
Linear Discriminant Functions
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Linear Discriminant Functions
 So far, concentrate on density functions

with a known parametric form

 shape of the function directly

 Here, learn the discriminant functions

 surface separating different clusters

what type of surfaces?

 linear (easiest!) functions (hyperplanes)
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Case I: same prior, same deviation

 Decision boundary is planar

 In the middle of the two cluster
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Case 1.A

 The partition plane is perpendicular to the line 

connecting two means 

 Scalar case

 Covariance matrices are the same and are diagonal with 

the same variance in all features
IΣ

2
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 Even with multiple classes, if they all have the 

same prior and the same deviation, then

 the decision boundaries form a Vonoroi diagram, 

or Bayes rule is a minimum Euclidean distance 

classifier

Case I.A: same prior, same deviation
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Case 1.B

 The partition plane is not perpendicular to 
the line connecting two means 

 Same (but general) covariance matrices
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Case II: different prior, same deviation

 Decision boundary is still planar

 At
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feature
Class 1Class 2

Class 1 misclassified as Class 2

Class 2 misclassified as Class 1

T
Population 

(likelihood)

Graphical Interpretation in 1D



113/7/2003

feature
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feature
Class 1Class 2
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More class 1 misclassification
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Case III & IV: same or different prior, 

different deviation

 Decision boundary is no longer planar
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Lessons
 The decision boundaries in general are NOT linear or planar 

 Even with a single feature and a Gaussian distribution the 

boundary can be complicated

 That said, 

 planar boundaries can be used to approximate curved, disjoint 

boundaries  (a lot more on this later), “massage” the classifier

 Features can also be “massaged” 

 They are mathematically more tractable  
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Two-category case
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Decision surface (Hyperplane)
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Decision surface (Hyperplane)
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Training Procedure

 Two-category case

Use n tagged samples                       to 

determine the discriminant function
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 Each training sample constrains w

to lie on a half plane (if             ) 

w1
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Training Procedure (cont.)
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Training Procedure (cont.)
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 Each training sample 

constrains w to lie on a pie (if                         

,                     with margin)00 w
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Using Gradient Descent 

 A search mechanism

 Start at an arbitrarily chosen starting point

 Move in a direction (gradient) to minimize 

the cost function 

 Basic calculus, to be expected of every 

engineer after 5 minute thought 
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 Cost function (in terms of augmented feature vector [x,1])

 penalized for all samples misclassified

 Gradient direction

 Update
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Graphical Interpretation
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Graphical Interpretation (cont)

 Weight is the signed sum of samples
 The more difficult a sample is to be classified, the more 

its weight

 During classification, we have

 Only inner product of “troublesome” training samples 
and test samples are needed (a:weight, y: class)

 These two concepts are very important, they 
appear again and again later in

 Perceptron

 SVM 

 Kernel methods
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Feature (x)
Class BClass A

T
P(wi|x)

How Good can a 2-Category Classifier be?

Class B misclassified as Class A

Class A misclassified as Class B

)|()|( xx BA wPwP 

 As good as that by Bayesian rule
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feature
Class BClass A

feature
Class BClass A

< +

< +

less Class A misclassified 

< more Class B misclassified

less Class B misclassified 

< more Class A misclassified
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Implementation Details

 Difficulty: features can be correlated

Un-correlate features using SVD 

Add “regularization”

Numerically, the system is still quadratic so GD 

still works

PR , ANN, & ML
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Solving AX = B

 Row interpretation

 Each row is a line 

 Intersection of 

multiple lines 

 Or

 Each row is a plane 

 Multiple planes define 

a feasible region

 Column interpretation

 Each column is a 

vector

 Combination of these 

vectors to approximate 

B  

PR , ANN, & ML
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Non-iterative Method
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 Xw: classify training set X by learned parameter w

 X is a n (sample size) by d (dimension of data) matrix 

 w combines the columns of Xnxd to best approximate ynx1

 Combine features (FICA, income, etc.) to decisions (loan)

 y^hatnx1 is a combination of  columns of Xnxd

 What is y^hat? How close is y^hat to y (GT)?
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Graphical Interpretation
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FICA Income
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 H projects y onto the space spanned by columns of X

 Simplify the decisions to fit the features
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Graphical Interpretation
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Ugly Math
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TVUΣX 

UUT is the standard form of a projection operator

UT: inner product with the basis vector

U: expand on the basis vector

(X and U has the same column space)



35

Problem #1

 n=d, exact solution 

 n>d, least square, (most likely scenarios) 

 When n < d, there are not enough 

constraints to determine coefficients w

uniquely 

n

d

X=

W
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Problem #2 

 If different attributes are highly correlated 
(income and FICA)

 The columns become dependent 

 Coefficients are then poorly determined 
with high variance

 E.g., large positive coefficient on one can be 
canceled by a similarly large negative 
coefficient on its correlated cousin 

 Size constraint is helpful

Caveat: constraint is problem dependent 
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Ridge Regression (regularization)
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Ugly Math
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How to Decipher This

 Red: best estimate (y hat) is composed of 
columns of U (“basis” features, recall U and X
have the same column space)

 Green: how these basis columns are weighed

 Blue: projection of target (y) onto these 
columns

 Together: representing y in a body-fitted 
coordinate system (ui)
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Sidebar
 Recall that 

 Trace (sum of the diagonals) of a matrix is the 

same as the sum of the eigenvalues 

 Proof: every matrix has a standard Jordan form 

(an upper triangular matrix) where the 

eigenvalues appear on the diagonal (trace=sum 

of eigenvalues)

 Jordan form results from a similarity transform 

(PAP-1) which does not change eigenvalues

yyA
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Physical Interpretation

 Singular values of X represents the spread 
of data along different body-fitting
dimensions (orthonormal columns)

 To estimate y(=<x,wridge>) regularization 
minimizes the contribution from less 
spread-out dimensions

Less spread-out dimensions usually have much 
larger variance (high dimension eigen modes) 
harder to estimate gradients reliably

Trace X(XTX+I)-1XT is called effective 
degrees of freedom
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More Details

 Trace X(XTX+I)-1XT is called effective 

degrees of freedom

Controls how many eigen modes are actually 

used or active

 Different methods are possible

 Shrinking smoother: contributions are scaled 

 Projection smoother: contributions are used (1) 

or not used (0)

  ,0)(,0,)( dfddf
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TTTT 11 )()(  
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Dual Formulation (iterative)

 Weight vector can be expressed as a sum of 

the n training feature vectors
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Dual Formulation (cont.)
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In More Details
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Observations

 Primary

 XTX is d by d 

 Training: Slow for 

high feature dimension

 Use: fast O(d)

 Dual

 Only inner products 

are involved

 XXT is n by n

 Training: Fast for high 

feature dimension

 Use: Slow O(nd)

 N inner product to 

evaluate, each requires 

d multiplications
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Graphical Interpretation
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One Extreme – Perfect Uncorrelated
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General Case
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 How to interpret this? Does this still make sense? 
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Physical Meaning of SVD

 Assume that n > d

 X is of rank d at most

 U are the body (data)-fitted axes

 UT is a projection from n to d space

 S is the importance of the dimensions
 V is the representation of the X in the d space
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dddn V  ΣUX
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Interpretation

 In the new, uncorrelated space, there are only d 
training vectors and d decisions 

 Red: dx1 uncorrelated decision vector 

 Green: weighting of the significance of the 
components in the uncorrelated decision vector

 Blue: transformed (uncorrelated) training samples

 Still the same interpretation: similarity 
measurement in a new space by 

 Gram matrix

 Inner product of training samples and new sample
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First Important Concept

 The computation involves only inner product

 For training samples in computing the Gram 

matrix

 For new sample in computing regression or 

classification results

 Similarity is measured in terms of angle, 

instead of distance
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Second Important Concept

 Using angle or distance for similarity 
measurement doesn’t make problems easier or 
harder

 If you cannot separate data, it doesn’t matter what 
similarity measures you use

 “Massage” data

 Transform data (into higher – even infinite -
dimensional space)

 Data become “more likely” to be linearly separable 
(caveat: choice of the kernel function is important)

 Cannot perform inner product efficiently 

 Kernel trick – do not have to 
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In reality

 Calculating inverse of X^t X is very 

expensive

 The solution is by iteration 

 Furthermore, features are often not used 

directly, but certain “nonlinear 

transformation” of features are used 

 Furthermore, such “nonlinear 

transformation” is not calculated explicitly 

by Kernel trick

PR , ANN, & ML
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Math Detail

PR , ANN, & ML

Nonlinear transform

* * *

***
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Math Detail (cont)

PR , ANN, & ML
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Math Details (cont.)

PR , ANN, & ML

= 0
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Math Details

 This represents a Gauss-Siedal iterative 

solution to the problem 

PR , ANN, & ML
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Multi-category case
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c-1 two-category

1 against all for all wi
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Both w1 and w2

w1 or w2 or w3
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Multi-category Case (cont.)
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Multi-category case

 Theoretical (Kesler’s) construction

 Assume linear separability
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Graphical Interpretation 
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Kesler Construction

 Training

 “faked” 2-class 

 One big w=[w1 … wc]

 Every training sample 

is duplicated (1 against 

c-1)  to generate c-1 

positive samples

 Standard 2-class 

iterative gradient 

descent training

 Classification

 Break down w into c 

components w1 … wc

 Evaluate a sample 

against all wi (x.wi)

 Take the largest one as 

result
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Linear Machine
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Multiple-categories

Kesler construction does not detect boundies

 Find cluster center
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In Reality

 Linear Machine works if

 samples in a class tight, compact clusters

 class statistics are single mode (one single 

peak)

 then, a class can be represented by a typical 

sample (class mean)

 a case of nearest centroid classifier 

 otherwise ...
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Linear Machine Example – Text Classification

 Use standard TF/IDF weighted vectors to 
represent text documents (normalized by 
maximum term frequency).

 For each category, compute a prototype
vector by summing the vectors of the 
training documents in the category.

 Assign test documents to the category with 
the closest prototype vector based on cosine 
similarity

PR , ANN, & ML
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Term Frequency

 Term frequency(term, document): tf(t,d)

 t: term, d: document

Raw frequency (f(t,d)): # of occurrences

Boolean frequency: 1 or 0

 Log-scaled frequency: log (f(t,d)+1)

Augmented: adjusted for document length (/ by 

max raw freq of any term w in document d)

PR , ANN, & ML
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Inverse Document Frequency

 N: total number of documents in corpus



 number of documents where t appears

 Penalize common terms in corpus

PR , ANN, & ML
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TF/IDF

 This is usually a very long vector, with n 

“keywords”

 Each document is described by such a long 

vector, recording occurrence of all 

keywords

 Again, the scheme is naïve Bayesian, 

correlation among terms (bi-grams, tri-

grams, etc.) is ignored

PR , ANN, & ML
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Text Categorization, Rocchio 

(Training)

 Assume the set of categories is {c1, c2,…cn}

 For i from 1 to n let pi = <0, 0,…,0>  (init. prototype vectors)

 For each training example <x, c(x)>  D

 Let d be the frequency normalized TF/IDF term vector for doc x

 Let i =  j: (cj = c(x))

 (sum all the document vectors in ci to get pi)

 Let pi = pi + d     
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Rocchio Text Categorization

(Test)

 Given test document x

 Let d be the TF/IDF weighted term vector for x

 Let m = –2      (init. maximum cosSim)

 For i from 1 to n:

 (compute similarity to prototype vector)

 Let s = cosSim(d, pi)

 if s > m

 let m = s

 let r = ci  (update most similar class prototype)

 Return class r
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Illustration of Rocchio Text 

Categorization
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Rocchio Properties 

 Does not guarantee a consistent hypothesis.

 Forms a simple generalization of the 
examples in each class (a prototype).

 Prototype vector does not need to be 
averaged or otherwise normalized for length 
since cosine similarity is insensitive to 
vector length.

 Classification is based on similarity to class 
prototypes.
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Other More Practical Classifiers

 Applicable for multiple classes

 Applicable for high feature dimensions

 Applicable for classes with multiple modes 

(peaks)
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Two phases

 Phase I (training): collect “tagged” (typical) 
samples from all classes, measure and record their 
features in the feature space (some statistics might 
be computed as well)

 Phase II (classification): given an unknown 
sample, classify that based on “similarity” or 
“ownership” in the feature space
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Nearest Centroid Classifier

 Need to record class centroids

 A single centroid -> linear machine model

 Multiple centroids possible (e.g. perform 

EM on mixture of Gaussian), but how do 

you find them if d>3?
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Nearest Neighbor Classifier

 Do not need to record class centroids

 No analysis necessary

 Multiple modes/classes ok

 Need to remember all training data

 Computation efforts (distance checking)

 How about outliers? 

 How about overfitting? 
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Geometric Interpretation

 Nearest neighbor classifier performs 

Voronoi partition of the feature space

 In that sense, it is similar to assuming that 

different class distributions have the same 

prior and variance 
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K-Nearest Neighbor (k-NN)
 Nearest neighbor can be susceptible to noise and 

outliers

 How about use more than 1? I.e. assign a sample to 

the class which has the most representatives among k 

nearest neighbors of the sample

 Intuitively appealing and followed from Parsen 

Windows & k-NN density estimation

 A compromise between nearest neighbor (too much 

data and erratic behaviors) and nearest centroid 

(global density fit)
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k-NN classifier 
 Parsen window variant

 From density estimation to classifier (the same principle)

 n labeled training samples

 Given a query sample x, find k nearest samples from the 
training set

 Collect k total samples (for all classes), whichever class has 
the largest representation in the k samples wins
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k-NN Classifier (pool variant)

 We need at least k samples to maintain good resolution

 Assume the number of samples collected reflects the prior 

probability

 Collect the same # of samples (say, k), whichever class 

needs a smaller neighborhood to do that wins
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3 Nearest Neighbor Illustration
(Euclidian Distance)

.

.
.

.

. .
. .

...
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K Nearest Neighbor for Text

Training:

For each each training example <x, c(x)>  D

Compute the corresponding TF-IDF vector, dx, for document x

Test instance y:

Compute TF-IDF vector d for document y

For each <x, c(x)>  D

Let sx = cosSim(d, dx)

Sort examples, x, in D by decreasing value of sx

Let N be the first k examples in D.     (get most similar neighbors)

Return the majority class of examples in N
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Illustration of 3 Nearest Neighbor 

for Text



87
87

Rocchio Anomoly   

 Prototype models have problems with 

polymorphic (disjunctive) categories.
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3 Nearest Neighbor Comparison

 Nearest Neighbor tends to handle 

polymorphic categories better. 
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How Good Are the kNN?

 How good can it be? 

Again, the best case scenario is the one dictated 

by Bayes rule: assign x to the class that most 

likely produces it based on a posteriori

probability
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However,knn’s are not bad either

 Surprisingly, 1nn (nearest) is not more than 

twice as bad as Bayesian and knn 

approaches Bayesian for large k 
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Interested in the Proof?
 As promised, we don’t do proof

 Instead, we rely on intuition

 x: sample, x’: nearest neighbor to x

 q: sample’s class, q’: x’ class 

 Q: what is q’ ?

 A: 

 With a large number of samples, it is reasonable to assume that x’ 
is close to x

 If  P(wm|x) ~ 1/c Bayes 
and 1nn likely produce 
different results, but both 
error rates are 1-1/c

 If P(wm|x) ~1 Bayes and 

1nn likely produce the 

same results
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Proof Sketch

 We are looking for scenarios where x and x’ 
(its nearest neighbor) belong to different 
classes q and q’ 

 In fact, we have to look at cases where the 
number of training samples are very very 
large

Because x’ depends on the samples used in 
training and proof can not be based on the 
particular training set used

 x’ depends on n (samples used), we will write 
as xn’ instead 
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Proof Sketch (cont.)

 Error is when x and xn’ are in different classes 

 Average error cannot depend on xn’ (which 

depends on the particular training sample set)













c

i

nini

c

i

nininn

PP

PeP

1

1

)'|'()|(1

)'|',(1)'|(

xx

xx,xx,

qq

qq

 ')()'|()|( nnn dpePeP xx|'xxx,x n

 Because all the training samples and test samples are 

drawn independently



94PR , ANN, & ML

Proof Sketch (cont.)

 Combine them together, we have
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Correct if 

•x is in wi

•Nearest sample is also in wi

•i can be any class
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Proof Sketch (cont.)

 Then over all possible x’s
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Proof Sketch (cont.)

 Otherwise
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Proof Sketch (cont.)
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Other Variations

 Distance weighted: vote is weighed by how 

close a training sample is to the test sample

 Dimension weighted: distance is calculated 

by weighing features unequally

Weights can be learned by cross-validation
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Adaptive Nearest Neighbors

 Important for high-dimensional feature 

space where neighbors are far apart

 Idea: find local regions and compute feature 

dimensions 

Where class labels change a lot – narrower 

focus

Where class labels doesn’t change a lot – wider 

focus

PR , ANN, & ML
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Adaptive Nearest Neighbors (cont.)

 Two classes and two features 

 Uniform distribution but label changes only in x 

 Extent  y to capture more features

PR , ANN, & ML
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Adaptive Nearest Neighbors (cont.)
 The same idea as in dimension reduction

 Use knn to find some neighboring points first

 Then recompute the distance measurements 

 W-1/2W-1/2 “spheres” the data (within class var)

 Lengthen the dimension with small eigen values in 

B* (between class var)

PR , ANN, & ML
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Local Weighted Regression

 knn is a local approximation method 
without explicitly building the local decision 
surface

 Approximation by explicitly building such a 
surface is possible

 Difference from parametric techniques

Local samples are used 

Weighted by distance

Multiple local approximations (instead of one 
global one)
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Example

 Assume that locally the decision surface is a 

linear function of the n attributes an
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Learning Rule

 Starting from an arbitrary set of weights

 If f (true) and f^hat (estimated) are the same, 

no change

 Otherwise, change wi

rate learning :)),(())(ˆ)((
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Learning Rule (cont.)

 We will see later that this rule is the 

perceptron learning rule used in perceptron 

learning in ANN

 The locally weighted approximation is very 

similar to the radial basis function learning 

in ANN


