Linear Discriminant Functions

Linear Discriminant Functions

* So far, concentrate on density functions
\square with a known parametric form
\square shape of the function directly
* Here, learn the discriminant functions
\square surface separating different clusters
a what type of surfaces?
- linear (easiest!) functions (hyperplanes)
I. population

II. population

IV. population
III. population

Case I: same prior, same deviation

* Decision boundary is planar
$*$ In the middle of the two cluster

$$
\begin{aligned}
& P\left(\varpi_{1} \mid \mathbf{x}\right)=P\left(\varpi_{2} \mid \mathbf{x}\right) \\
& P\left(\varpi_{1}\right) p\left(\mathbf{x} \mid \varpi_{1}\right)=P\left(\varpi_{2}\right) p\left(\mathbf{x} \mid \varpi_{2}\right) \\
& P \frac{1}{(2 \pi)^{1 / 2} \sigma} e^{-\frac{1\left|\mathbf{x}-\bar{x}_{\mathbf{x}}\right|^{2}}{\sigma^{2}}}=P \frac{1}{(2 \pi)^{1 / 2} \sigma} e^{-\frac{1\left|\mathbf{x}-\bar{x}_{2}\right|^{2}}{\sigma^{2}}} \\
& \left|\mathbf{x}-\overline{\mathbf{x}}_{1}\right|=\left|\mathbf{x}-\overline{\mathbf{x}}_{2}\right|
\end{aligned}
$$

Case 1.A

* The partition plane is perpendicular to the line connecting two means
- Scalar case
- Covariance matrices are the same and are diagonal with the same variance in all features $\quad \mathbf{\Sigma}=\sigma^{2} \mathbf{I}$

Case I.A: same prior, same deviation

* Even with multiple classes, if they all have the same prior and the same deviation, then
\square the decision boundaries form a Vonoroi diagram, or Bayes rule is a minimum Euclidean distance classifier

Case 1.B

* The partition plane is not perpendicular to the line connecting two means
\square Same (but general) covariance matrices

Case II: different prior, same deviation

* Decision boundary is still planar
* At

$$
\frac{1}{2}\left(\overline{\mathbf{x}}_{1}+\overline{\mathbf{x}}_{2}\right)+\frac{\sigma^{2}\left(\log P_{2}-\log P_{1}\right)}{\left|\overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}_{2}\right|}
$$

$$
P_{1} \frac{1}{(2 \pi)^{1 / 2} \sigma} e^{-\frac{1\left|\mathbf{x}-\bar{x}_{1}\right|^{2}}{\sigma^{2}}}=P_{2} \frac{1}{(2 \pi)^{1 / 2} \sigma} e^{-\frac{1\left|\mathbf{x}-\bar{x}_{2}\right|^{2}}{\sigma^{2}}}
$$

$$
\log P_{1}-\frac{1}{2} \frac{\left|\mathbf{x}-\overline{\mathbf{x}}_{1}\right|^{2}}{\sigma^{2}}=\log P_{2}-\frac{1}{2} \frac{\left|\mathbf{x}-\overline{\mathbf{x}}_{2}\right|^{2}}{\sigma^{2}}
$$

$$
\left(\overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}_{2}\right) \mathbf{x}=\frac{1}{2}\left(\overline{\mathbf{x}}_{1}-\overline{\mathbf{x}}_{2}\right)\left(\overline{\mathbf{x}}_{1}+\overline{\mathbf{x}}_{2}\right)+\sigma^{2}\left(\log P_{2}-\log P_{1}\right)
$$

Graphical Interpretation in 1D

Class 1 misclassified as Class 2
Class 2 misclassified as Class 1

probability

$$
\square<\square+\square
$$

More class 2 misclassification

Case III \& IV: same or different prior, different deviation

* Decision boundary is no longer planar

$$
\begin{aligned}
& P \frac{1}{(2 \pi)^{1 / 2} \sigma_{1}} e^{-\frac{\left|\left|\mathbf{x}-\mathbf{x}_{1}\right|^{2}\right.}{\sigma_{1}^{2}}}=P \frac{1}{(2 \pi)^{1 / 2} \sigma_{2}} e^{-\frac{1\left|x-x_{2}\right|^{2}}{\sigma_{2}^{2}}} \\
& -n \log \sigma_{1}-\frac{1}{2} \frac{\left|\mathbf{x}-\bar{x}_{1}\right|^{2}}{\sigma_{1}^{2}}=-n \log \sigma_{2}-\frac{1}{2} \frac{\left|\mathbf{x}-\overline{\mathbf{x}}_{2}\right|^{2}}{\sigma_{2}^{2}}
\end{aligned}
$$

Lessons

* The decision boundaries in general are NOT linear or planar
* Even with a single feature and a Gaussian distribution the boundary can be complicated
* That said,
- planar boundaries can be used to approximate curved, disjoint boundaries (a lot more on this later), "massage" the classifier
- Features can also be "massaged"
* They are mathematically more tractable

Two-category case

$$
\begin{array}{ll}
g(\mathbf{x})= & \mathbf{w}^{t} \mathbf{x}+\mathbf{w}_{0} \\
\varpi_{1} & g(\mathbf{x})>0 \\
\varpi_{2} & g(\mathbf{x})<0 \\
\mathbf{w} & \text { weightvector } \\
\mathbf{w}_{0} & \text { thresholdweight }
\end{array}
$$

Decision surface (Hyperplane) $g\left(x_{1}, x_{2}\right)=\mathbf{w} \cdot \mathbf{x}+\mathbf{w}_{0}=w_{1} x_{1}+w_{2} x_{2}+w_{0} \quad|\mathbf{w}|=1$

Decision surface (Hyperplane)
 $$
g\left(x_{1}, x_{2}\right)=\mathbf{w} \cdot \mathbf{x}+\mathbf{w}_{0}=w_{1} x_{1}+w_{2} x_{2}+w_{0}
$$

Training Procedure

* Two-category case
\square Use n tagged samples $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\}$ to determine the discriminant function

$$
\begin{array}{ll}
\mathbf{w}^{\mathbf{t}} \mathbf{x}_{i}+\mathbf{w}_{o}>0 & \mathbf{x}_{i} \in \varpi_{1} \\
\mathbf{w}^{\mathbf{t}} \mathbf{x}_{j}+\mathbf{w}_{o}<0 & \mathbf{x}_{j} \in \varpi_{2}
\end{array}
$$

$$
\mathbf{w}^{\mathbf{t}} \mathbf{x}_{i}+w_{0} \times 1>0 \quad \mathbf{x}_{i} \in \varpi_{1}
$$

$$
\mathbf{w}^{\mathbf{t}}\left(-\mathbf{x}_{j}\right)+w_{0} \times(-1)>0 \quad \mathbf{x}_{j} \in \varpi_{2}
$$

$$
\begin{aligned}
&\left(\mathbf{w}^{t}, w_{0}\right) \\
&\left.\left(\mathbf{w}^{t}, w_{0}\right)^{t}, 1\right)>0 \mathbf{x}_{i} \in \varpi_{1} \\
&\left.\hline-\left(\mathbf{x}_{j}, 1\right)\right]>0 \mathbf{x}_{j} \in \varpi_{2}
\end{aligned}
$$

Training Procedure (cont.)

\square Each training sample constrains \boldsymbol{w} to lie on a half plane (if $\quad \mathbf{w}_{0}=0$) w_{1}

Training Procedure (cont.)

$$
\frac{w^{\prime} x_{1}-w_{>}}{|w|}>0 \Rightarrow \frac{w^{\prime} x_{i}}{|w|}>\frac{w_{0}}{|w|}
$$

Training Procedure (cont.)

* Each training sample

Using Gradient Descent

* A search mechanism
* Start at an arbitrarily chosen starting point
* Move in a direction (gradient) to minimize the cost function
* Basic calculus, to be expected of every engineer after 5 minute thought $)$

Using Gradient Descent

\square Cost function (in terms of augmented feature vector $[\mathrm{x}, 1]$)
> penalized for all samples misclassified

$$
c(\mathbf{w})=\sum_{x \in \mathfrak{Z}}\left(-\mathbf{w}^{\mathbf{t}} \mathbf{x}\right) \quad \mathfrak{J} \text { misclassif ied samples }
$$

\square Gradient direction

Graphical Interpretation
 w_{2}

Graphical Interpretation (cont)

* Weight is the signed sum of samples
\square The more difficult a sample is to be classified, the more its weight
* During classification, we have

$$
y=\mathbf{w} \cdot \mathbf{x}=\left(\sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}\right) \cdot \mathbf{x}=\sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \cdot \mathbf{x}
$$

\square Only inner product of "troublesome" training samples and test samples are needed (α :weight, y: class)

* These two concepts are very important, they appear again and again later in
- Perceptron
\square SVM
\square Kernel methods

A bias term makes sure that solution is more in the center of the feasible region

How Good can a 2-Category Classifier be?

© Class B misclassified as Class A
$\mathbb{\Delta}$ Class A misclassified as Class B

* As good as that by Bayesian rule

Implementation Details

* Difficulty: features can be correlated
\square Un-correlate features using SVD
- Add "regularization"
$c(\mathbf{w})=\sum_{x \in \mathfrak{I}}\left(-\mathbf{w}^{\mathbf{t}} \mathbf{x}\right)+\lambda \sum \mathbf{w}^{\mathbf{t}} \mathbf{w} \quad \mathfrak{I}$:misclassif ied samples
\square Numerically, the system is still quadratic so GD still works

Solving $A X=B$

* Row interpretation
* Each row is a line
* Intersection of multiple lines
* Or
* Each row is a plane
* Multiple planes define a feasible region
* Column interpretation
* Each column is a vector
* Combination of these vectors to approximate B

Non-iterative Method

$$
\begin{aligned}
& \begin{array}{l}
\mathbf{w}=\underset{\mathbf{w}}{\arg \min }\left\{\sum_{i}\left(y_{i}-w_{o}-\sum_{j} x_{i j} w_{j}\right)^{2}\right\} \quad y_{i}=\left\{\begin{array}{l}
\left\{\begin{array}{l}
1 \\
0
\end{array}\right. \\
\text { positive } \\
\text { negative }
\end{array}\right. \\
\mathbf{w}=\underset{\mathbf{W}}{\arg \min }(\mathbf{y}-\mathbf{X w})^{T}(\mathbf{y}-\mathbf{X w}) \quad \text { Valid only for regression problem }
\end{array} \\
& \frac{d(\mathbf{y}-\mathbf{X w})^{T}(\mathbf{y}-\mathbf{X} \mathbf{w})}{d \mathbf{w}}=0 \\
& \Rightarrow \mathbf{X}^{T}(\mathbf{y}-\mathbf{X w})=0 \\
& \Rightarrow \mathbf{X}^{T} \mathbf{X w}=\mathbf{X}^{T} \mathbf{y} \\
& \Rightarrow \mathbf{w}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y} \\
& \mathbf{w}=\left[w_{o}, w_{1}, \cdots, w_{d}\right]^{T}, \\
& \mathbf{x}=\left[1, x_{1}, \cdots, x_{d}\right]^{T} \text {, } \\
& \mathbf{y}=\left[y_{1}, y_{2}, \cdots, y_{n}\right]^{T} \\
& \mathbf{X}=\left[\begin{array}{c}
\mathbf{x}_{1}^{T} \\
\mathbf{x}_{2}^{T} \\
\vdots \\
\mathbf{x}_{n}^{T}
\end{array}\right]_{n \times d} \\
& \hat{y}=\left\langle\mathbf{x},\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}>\right.
\end{aligned}
$$

Graphical Interpretation

* Xw: classify training set X by learned parameter \mathbf{w}
* \mathbf{X} is a n (sample size) by d (dimension of data) matrix
* \mathbf{w} combines the columns of $\mathbf{X}_{\mathrm{nxd}}$ to best approximate $\mathbf{y}_{\mathrm{nx} 1}$
\square Combine features (FICA, income, etc.) to decisions (loan)
$-y^{\wedge} h a t_{n \times 1}$ is a combination of columns of $\mathbf{X}_{\mathrm{nxd}}$
- What is y^{\wedge} hat? How close is y^{\wedge} hat to $y(G T)$?

Graphical Interpretation

$$
\hat{\mathbf{y}}=\mathbf{x} \mid \mathbf{W}=\mathbf{H}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{1} \mathbf{y}
$$

FICA Income

$* \mathbf{H}$ projects \mathbf{y} onto the space spanned by columns of \mathbf{X}

- Simplify the decisions to fit the features
$\mathbf{w}=\underset{\mathbf{w}}{\arg \min }(\mathbf{y}-\mathbf{X w})^{T}(\mathbf{y}-\mathbf{X w})=\underset{\mathbf{w}}{\arg \min }(\mathbf{y}-\mathbf{H y})^{T}(\mathbf{y}-\mathbf{H y})$
$=\underset{\mathbf{w}}{\arg \min }(\mathbf{y}-\widehat{\mathbf{y}})^{T}(\mathbf{y}-\hat{\mathbf{y}})$

Ugly Math

$$
\begin{aligned}
& \mathbf{w}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y} \quad \mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} V^{T} \\
& \widehat{\mathbf{y}}=\mathbf{X} \mathbf{w}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y} \\
& =\mathbf{U} \boldsymbol{\Sigma} V^{T}\left(\mathbf{V} \boldsymbol{\Sigma}^{T} \mathbf{U}^{T} \mathbf{U} \boldsymbol{\Sigma} V^{T}\right)^{-1} \mathbf{V} \boldsymbol{\Sigma}^{T} \mathbf{U}^{T} \mathbf{y} \\
& =\mathbf{U} \boldsymbol{\Sigma} V^{T}\left(\mathbf{V} \boldsymbol{\Sigma} \boldsymbol{\Sigma} V^{T}\right)^{-1} \mathbf{V} \boldsymbol{\Sigma}^{T} \mathbf{U}^{T} \mathbf{y} \\
& =\mathbf{U} \boldsymbol{\Sigma} V^{T}\left(\mathbf{V}^{-T} \boldsymbol{\Sigma}^{-1} \boldsymbol{\Sigma}^{-1} \mathbf{V}^{-1}\right) \mathbf{V} \boldsymbol{\Sigma}^{T} \mathbf{U}^{T} \mathbf{y} \\
& =\mathbf{U} \mathbf{U}^{T} \mathbf{y}
\end{aligned}
$$

$\mathbf{U U}^{\mathrm{T}}$ is the standard form of a projection operator \mathbf{U}^{T} : inner product with the basis vector
\mathbf{U} : expand on the basis vector
(\mathbf{X} and \mathbf{U} has the same column space)

Problem \#1

: n=d, exact solution
n $>\mathrm{d}$, least square, (most likely scenarios)

* When $\mathrm{n}<\mathrm{d}$, there are not enough constraints to determine coefficients \mathbf{w} uniquely

Problem \#2

* If different attributes are highly correlated (income and FICA)
* The columns become dependent
* Coefficients are then poorly determined with high variance
\square E.g., large positive coefficient on one can be canceled by a similarly large negative coefficient on its correlated cousin
\square Size constraint is helpful
\square Caveat: constraint is problem dependent

Ridge Regression (regularization)

$$
\begin{aligned}
& \mathbf{w}^{\text {ritise }}=\underset{\mathbf{w}}{\arg \min }\left\{\sum_{i}\left(y_{i}-w_{o}-\sum_{j} x_{i j} w_{j}\right)^{2}+\lambda \sum_{j} w_{j}^{2}\right\} \\
& \mathbf{w}^{\text {ridge }}=\underset{\mathbf{w}}{\arg \min }(\mathbf{y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{y}-\mathbf{X} \mathbf{w})+\lambda \mathbf{w}^{T} \mathbf{w} \\
& \frac{d(\mathbf{y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{y}-\mathbf{X} \mathbf{w})+\lambda \mathbf{w}^{T} \mathbf{w}}{d \mathbf{w}}=0 \\
& \Rightarrow-\mathbf{X}^{T}(\mathbf{y}-\mathbf{X} \mathbf{w})+\lambda \mathbf{w}=0 \\
& \Rightarrow \mathbf{X}^{T} \mathbf{y}=\mathbf{X}^{T} \mathbf{X} \mathbf{w}+\lambda \mathbf{w} \\
& \Rightarrow \mathbf{X}^{T} \mathbf{y}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right) \mathbf{w} \\
& \Rightarrow \mathbf{w}^{\text {ridge }}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{T} \mathbf{y} \\
& \left.\left.\Rightarrow \hat{y}=\left\langle\mathbf{X},\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{T} \mathbf{y}\right\rangle^{\mathbf{w}=\underset{\mathrm{w}}{\arg \min }\left\{\sum_{i}\left(y_{i}-w_{o}-\sum_{j} x_{j} w_{j}\right)^{2}\right.}\right\}\right\} y_{i}= \begin{cases}1 & \text { positive } \\
0 & \text { negative }\end{cases} \\
& \hat{y}=\left\langle\mathbf{x},\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \boldsymbol{y}\right\rangle
\end{aligned}
$$

Ugly Math

$$
\begin{aligned}
& \mathbf{w}^{\text {ridge }}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{T} \mathbf{y} \quad \mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} V^{T} \\
& \hat{\mathbf{y}}=\mathbf{X} \mathbf{w}^{\text {ridge }}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{T} \mathbf{y} \\
& =\mathbf{U} \boldsymbol{\Sigma} V^{T}\left(\mathbf{V} \boldsymbol{\Sigma}^{T} \mathbf{U}^{T} \mathbf{U} \boldsymbol{\Sigma} V^{T}+\lambda \mathbf{I}\right)^{-1} \mathbf{V} \mathbf{\Sigma}^{T} \mathbf{U}^{T} \mathbf{y} \\
& =\mathbf{U}\left(V^{-T}\right)^{-1}\left(\mathbf{V} \boldsymbol{\Sigma}^{T} \boldsymbol{\Sigma} V^{T}+\lambda \mathbf{I}\right)^{-1}\left(\mathbf{V}^{-1}\right)^{-1} \boldsymbol{\Sigma}^{T} \mathbf{U}^{T} \mathbf{y} \\
& =\mathbf{U} \boldsymbol{\Sigma}\left(\mathbf{(}^{-1} \mathbf{V} \boldsymbol{\Sigma}^{T} \boldsymbol{\Sigma} V^{T} V^{-T}+\mathbf{V}^{-1} \lambda \mathbf{I} V^{-T}\right)^{-1} \boldsymbol{\Sigma}^{T} \mathbf{U}^{T} \mathbf{y} \\
& =\mathbf{U} \boldsymbol{\Sigma}\left(\boldsymbol{\Sigma}^{T} \boldsymbol{\Sigma}+\lambda \mathbf{I}\right)^{-1} \boldsymbol{\Sigma}^{T} \mathbf{U}^{T} \mathbf{y} \\
& =\sum_{i} \mathbf{u}_{i} \frac{\sigma_{i}^{2}}{\sigma_{i}^{2}+\lambda} \mathbf{u}_{i}^{T} \mathbf{y}
\end{aligned}
$$

$$
\begin{aligned}
& \text { How to Decipher This } \\
& \qquad \hat{\mathbf{y}}=\sum_{i} \mathbf{u}_{i} \frac{\sigma_{i}^{2}}{\sigma_{i}^{2}+\lambda} \mathbf{u}_{i}^{T} \mathbf{y}
\end{aligned}
$$

$*$ Red: best estimate (y hat) is composed of columns of \mathbf{U} ("basis" features, recall \mathbf{U} and \mathbf{X} have the same column space)

* Green: how these basis columns are weighed
* Blue: projection of target (y) onto these columns
* Together: representing \mathbf{y} in a body-fitted coordinate system (\mathbf{u}_{i})

Sidebar

$\%$ Recall that

- Trace (sum of the diagonals) of a matrix is the same as the sum of the eigenvalues
\square Proof: every matrix has a standard Jordan form (an upper triangular matrix) where the eigenvalues appear on the diagonal (trace=sum of eigenvalues)
\square Jordan form results from a similarity transform $\left(\mathbf{P A P}^{-1}\right)$ which does not change eigenvalues

$$
\begin{aligned}
& \mathbf{A x}=\lambda \mathbf{x} \\
& \Rightarrow \mathbf{P A x}=\lambda \mathbf{P} \\
& \Rightarrow \mathbf{P A} \mathbf{x}^{-1} \mathbf{P x}=\lambda \mathbf{P} \mathbf{x} \\
& \Rightarrow \mathbf{A}^{J} \mathbf{y}=\lambda \mathbf{y}
\end{aligned}
$$

Physical Interpretation

* Singular values of \mathbf{X} represents the spread of data along different body-fitting dimensions (orthonormal columns)
* To estimate $\mathbf{y}\left(=\left\langle\mathbf{x}, \mathbf{w}^{\text {ridge }}>\right)\right.$ regularization minimizes the contribution from less spread-out dimensions
- Less spread-out dimensions usually have much larger variance (high dimension eigen modes) harder to estimate gradients reliably
\square Trace $\mathbf{X}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\mathrm{T}}$ is called effective degrees of freedom

$$
\begin{aligned}
& \text { More Details } \\
& \hat{\mathbf{y}}=\mathbf{X} \mathbf{w}=\mathbf{H}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}=\mathbf{x}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
\end{aligned}
$$

* Trace $\mathbf{X}\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\mathrm{T}}$ is called effective degrees of freedom
\square Controls how many eigen modes are actually used or active

$$
d f(\lambda)=d, \lambda=0, d f(\lambda)=0, \lambda \rightarrow \infty
$$

* Different methods are possible
\square Shrinking smoother: contributions are scaled
\square Projection smoother: contributions are used (1) or not used (0)

Dual Formulation (iterative)

* Weight vector can be expressed as a sum of the n training feature vectors

Regular

$$
\mathbf{w}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

Ridge regression

$$
=\mathbf{X}^{T} \mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-2} \mathbf{X}^{T} \mathbf{y}
$$

$$
=\mathbf{X}^{T}{ }_{d \times n} \boldsymbol{\alpha}_{n \times 1}
$$

$$
\begin{aligned}
& \mathbf{X}^{T} \mathbf{y}=\mathbf{X}^{T} \mathbf{X} \mathbf{w}+\lambda \mathbf{w} \\
& \lambda \mathbf{w}=\mathbf{X}^{T} \mathbf{y}-\mathbf{X}^{T} \mathbf{X} \mathbf{w} \\
& \mathbf{w}=\frac{1}{\lambda} \mathbf{X}^{T}(\mathbf{y}-\mathbf{X w})
\end{aligned}
$$

$$
=\sum_{i} \alpha_{i} \mathbf{x}_{i}
$$

$$
\mathbf{x}=\left[\begin{array}{c}
\mathbf{x}_{1}^{r} \\
\mathbf{x}_{2}^{\tau} \\
\vdots \\
\mathbf{x}^{r}
\end{array}\right] \quad \mathbf{x}^{r}=\left[\begin{array}{llll}
\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{1}
\end{array}\right]
$$

$$
\mathbf{w}^{\text {ridge }}=\underset{\mathbf{w}}{\arg \min }(\mathbf{y}-\mathbf{X} \mathbf{w})^{T}(\mathbf{y}-\mathbf{X} \mathbf{w})+\lambda \mathbf{w}^{T} \mathbf{w}
$$

$$
=\sum_{i} \alpha_{i} \mathbf{X}_{i} \quad \begin{array}{ll}
\Rightarrow-\mathbf{X}^{T}(\mathbf{y}-\mathbf{X w})+\lambda \mathbf{w}=0 \\
\Rightarrow \mathbf{X}^{T} \mathbf{y}=\mathbf{X}^{T} \mathbf{X w}+\lambda \mathbf{w}
\end{array}
$$

$$
\begin{equation*}
\hat{\mathbf{y}}=\mathbf{X} \mathbf{w}=\mathbf{H} \mathbf{y}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y} \tag{43}
\end{equation*}
$$

Dual Formulation (cont.)

$$
\boldsymbol{\alpha}_{n \times 1}=\frac{1}{\lambda}\left(\mathbf{y}-\mathbf{X}_{n \times d} \mathbf{w}_{d \times 1}\right)
$$

$$
\begin{aligned}
& \mathbf{X}^{T} \mathbf{y}=\mathbf{X}^{T} \mathbf{X w}+\lambda \mathbf{w} \\
& \lambda \mathbf{w}=\mathbf{X}^{T} \mathbf{y}-\mathbf{X}^{T} \mathbf{X} \mathbf{w} \\
& \lambda \boldsymbol{\alpha}=\mathbf{y}-\mathbf{X w} \\
& \mathbf{w}=\frac{1}{\lambda} \mathbf{X}^{T} \underline{(\mathbf{y}-\mathbf{X w})} \\
& =\mathbf{X}^{\bar{T}}{ }_{d \times 2} \boldsymbol{a}_{n \times 1} \\
& =\sum_{i} \alpha_{i} \mathbf{x}_{i} \\
& \lambda \boldsymbol{\alpha}=\mathbf{y}-\mathbf{X X}^{T} \boldsymbol{\alpha} \\
& \left(\mathbf{X X}^{T}+\lambda \mathbf{I}\right) \boldsymbol{\alpha}=\mathbf{y} \\
& \mathbf{w}=\mathbf{X}^{T} \boldsymbol{\alpha}=\boldsymbol{\alpha}(\mathbf{G}+\lambda \mathbf{I})^{-1} \mathbf{y} \\
& g(\mathbf{x})=\langle\mathbf{w}, \mathbf{x}\rangle=\mathbf{w}^{T} \mathbf{x}=\left\langle\sum \alpha_{i} \mathbf{x}_{i}, \mathbf{x}\right\rangle=\sum \alpha_{i}\left\langle\mathbf{x}_{i}, \mathbf{x}\right\rangle \\
& \left.=<\mathbf{X}^{T}\left(\mathbf{X X}^{T}+\lambda \mathbf{I}\right)^{-1} \mathbf{y}, \mathbf{x}\right\rangle=\mathbf{y}^{T}\left(\mathbf{X} \mathbf{X}^{T}+\lambda \mathbf{I}^{-1}\right)^{\langle 1}\left[\begin{array}{c}
\left\langle\mathbf{x}_{1}, \mathbf{x}, \mathbf{x}\right. \\
\left\langle\mathbf{x}_{2}, \mathbf{x}\right. \\
\vdots \\
\left\langle\mathbf{x}_{n}, \mathbf{x}\right\rangle
\end{array}\right]
\end{aligned}
$$

In More Details

Gram matrix

$\left.\begin{array}{l}{\left[\begin{array}{llll}y_{1} & y_{2} & \cdots & y_{n}\end{array}\right]_{1 \times n}\left(\left[\begin{array}{ccc}- & \mathbf{x}_{1}^{T} & - \\ - & \cdots & - \\ - & \mathbf{x}_{n}^{T} & -\end{array}\right]_{n \times d}\left[\begin{array}{ccc}\mid & \mid & \mid \\ \mathbf{x}_{1} & \vdots & \mathbf{x}_{n} \\ \mid & \mid & \mid\end{array}\right]_{d \times n}+\lambda \mathbf{I}\right.}\end{array}\right)^{-1}\left[\begin{array}{ccc}- & \mathbf{x}_{1}^{T} & - \\ - & \cdots & - \\ - & \mathbf{x}_{n}^{T} & -\end{array}\right]_{n \times d} \mathbf{x}$

Observations

* Primary
* $\mathbf{X}^{\mathbf{T}} \mathbf{X}$ is d by d
* Training: Slow for high feature dimension
* Use: fast O(d)
* Dual
* Only inner products are involved
* $\mathbf{X X}^{\mathbf{T}}$ is n by n
* Training: Fast for high feature dimension
* Use: Slow O(nd)
$\square \mathrm{N}$ inner product to evaluate, each requires d multiplications
$g(\mathbf{x})=\mathbf{y}^{T}\left(\mathbf{X X}^{T}+\lambda \mathbf{I}\right)^{-1} \mid \mathbf{x} \times n$$\left[\begin{array}{c}\left\langle\mathbf{x}_{1}, \mathbf{x}\right\rangle \\ \left\langle\mathbf{x}_{2}, \mathbf{x}\right\rangle \\ \vdots \\ \left\langle\mathbf{x}_{n}, \mathbf{x}\right\rangle\end{array}\right]_{n \times 1}$

Graphical Interpretation

One Extreme - Perfect Uncorrelated

$$
\begin{aligned}
& \text { General Case } \\
& \hat{\mathbf{y}}^{T}{ }_{1 \times n}=\mathbf{y}^{T}{ }_{1 \times n}\left(\mathbf{X} \mathbf{X}^{T}+\lambda \mathbf{I}\right)^{-1}{ }_{n \times n} \mathbf{X}_{n \times d} \mathbf{X}^{T}{ }_{d \times n} \\
& \mathbf{X}=\mathbf{U}_{n \times d} \boldsymbol{\Sigma}_{d \times d} V^{T}{ }_{d \times d} \\
& =\mathbf{y}^{T}{ }_{1 \times n}\left(\mathbf{U} \boldsymbol{\Sigma}^{2} \mathbf{U}^{T}+\lambda \mathbf{I}\right)^{-1}{ }_{n \times n} \mathbf{U} \boldsymbol{\Sigma} V^{T} \mathbf{X}^{T}{ }_{d \times n} \\
& =\mathbf{y}^{T}{ }_{1 \times n}\left(\mathbf{U}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}\right) \mathbf{U}^{T}\right)^{-1}{ }_{n \times n} \mathbf{U} \boldsymbol{\Sigma} V^{T} \mathbf{X}^{T}{ }_{d \times n} \\
& =\mathbf{y}^{T}{ }_{1 \times n} \mathbf{U}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}\right)^{-1} \mathbf{U}^{-1} \mathbf{U} \boldsymbol{\Sigma} V^{T} \mathbf{X}^{T}{ }_{d \times n} \\
& =\mathbf{y}^{T}{ }_{1 \times n} \mathbf{U}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}\right)^{-1} \boldsymbol{\Sigma} V^{T} \mathbf{X}^{T}{ }_{d \times n} \\
& =\left(\mathbf{U}^{T}{ }_{d \times n} \mathbf{y}_{n \times 1}\right)^{T}{ }_{1 \times d}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}\right)^{-1} \boldsymbol{\Sigma} V^{T}{\mathbf{\mathbf { X } ^ { T }}}_{d \times n} \\
& =\left(\mathbf{U}^{T}{ }_{d \times n} \mathbf{y}_{n \times 1}\right)^{T}{ }^{T}{ }_{1 \times d}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}\right)^{-1} \boldsymbol{\Sigma} V^{t} V \boldsymbol{\Sigma} \mathbf{U}^{\dagger} \\
& =\left(\mathbf{U}^{T}{ }_{d \times n} \mathbf{y}_{n \times 1}\right)^{T}{ }_{1 \times d}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}\right)^{-1} \boldsymbol{\Sigma}^{2} \mathbf{U}^{T}
\end{aligned}
$$

Physical Meaning of SVD

* Assume that $n>d$
* X is of rank d at most
* \mathbf{U} are the body (data)-fitted axes
* \mathbf{U}^{T} is a projection from n to d space
* Σ is the importance of the dimensions
* \mathbf{V} is the representation of the \mathbf{X} in the d space

$$
\mathbf{X}=\mathbf{U}_{n \times d} \boldsymbol{\Sigma}_{d \times d} V^{T}{ }_{d \times d}
$$

$$
\begin{aligned}
& \text { Interpretation } \\
& \hat{\mathbf{y}}^{T}{ }_{1 \times n}=\left(\mathbf{U}^{T}{ }_{d \times n} \mathbf{y}_{n \times 1}\right) r_{1 \times d}\left(\boldsymbol{\Sigma}^{2}+\lambda \mathbf{I}\right)^{-1} \boldsymbol{\Sigma}^{2} \mathbf{U}^{T} \Longrightarrow \hat{\mathbf{y}}=\sum_{i} \mathbf{u}_{i} \frac{\sigma_{i}^{2}}{\sigma_{i}^{2}+\lambda} \mathbf{u}_{i}^{T} \mathbf{y}
\end{aligned}
$$

* In the new, uncorrelated space, there are only d training vectors and d decisions
* Red: $d x 1$ uncorrelated decision vector
* Green: weighting of the significance of the components in the uncorrelated decision vector
* Blue: transformed (uncorrelated) training samples
* Still the same interpretation: similarity measurement in a new space by
- Gram matrix
\square Inner product of training samples and new sample

First Important Concept

* The computation involves only inner product
\square For training samples in computing the Gram matrix
\square For new sample in computing regression or classification results
* Similarity is measured in terms of angle, instead of distance

Second Important Concept

* Using angle or distance for similarity measurement doesn't make problems easier or harder
- If you cannot separate data, it doesn't matter what similarity measures you use
* "Massage" data
- Transform data (into higher - even infinite dimensional space)
- Data become "more likely" to be linearly separable (caveat: choice of the kernel function is important)
- Cannot perform inner product efficiently
- Kernel trick - do not have to

In reality

$*$ Calculating inverse of $\mathrm{X}^{\wedge} \mathrm{t} \mathrm{X}$ is very expensive

* The solution is by iteration
* Furthermore, features are often not used directly, but certain "nonlinear transformation" of features are used
\% Furthermore, such "nonlinear transformation" is not calculated explicitly by Kernel trick

Math Detail

$$
X=\left[x_{1}^{*}, x_{2}^{*}, \ldots, x_{N}^{*}\right] \in R^{d \times N}
$$

$$
y \in R^{d}
$$

1
Nonlinear transform

$$
\varphi(X)=\left[\varphi\left(x_{1}^{*}\right), \varphi\left(x_{2}^{*}\right), \ldots, \varphi\left(x_{N}^{*}\right)\right] \in R^{D \times N} \quad \varphi(y) \in R^{D}
$$

Math Detail (cont)

$$
\hat{\theta}=\min _{\theta}\left(\left\|\varphi(y)-\sum_{i=1}^{N} \theta_{i} \varphi\left(x_{i}^{*}\right)\right\|^{2}+\mu\|\theta\|_{1}\right)
$$

$\hat{\theta}=\min _{\theta}\left(k(y, y)-2 k(\cdot, y)^{T} \theta+\theta^{T} K \theta+\mu\|\theta\|_{1}\right)$

$$
k(\cdot, y)=\left(k\left(x_{1}^{*}, y\right), k\left(x_{2}^{*}, y\right), \ldots, k\left(x_{N}^{*}, y\right)\right)^{T}
$$

$$
K=\left(\begin{array}{ccc}
k\left(x_{1}^{*}, x_{1}^{*}\right) & \cdots & k\left(x_{1}^{*}, x^{*}{ }_{N}\right) \\
\vdots & \ddots & \vdots \\
k\left(x_{-N}^{*}, x_{1}^{*}\right) & \cdots & k\left(x_{-N}^{*}, x_{-N}^{*}\right)
\end{array}\right) .
$$

Math Details (cont.)

$$
\begin{aligned}
& J(\theta)=k(y, y)-2 k(\cdot, y)^{T} \theta+\theta^{T} K \theta+\mu\|\theta\|_{1} \\
& \frac{\partial J(\theta)}{\partial \theta_{i}}=2 \sum_{j=1}^{N} \theta_{j} k\left(x_{j}^{*}, x_{i}^{*}\right)-2 k\left(x_{i}^{*}, y\right)+\mu \operatorname{sgn}\left(\theta_{i}\right)=0 \\
& \theta_{i}=k\left(x_{i}^{*}, y\right)-\sum_{j=1, j+i}^{N} \theta_{j} k\left(x_{j}^{*}, x_{i}^{*}\right)-\frac{\mu}{2} \operatorname{sgn}\left(\theta_{i}\right) \\
& \theta_{i}=w_{\theta}\left(x_{i}\right)-\frac{\mu}{2} \operatorname{sgn}\left(\theta_{i}\right) \quad w_{o}\left(x_{i}\right)=k\left(x_{i}, y\right)-\sum_{j=1, v i=i}^{N} \theta_{k} k\left(x_{j}, x_{i}\right)
\end{aligned}
$$

Math Details

* This represents a Gauss-Siedal iterative solution to the problem

Multi-category case

c-1 two-category
c(c-1)/2 two-category
1 against all for all w_{i}

Multi-category Case (cont.)

Multi-category case

* Theoretical (Kesler's) construction
* Assume linear separability

$$
\text { c classes } \quad \mathbf{w}_{i} i=1, \ldots, c
$$

$$
\mathbf{w}_{i} \mathbf{x}_{k}-\mathbf{w}_{j} \mathbf{x}_{k}>0 \text { for all } j \neq i \text { if } \mathbf{x}_{k} \in \varpi_{i}
$$

$$
\hat{\mathbf{w}}=\left[\begin{array}{llll}
\mathbf{w}_{1}^{T} & \cdot & \cdot & \mathbf{w}_{c}^{T}
\end{array}\right]_{(c \times d) x 1}^{T}
$$

$$
\hat{\mathbf{x}}_{12}=\left[\begin{array}{llllll}
\mathbf{x}^{T} & -\mathbf{x}^{T} & 0 & . & 0
\end{array}\right]_{(c \times d) x 1}^{T}
$$

$$
\hat{\mathbf{x}}_{13}=\left[\begin{array}{llllll}
\mathbf{x}^{T} & 0 & -\mathbf{x}^{T} & \cdot & 0
\end{array}\right]^{T}(c \times d) x 1
$$

$$
\hat{\mathbf{x}}_{1 n}=\left[\begin{array}{llllll}
\mathbf{x}^{T} & 0 & 0 & . & . & -\mathbf{x}^{T}
\end{array}\right]^{T}(c \times d) x 1
$$

one weight $\hat{\mathbf{w}}(c \cdot d$ dimension) must classify
$c-1$ samples $\hat{\mathbf{x}}_{12}, \hat{\mathbf{x}}_{13}, \ldots, \hat{\mathbf{x}}_{1 n}(c \cdot d$ dimension) correctly

Graphical Interpretation

$$
\begin{array}{cc}
g_{i}(\mathbf{x})=\mathbf{w}_{i}^{t} \mathbf{x}+\mathbf{w}_{i 0} & i=1, \ldots, c \\
\varpi_{i} & g_{i}(\mathbf{x})-g_{j}(\mathbf{x})>0 \text { for all } j \neq i
\end{array}
$$

decision

$\mathbf{w}_{c}\left[\begin{array}{c}\mathbf{x} \\ -\mathbf{x} \\ 0 \\ 0\end{array}\right]$

Kesler Construction

* Training
."faked" 2-class
* One big w=[$\left.\mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{c}}\right]$
* Every training sample is duplicated (1 against $\mathrm{c}-1)$ to generate $\mathrm{c}-1$ positive samples
* Standard 2-class iterative gradient descent training

* Classification
* Break down w into c components $\mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{c}}$
* Evaluate a sample against all $\mathrm{w}_{\mathrm{i}}\left(\right.$ x. $\left._{\mathrm{i}}\right)$
* Take the largest one as result

Linear Machine

$$
\begin{array}{cc}
g_{i}(\mathbf{x})=\mathbf{w}_{i}^{t} \mathbf{x}+\mathbf{w}_{i 0} & i=1, \ldots, c \\
\varpi_{i} & g_{i}(\mathbf{x})>g_{j}(\mathbf{x}) \text { for all } j \neq i
\end{array}
$$

Multiple-categories

\square Kesler construction does not detect boundies
\square Find cluster center

$$
\left[\begin{array}{cccc}
- & f_{1} & - & - \\
- & f_{2} & - & - \\
\cdots & \cdots & \cdots & \cdots \\
- & f_{n} & - & -
\end{array}\right]_{n \times d}\left[\begin{array}{cccc}
\mid & \mid & \mid & \mid \\
\mid & \mid & \mid & \mid \\
w_{1} & w_{2} & \cdots & w_{c} \\
\mid & \mid & \mid & \mid
\end{array}\right]_{d \times c}=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & \ldots & 1 & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 1 & \ldots & 0
\end{array}\right]_{n \times c}
$$

n : samples
$d:$ features
c:classes
using the 1-th linear machine

$$
n=40
$$

$$
c=4
$$

$$
d=2
$$

using the 3-th linear machine

In Reality

* Linear Machine works if
\square samples in a class tight, compact clusters
\square class statistics are single mode (one single peak)
\square then, a class can be represented by a typical sample (class mean)
\square a case of nearest centroid classifier
a otherwise ...

Linear Machine Example - Text Classification

* Use standard TF/IDF weighted vectors to represent text documents (normalized by maximum term frequency).
* For each category, compute a prototype vector by summing the vectors of the training documents in the category.
* Assign test documents to the category with the closest prototype vector based on cosine similarity

Term Frequency

Term frequency(term, document): $\mathrm{tf}(\mathrm{t}, \mathrm{d})$
$\square \mathrm{t}$: term, d: document
\square Raw frequency ($\mathrm{f}(\mathrm{t}, \mathrm{d}$)): \# of occurrences

- Boolean frequency: 1 or 0
\square Log-scaled frequency: $\log (f(t, d)+1)$
\square Augmented: adjusted for document length (/ by max raw freq of any term w in document d)

$$
\mathrm{tf}(t, d)=0.5+\frac{0.5 \times \mathrm{f}(t, d)}{\max \{\mathrm{f}(w, d): w \in d\}}
$$

Inverse Document Frequency

$\% \mathrm{~N}$: total number of documents in corpus

* $|\{d \in D: t \in d\}| \quad 1+|\{d \in D: t \in d\}|$
\square number of documents where t appears

$$
\operatorname{idf}(t, D)=\log \frac{N}{|\{d \in D: t \in d\}|}
$$

* Penalize common terms in corpus

TF/IDF

$$
\operatorname{tfidf}(t, d, D)=\operatorname{tf}(t, d) \times \operatorname{idf}(t, D)
$$

* This is usually a very long vector, with n "keywords"
* Each document is described by such a long vector, recording occurrence of all keywords
* Again, the scheme is naïve Bayesian, correlation among terms (bi-grams, trigrams, etc.) is ignored

Text Categorization, Rocchio (Training)

* Assume the set of categories is $\left\{c_{1}, c_{2}, \ldots c_{\mathrm{n}}\right\}$
* For i from 1 to n let $\mathbf{p}_{i}=<0,0, \ldots, 0>$ (init. prototype vectors)
* For each training example $\langle x, c(x)\rangle \in D$

Let \mathbf{d} be the frequency normalized TF/IDF term vector for doc x Let $i=j:\left(c_{j}=c(x)\right)$
(sum all the document vectors in c_{i} to get \boldsymbol{p}_{i})
Let $\mathbf{p}_{i}=\mathbf{p}_{i}+\mathbf{d}$

Rocchio Text Categorization

(Test)

* Given test document x
* Let d be the TF/IDF weighted term vector for x

Let $m=-2 \quad$ (init. maximum cosSim)

* For i from 1 to n :

$$
\begin{aligned}
& \text { (compute similarity to prototype vector) } \\
& \text { Let } s=\cos \operatorname{Sim}\left(\mathbf{d}, \mathbf{p}_{i}\right) \\
& \text { if } s>m \\
& \quad \text { let } m=s \\
& \quad \text { let } r=c_{i} \text { (update most similar class prototype) }
\end{aligned}
$$

* Return class r

Illustration of Rocchio Text

 Categorization

Rocchio Properties

* Does not guarantee a consistent hypothesis.
$*$ Forms a simple generalization of the examples in each class (a prototype).
* Prototype vector does not need to be averaged or otherwise normalized for length since cosine similarity is insensitive to vector length.
* Classification is based on similarity to class prototypes.

Other More Practical Classifiers

* Applicable for multiple classes
* Applicable for high feature dimensions
* Applicable for classes with multiple modes (peaks)

Two phases

* Phase I (training): collect "tagged" (typical) samples from all classes, measure and record their features in the feature space (some statistics might be computed as well)
* Phase II (classification): given an unknown sample, classify that based on "similarity" or "ownership" in the feature space

Nearest Centroid Classifier

\mathbf{x} is in class i, if
$\left|\mathbf{x}-\overline{\mathbf{x}}_{i}\right| \leq\left|\mathbf{x}-\overline{\mathbf{x}}_{j}\right|, j=1, \ldots, n$

* Need to record class centroids
* A single centroid -> linear machine model
* Multiple centroids possible (e.g. perform EM on mixture of Gaussian), but how do you find them if $d>3$?

Nearest Neighbor Classifier

\mathbf{x} is in class i, if $\exists k$

$$
\left|\mathbf{x}-\overline{\mathbf{x}}_{i, k}\right| \leq\left|\mathbf{x}-\overline{\mathbf{x}}_{j, l}\right|, j=1, \ldots, n, l=1, \ldots ., m_{j}
$$

* Do not need to record class centroids
* No analysis necessary
* Multiple modes/classes ok
* Need to remember all training data
* Computation efforts (distance checking)
* How about outliers?
* How about overfitting?

Geometric Interpretation

* Nearest neighbor classifier performs Voronoi partition of the feature space
* In that sense, it is similar to assuming that different class distributions have the same prior and variance

K-Nearest Neighbor (k-NN)

* Nearest neighbor can be susceptible to noise and outliers
* How about use more than 1? I.e. assign a sample to the class which has the most representatives among k nearest neighbors of the sample
* Intuitively appealing and followed from Parsen Windows \& k-NN density estimation
* A compromise between nearest neighbor (too much data and erratic behaviors) and nearest centroid (global density fit)

k-NN classifier

* Parsen window variant
* From density estimation to classifier (the same principle)
* n labeled training samples
* Given a query sample \mathbf{x}, find k nearest samples from the training set
* Collect k total samples (for all classes), whichever class has the largest representation in the k samples wins

$$
\begin{aligned}
& p_{n}\left(\mathbf{x}, \varpi_{i}\right)=\frac{k_{i} / n}{V} \\
& p_{n}\left(\varpi_{i} \mid \mathbf{x}\right)=\frac{p_{n}\left(\mathbf{x}, \varpi_{i}\right)}{\sum_{j=1}^{c} p_{n}\left(\mathbf{x}, \varpi_{j}\right)}=\frac{\frac{k_{i} / n}{V}}{\sum_{j=1}^{c} \frac{k_{i} / n}{V}}=\frac{\frac{k_{i} / n}{V}}{\frac{k / n}{V}}=\frac{k_{i}}{k} \\
& \varpi_{1} \Leftarrow k_{1}>k_{2}
\end{aligned}
$$

k-NN Classifier (pool variant)

* We need at least k samples to maintain good resolution
$\%$ Assume the number of samples collected reflects the prior probability
* Collect the same \# of samples (say, k), whichever class needs a smaller neighborhood to do that wins

$$
\begin{aligned}
& p_{n}\left(\mathbf{x}, \varpi_{i}\right)=\frac{k / n}{V_{i}} \\
& p_{n}\left(\varpi_{i} \mid \mathbf{x}\right)=\frac{p_{n}\left(\mathbf{x}, \varpi_{i}\right)}{\sum_{j=1}^{c} p_{n}\left(\mathbf{x}, \varpi_{j}\right)}=\frac{\frac{k / n}{V_{i}}}{\sum_{j=1}^{c} \frac{k / n}{V_{j}}} \\
& p_{n}\left(\varpi_{1} \mid \mathbf{x}\right)=\frac{V_{2}}{V_{1}+V_{2}} \quad p_{n}\left(\varpi_{2} \mid \mathbf{x}\right)=\frac{V_{1}}{V_{1}+V_{2}} \\
& \varpi_{1} \Leftarrow V_{2}>V_{1}
\end{aligned}
$$

3 Nearest Neighbor Illustration (Euclidian Distance)

K Nearest Neighbor for Text

Training:

For each each training example $\langle x, c(x)\rangle \in D$
Compute the corresponding TF-IDF vector, \mathbf{d}_{x}, for document x
Test instance y :
Compute TF-IDF vector \mathbf{d} for document y
For each $\langle x, c(x)\rangle \in D$
Let $s_{x}=\cos \operatorname{Sim}\left(\mathbf{d}, \mathbf{d}_{x}\right)$
Sort examples, x, in D by decreasing value of s_{x}
Let N be the first k examples in D. (get most similar neighbors)
Return the majority class of examples in N

Illustration of 3 Nearest Neighbor for Text

Rocchio Anomoly

* Prototype models have problems with polymorphic (disjunctive) categories.

3 Nearest Neighbor Comparison

* Nearest Neighbor tends to handle polymorphic categories better.

How Good Are the kNN?

*How good can it be?

- Again, the best case scenario is the one dictated by Bayes rule: assign \mathbf{x} to the class that most likely produces it based on a posteriori probability

$$
\begin{gathered}
P\left(w_{m} \mid \mathbf{x}\right)=\max _{i} P\left(w_{i} \mid \mathbf{x}\right) \\
P^{*}(e \mid \mathbf{x})=1-P\left(w_{m} \mid \mathbf{x}\right) \\
P^{*}=\int P^{*}(e \mid \mathbf{x}) p(\mathbf{x}) d \mathbf{x}
\end{gathered}
$$

Holy Grail

However, knn's are not bad either
$\%$ Surprisingly, 1 nn (nearest) is not more than twice as bad as Bayesian and knn approaches Bayesian for large k

Interested in the Proof?

* As promised, we don't do proof
* Instead, we rely on intuition
- \mathbf{x} : sample, \mathbf{x}^{\prime} : nearest neighbor to \mathbf{x}
- θ : sample's class, $\theta^{\prime}: \mathbf{x}^{\prime}$ class
* Q : what is θ^{\prime} ?
* A: $\quad \arg \max P\left(w_{i} \mid \mathbf{x}^{\prime}\right)=P\left(w_{m} \mid \mathbf{x}^{\prime}\right)$
* With a large number of samples, it is reasonable to assume that \mathbf{x}^{\prime} is close to \mathbf{x}

$$
P\left(w_{i} \mid \mathbf{x}\right)=P\left(w_{i} \mid \mathbf{x}^{\prime}\right)
$$

* If $\mathrm{P}\left(\mathrm{w}_{\mathrm{m}} \mid \mathbf{x}\right) \sim 1$ Bayes and 1 nn likely produce the same results
* If $\mathrm{P}\left(\mathrm{w}_{\mathrm{m}} \mid \mathbf{x}\right) \sim 1 / \mathrm{c}$ Bayes and 1 nn likely produce different results, but both error rates are $1-1 / \mathrm{c}$

Proof Sketch

*We are looking for scenarios where \mathbf{x} and \mathbf{x} ' (its nearest neighbor) belong to different classes θ and θ^{\prime}

* In fact, we have to look at cases where the number of training samples are very very large
\square Because \mathbf{x}^{\prime} depends on the samples used in training and proof can not be based on the particular training set used
a \mathbf{x} ' depends on n (samples used), we will write as $\mathbf{x}_{\mathrm{n}}{ }^{\prime}$ instead

Proof Sketch (cont.)

* Error is when \mathbf{x} and $\mathbf{x}_{\mathbf{n}}{ }^{\prime}$ are in different classes

$$
\begin{aligned}
& P_{n}\left(e \mid \mathbf{x}, \mathbf{x}_{n}{ }^{\prime}\right)=1-\sum_{i=1}^{c} P\left(\theta=\varpi_{i}, \theta_{n}{ }^{\prime}=\varpi_{i} \mid \mathbf{x}, \mathbf{x}_{n}{ }^{\prime}\right) \\
& =1-\sum_{i=1}^{c} P\left(\theta=\varpi_{i} \mid \mathbf{x}\right) P\left(\theta_{n}{ }^{\prime}=\varpi_{i} \mid \mathbf{x}_{n}{ }^{\prime}\right)
\end{aligned}
$$

* Because all the training samples and test samples are drawn independently
* Average error cannot depend on $\mathbf{x}_{\mathbf{n}}{ }^{\prime}$ (which depends on the particular training sample set)

$$
P_{n}(e \mid \mathbf{x})=\int P\left(e \mid \mathbf{x}, \mathbf{x}_{n}^{\prime}\right) p\left(\mathbf{x}_{\mathbf{n}}^{\prime} \mid \mathbf{x}\right) d \mathbf{x}_{n}^{\prime}
$$

Proof Sketch (cont.)

$*$ Combine them together, we have

$$
P_{n}(e \mid \mathbf{x})=\int\left[1-\sum_{i=1}^{c} P\left(\varpi_{i} \mid \mathbf{x}\right) P\left(\varpi_{i} \mid \mathbf{x}_{n}{ }^{\prime}\right)\right] p\left(\mathbf{x}_{n}{ }^{\prime} \mid \mathbf{x}\right) d \mathbf{x}_{n}{ }^{\prime}
$$

- When n is large, it is reasonable to expect \mathbf{x} and \mathbf{x}^{\prime} are close

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} p\left(x_{n}{ }^{\prime} \mid \mathbf{x}\right)=\delta\left(\mathbf{x}_{n}{ }^{\prime}-\mathbf{x}\right) \\
& \lim _{n \rightarrow \infty} P_{n}(e \mid \mathbf{x})=\lim _{n \rightarrow \infty} \int\left[1-\sum_{i=1}^{c} P\left(\varpi_{i} \mid \mathbf{x}\right) P\left(\varpi_{i} \mid \mathbf{x}_{n}{ }^{\prime}\right)\right] p\left(\mathbf{x}_{n}{ }^{\prime} \mid \mathbf{x}\right) d \mathbf{x}_{n}{ }^{\prime} \\
& =\int\left[1-\sum_{i=1}^{c} P\left(\varpi_{i} \mid \mathbf{x}\right) P\left(\varpi_{i} \mid \mathbf{x}_{n}{ }^{\prime}\right)\right] \delta\left(\mathbf{x}_{n}{ }^{\prime}-\mathbf{x}\right) d \mathbf{x}_{n}{ }^{\prime} \\
& =\begin{array}{l}
\text { Correct if }
\end{array} \\
& =\begin{array}{l}
\text { •x is in } \mathrm{w}_{\mathrm{i}} \\
\text { •Nearest sample is also in } \mathrm{w}_{\mathrm{i}}
\end{array}
\end{aligned}
$$

Proof Sketch (cont.)

* Then over all possible \mathbf{x} 's

$$
\begin{aligned}
& P=\lim _{n \rightarrow \infty} P_{n}(e)=\int \lim _{n \rightarrow \infty} P_{n}(e \mid \mathbf{x}) p(\mathbf{x}) d \mathbf{x} \\
& =\int\left[1-\sum_{i=1}^{c} P^{2}\left(\varpi_{i} \mid \mathbf{x}\right)\right] p(\mathbf{x}) d \mathbf{x}
\end{aligned}
$$

- A quick check, if $\mathrm{P}\left(\mathrm{w}_{\mathrm{m}} \mid \mathbf{x}\right) \sim 1$

$$
\begin{aligned}
1-\sum_{i=1}^{c} P^{2} & \left(\varpi_{i} \mid \mathbf{x}\right) \cong 1-P^{2}\left(\varpi_{m} \mid \mathbf{x}\right) \cong 2\left(1-P\left(\varpi_{m} \mid \mathbf{x}\right)\right) \\
& \because 1-x^{2}=1-[1-(1-x)]^{2} \quad \text { Holy Grail } \\
& =1-\left(1-2(1-x)+(1-x)^{2}\right) \\
& \cong 1-(1-2(1-x)) \\
& =2(1-x) \quad \text { PR, ANVN, © } M \mathcal{M L}
\end{aligned}
$$

Proof Sketch (cont.)

* Otherwise

$$
\sum_{i=1}^{c} P^{2}\left(\varpi_{i} \mid \mathbf{x}\right)=P^{2}\left(\varpi_{m} \mid \mathbf{x}\right)+\sum_{i=1, i \neq m}^{c} P^{2}\left(\varpi_{i} \mid \mathbf{x}\right)
$$

- The second term is minimized if all of the other classes are equally likely

$$
P\left(\varpi_{i} \mid \mathbf{x}\right)=\left\{\begin{array}{cc}
\frac{P^{*}(e \mid \mathbf{x})}{c-1} & i \neq m \\
1-P^{*}(e \mid \mathbf{x}) & i=m
\end{array}\right.
$$

Proof Sketch (cont.)

$\sum_{i=1}^{c} P^{2}\left(\varpi_{i} \mid \mathbf{x}\right)=\left(1-P^{*}(e \mid \mathbf{x})\right)^{2}+\frac{P^{* 2}(e \mid \mathbf{x})}{(c-1)^{2}}$
$\geq\left(1-P^{*}(e \mid \mathbf{x})\right)^{2}+\frac{P^{* 2}(e \mid \mathbf{x})}{c-1}$
$1-\sum_{i=1}^{c} P^{2}\left(\varpi_{i} \mid \mathbf{x}\right) \leq 1-\left(1-P^{*}(e \mid \mathbf{x})\right)^{2}-\frac{P^{* 2}(e \mid \mathbf{x})}{c-1}$
$\Rightarrow \leq 2 P^{*}(e \mid \mathbf{x})-P^{* 2}(e \mid \mathbf{x})-\frac{P^{* 2}(e \mid \mathbf{x})}{c-1}$
$\Rightarrow \leq 2 P^{*}(e \mid \mathbf{x})-\frac{c}{c-1} P^{* 2}(e \mid \mathbf{x})$
$\Rightarrow \leq 2 P^{*}(e \mid \mathbf{x})$
An even tight er bound :

$$
P^{*} \leq P \leq P^{*}\left(2-\frac{c}{c-1} P^{*}\right)
$$

Other Variations

* Distance weighted: vote is weighed by how close a training sample is to the test sample
* Dimension weighted: distance is calculated by weighing features unequally
\square Weights can be learned by cross-validation

Adaptive Nearest Neighbors

* Important for high-dimensional feature space where neighbors are far apart
* Idea: find local regions and compute feature dimensions
\square Where class labels change a lot - narrower focus
\square Where class labels doesn't change a lot - wider focus

Adaptive Nearest Neighbors (cont.)

* Two classes and two features
* Uniform distribution but label changes only in x
* Extent y to capture more features

5-Nearest Neighborhoods

Adaptive Nearest Neighbors (cont.)

* The same idea as in dimension reduction
* Use knn to find some neighboring points first
* Then recompute the distance measurements
* $\mathrm{W}^{-1 / 2} \mathrm{~W}^{-1 / 2}$ "spheres" the data (within class var)
* Lengthen the dimension with small eigen values in B* (between class var)

$$
D\left(x, x_{0}\right)=\left(x-x_{0}\right)^{T} \boldsymbol{\Sigma}\left(x-x_{0}\right),
$$

$$
\begin{aligned}
\boldsymbol{\Sigma} & =\mathbf{W}^{-1 / 2}\left[\mathbf{W}^{-1 / 2} \mathbf{B} \mathbf{W}^{-1 / 2}+\epsilon \mathbf{I}\right] \mathbf{W}^{-1 / 2} \\
& =\mathbf{W}^{-1 / 2}\left[\mathbf{B}^{*}+\epsilon \mathbf{I}\right] \mathbf{W}^{-1 / 2}
\end{aligned}
$$

Local Weighted Regression

\because knn is a local approximation method without explicitly building the local decision surface

* Approximation by explicitly building such a surface is possible
* Difference from parametric techniques
\square Local samples are used
\square Weighted by distance
- Multiple local approximations (instead of one global one)

Example

* Assume that locally the decision surface is a linear function of the n attributes a_{n}

$$
\begin{aligned}
& \hat{f}(\mathbf{x})=w_{o}+w_{1} a_{1}+w_{2} a_{2}+\cdots+w_{n} a_{n} \\
& E=\frac{1}{2} \sum_{\mathbf{x} \in k n n \mathbf{x}_{q}}(f(\mathbf{x})-\hat{f}(\mathbf{x})) K\left(d\left(\mathbf{x}_{q}, \mathbf{x}\right)\right)^{2}
\end{aligned}
$$

$\therefore \mathrm{K}$ is a nonincreasing function, e.g., $k\left(d\left(\mathbf{x}_{u}, \mathbf{x}\right)\right)=e^{\frac{d^{2}\left(\mathbf{x}_{\mathbf{x}}, \mathbf{x}\right.}{2 \sigma_{\dot{c}}^{2}}}$

Learning Rule

* Starting from an arbitrary set of weights
* If f (true) and f^{\wedge} hat (estimated) are the same, no change
Otherwise, change w_{i}

$$
\begin{aligned}
& \hat{f}(\mathbf{x})=w_{o}+w_{1} a_{1}+w_{2} a_{2}+\cdots+w_{n} a_{n} \\
& \Delta w_{i}=\eta \sum_{\mathbf{x} \in k n n \mathbf{x}_{q}}(f(\mathbf{x})-\hat{f}(\mathbf{x})) K\left(d\left(\mathbf{x}_{q}, \mathbf{x}\right)\right) a_{i} \quad \eta \text { : learning rate }
\end{aligned}
$$

Learning Rule (cont.)

*We will see later that this rule is the perceptron learning rule used in perceptron learning in ANN
*The locally weighted approximation is very similar to the radial basis function learning in ANN

