_o and x_1 given b_0, b_1, b_2 a smoothing problem

 x_2 given b_o, b_1, b_2 a filtering problem



Kalman’s Iterative Formulation

To understand it, you actually need to 

remember just two things

Rule 1: Linear operations on Gaussian random 

variables remain Gaussian

Rule 2: Linear combinations of jointly Gaussian 

random variables are also Gaussian
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More Rules

Rule 3: Any portion of a Gaussian random 

vector is still a Gaussian 
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Intuition

 Initial state estimate is Gaussian

 State propagation mechanism is linear

 Propagation of state over time is corrupted 
by Gaussian noise

 Sensor measurement is linearly related to 
state 

 Sensor measurement also corrupted by 
Gaussian noise

 Updated state estimate is again Gaussian



Kalman Filter Properties

 For linear system and white Gaussian 

errors, Kalman filter is “best” estimate 

based on all previous measurements

 For non-linear system optimality is 

‘qualified’ (EKF, SKF, etc.)

Doesn’t need to store all previous 

measurements and reprocess all data each 

time step



Graphic Illustration

When noise is white and uncorrelated 

 Starting out as a Gaussian process the 

evolution will stay a Gaussian process
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Math Details

 If Gaussian assumption is assumed, all we 

need to derive are the mechanisms for 

propagating mean and variance Using the 

now familiar update equation of 

New = old + gain * innovation

Goal: determine the right gain expression
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Starting Condition

0)(

0
)(

0
)(

1

























T

ji

iT

ji

iT

ji

iiii

iiii

E

ji

ji
E

ji

ji
E

vw

R
vv

Q
ww

vXHz

wXΦX



State Propagation
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State Update
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Conceptual Overview

 Lost on the 1-dimensional line (imagine that you are 

guessing your position by looking at the stars using 

sextant)

 Position – y(t)

 Assume Gaussian distributed measurements

y
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Conceptual Overview
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• Sextant Measurement at t1: Mean = z1 and Variance = z1

• Optimal estimate of position is: ŷ(t1) = z1

• Variance of error in estimate: 2
x (t1) = 2

z1 

• Boat in same position at time t2 - Predicted position is z1

State space – position

Measurement -

position

Sextant is 

not perfect
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Conceptual Overview

• So we have the prediction ŷ-(t2)

• GPS Measurement at t2: Mean = z2 and Variance = z2

• Need to correct the prediction by Sextant due to measurement to 

get ŷ(t2)

• Closer to more trusted measurement – should we do linear 

interpolation?

prediction ŷ-(t2)

State (by looking 

at the stars at t2)

Measurement 

usign GPS z(t2)
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Conceptual Overview

• Corrected mean is the new optimal estimate of position (basically 

you’ve ‘updated’ the predicted position by Sextant using GPS

• New variance is smaller than either of the previous two variances

measurement 

z(t2)

corrected optimal 

estimate ŷ(t2)

prediction ŷ-(t2)

Kalman filter helps 

you fuse 

measurement and 

prediction on the 

basis of how much 

you trust each

(I would trust the 

GPS more than the 

sextant)



More Example

 Suppose you have a hydrologic model that predicts river 

water level every hour (using the usual inputs). 

 You know that your model is not perfect and you don’t 

trust it 100%. So you want to send someone to check the 

river level in person.

 However, the river level can only be checked once a day 

around noon and not every hour.

 Furthermore, the person who measures the river level can 

not be trusted 100% either.

 So how do you combine both outputs of river level (from 

model and from measurement) so that you get a ‘fused’ 

and better estimate? – Kalman filtering
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Graphically speaking



Navigation using PF

Autonomous Land Vehicle (ALV), Google’s 

Self-Driving Car, etc.

One important requirement: track the 

position of the vehicle

Kalman Filter, loop of 

 (Re)initialization

Prediction

Observation

Correction





Interesting YouTube Videos

 Introduction to Autonomous Vehicle 

 Introduction to Robot Localization 

 Introduction to Particle Filters

 Example of Probabilistic Localization 

 Example of Probabilistic Localization Using 

Particle Filters

 Monte Carlo Localization Formulation for Vehicle 

Localization

 Particle Filters Algorithms 

http://youtu.be/nDbgXE_WcKw
http://youtu.be/ZuMpjdkFQzw
http://youtu.be/IzIp80MQOhM
http://youtu.be/BzJze1Xwhn4
http://youtu.be/nkeWdOV_H4o
http://youtu.be/0IsxscfWh90
http://youtu.be/lwg_KI3UewY


Navigation

Hypothesis and verification

Classic Approach like Kalman Filter maintains 

a single hypothesis

Newer approach like particle filter maintains 

multiple hypotheses (Monte Carlo sampling of 

the state space)



Single Hypothesis

 If the “distraction” – noise – is white and 

Gaussian

 State-space probability profile remains 

Gaussian (a single dominant mode)

Evolving and tracking the mean, not a 

whole distribution



Multi-Hypotheses

The distribution can have multiple modes

 Sample the probability distribution with 

“importance” rating

Evolve the whole distribution, instead of 

just the mean



Key – Baeys Rule

 In the day time, some animal runs in front of 

you on the bike path, you know exactly what it 

is (p(o|si) is sufficient)

 In the night time, some animal runs in front of 

you on the bike path, you can hardly distinguish 

the shape (p(o|si) is low for all cases, but you 

know it is probably a squirrel, not a lion 

because of p(si))
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Initialization: before observation and measurement

Observation: after seeing a door

P(s): probability of state

P(o|s): probably of observation given current state



Prediction : internal mechanism saying that robot moves right 

Correction : prediction is weighed by confirmation with observation





new particles 

+ weights

controls
measurements

Particles + weights

Total weights


