
Unsupervised Clustering



2PR , ANN, & ML

Unsupervised Clustering

 Training samples are not labeled

 May not know

 how many classes

 a prior probability 

 state-conditional probability

 Automatic discovery of structures 

 Intuitively, objects in the same class stick 

together and form clusters
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 Locating groups (clusters) having similar 

measurements

Given x x x unlabelled

partition in to C clusters
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Unsupervised Clustering (cont)
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Similarity Measure

 Need a similarity measurement s(x,x’)

 (e.g., distance between x and x’ )
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Similarity Measure (cont.)

 How to set the threshold? 

 Too large all samples assigned into a single class

 Too small each sample in its own class

 How to properly weight each feature?

How do brightness of a fish and length of a fish 

relate?

How to scale (or normalize) different measures? 
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Axis Scaling
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Axis Scaling (cont.)
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Threshold
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Criteria for Clustering

 A criterion function for clustering
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 Within and Between group variance

minimize and maximize the trace and 

determinant of the appropriate scatter matrix

 trace: square of the scattering radius

 determinant: square of the scattering volume
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Criteria for Clustering (cont.)
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Pathology: when class sizes differ
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 Allow the large class to 

grow into smaller class

 Stringent constraint
 Disallow large class and 

split it
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K-Means Algorithm

(fixed # of clusters)

 Arbitrarily pick N cluster centers, assign 

samples to nearest center

 Compute sample mean of each cluster

 Reassign samples to clusters with the 

nearest mean (for all samples)

 Repeat if there are changes, otherwise stop
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K-Means

 In some sense, it is a simplified version of 

the case II of learning parametric form 
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Fuzzy K-Means

 In Matlab, you can find k-mean (it is called 

c-mean) under fuzzy logic toolbox

 It implements fuzzy k-mean 

Where membership function is not 1 or 0, but 

can be fractional
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Iterative K-means
 Iterative refinement of clusters to minimize

 Each step: move a sample from one to another
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1. Select an initial partition of the n samples into   
clusters and compute 

2. Select the next candidate sample

3. If the current cluster is larger than 1, then

4. Transfer 

5. Update 
6. If J has not changed in n attempts, stop,   otherwise 

go back to 2. 
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Hierarchical Clustering

K-means assume a “flat” data 

description

Hierarchical descriptions are more 

frequently
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Hierarchical clustering (cont.)

 Samples in the same cluster will remain so 

at a higher level
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 Bottom-up:  agglomerate

 Top-down:   divisive
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Hierarchical clustering Options
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 At a certain step, we have c classes
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Hierarchical clustering Procedure
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 Then certain criteria function will increase 
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function less than certain preset threshold

Hierarchical clustering Procedure (cont.)
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 In fact, the criteria function can be chosen 

in many different ways, resulting in 

different clustering behaviors
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Criteria Function



27PR , ANN, & ML

•Starting from every sample in a cluster

•Merge them according to some criteria function

•Until two clusters exist
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In Reality

 With n objects, the distance matrix is n x n

 For large databases, it is computationally 

expensive to compute and store the matrix

 Solution: storing only k nearest clusters in 

the distance matrix: complexity is k x n
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Divisive Clustering

 Less often used

 Have to be careful that criterion function 

usually decreases monotonically (the 

samples become purer each time)

 Natural grouping is the one where a large 

drop in impurity occurs

iteration

impurity
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ISODATA Algorithm

 Iterative self-organizing data analysis 

technique

 A tried-and-true clustering algorithm 

 Dynamically update # of clusters

 Can go both top-down (split) and bottom-up 

(merge) directions
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Notation:

merged be can that clusters ofnumber  maximum

mergingfor  distance maximum

splittingfor  spread maximum

clusters ofnumber  (desired) eapproximat

clustera  in samples ofnumber  on threshold

maxN

D

N

T

m

s

D
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Algorithm

 1. Cluster the existing data into Nc clusters but 
eliminate any data and classes with fewer than T 
members, decrease Nc. Exit when classification of 
samples has not changed

 2. If iteration odd and 

 Split clusters whose samples are sufficiently disjoint, 
increase Nc

 If any clusters have been split, go to 1

 3. Merge any pair of clusters whose samples are 
sufficiently close

 4. Go to step 1 
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Step 1

Classify samples according 

to nearest mean

Discard samples in clusters 

< T samples, decrease Nc

Recompute sample 

mean of each cluster

Change in classification?

Parameter T

yes

no
exit
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 Compute for each cluster
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Split cluster

Nc= Nc+1

yes

yes

no

no

Cluster centers are displaced in 

opposite direction along the axis of 

largest variance
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 Compute for each pairs of clusters

|| jiijd μμ 

Sort distance from smallest to largest less than Dm

Step 3
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max# Nmergeof

Dd mij
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Spectral Clustering

 Graph theoretical approach 

 (Advanced) linear algebra is really 

important

 A field by itself 

 Cover the basics here 

PR , ANN, & ML
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Graph notations

 Undirected graph G = (V, E)

V = {v1, …, vn} are nodes (samples)

 E  = {ei,j| 0<=i,j<n} are edges, with weights 

(similarity) wi,j

W: adjacency matrix with entries wi,j

D: degree matrix (diagonal) with entries

A: subset of vertices, \bar{A}: complement 

V\A 

 1A = (f1, … fn)
T, fi=1 if i in A and 0 otherwise

PR , ANN, & ML
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More graph notations

 Size of subset A in V

Based on # of vertices

Based on its connections

 Connected component A

Any two vertices in A can be joined by a path 

where all intermediate points lie in A

No connection between A and \bar{A}

 Partition with A1, …, Ak, if 

PR , ANN, & ML
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Similarity Definitions

RBF (fully connected or thresholded): 

 E.g, Gaussian kernel gives wi,j

 e-neighborhood graph: 

Connect all points whose pairwise distances less 

than e

K-nearest neighbor:

 vi and vj are neighbors if either one is a kNN of the 

other 

Mutual k-nearest neighbor:

 vi and vj are neighbors if both are a kNN of the other 

PR , ANN, & ML
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Graph Laplacian: L = D - W

PR , ANN, & ML
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One connected component
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Multiple connected components
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Normalized Laplacian

PR , ANN, & ML
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Unnormalized Spectral Clustering
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Normalized Spectral Clustering

PR , ANN, & ML
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Toy Example

 Random sample of 200 points drawn from 4 

Gaussians 

 Similarity based on

 Graph

 Fully connected or

 10 nearest neighbors 

PR , ANN, & ML
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Min-Cut Formulation

 If the edge weight represents degree of similarity, 

optimal bi-partitioning of a graph is to minimize 

the cut (so called min-cut problem) 

 Intuition: Cut the connection between dis-similar 

samples, hence,  edge weight (similarity) should 

be small
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Problem with Min-cut

 Tends to cut out small regions

 Sum weight (green + red + blue) = constant

Min-cut minimizes sum of weights of blue 

edges, with no regard to green and red (half of 

the picture)
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Remedy
 Distribute the total weight such that 

 Sum of weights of the blue edges are 

minimized

Max between group variance

 Sum of weights of the red (green) edges are 

maximized

Min within group variance
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Normalized Cut

 Penalize cutting out small, isolated clusters 

set vertex full :
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Normalized Cut (cont.)

 Penalize cutting out small, isolated clusters 

 Small blue

 Small red (or green)
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Intuition
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 Assoc reflects intra-class connection which 

should be maximized

 Ncut represents inter-class connection which 

should be minimized
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Solution

 How do you define similarity? 

Multiple measurements (i.e., a feature vector) 

can be used

 How do you find the minimal normalized 

cut? 

 Solution turns out to be a generalized eigen

value problem!
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 Hence, the second smallest eigen vector 

contains the minimal cut solution (in 

floating point format)

 Even though computing all eigen 

vectors/values are expensive O(n^3), 

computing a small number of those are not 

that expensive (Lanczos method)

 Recursive applications of the procedure
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Results
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