Memory Models

0

Memory Models

* There exits many other NN models/architectures to perform functions other than pattern recognition
* As an associative memory
- content addressable
\square partial (noisy) information retrievable
* An optimization tool
\square minimize a cost function

Two Questions for Memory Models

* A learned ANN (fixed parameters)
\square Given some input (with error, missing data, etc.) how does it retrieve stored information?
- Content-based retrieval
* An unlearned ANN (random parameters)
\square How to impose data and store the data?

Hopfield Net

* A completely connected graph with no hidden unit

$S_{i}=\operatorname{sgn}\left(\sum_{j} w_{i j} S_{j}-\theta_{i}\right)$
$w_{i i}=0$ (usually)

Mathematical model

- A recurrent network (with feedback connections)
- Binary $(1,-1)$ inputs
- Update can be either synchronous or asynchronous
- Synchronous
$>$ central clock
> one-step
$>$ Not realistic for real NN
\square Asynchronous
> random update sequence
> settle down "eventually"
- Continuously
> in analog circuitry

Associate Memory (Learned)

* Pictorially, as an associate memory
\square tolerate certain imprecision

Learning Rule

* As an associate memory: one pattern
\square to force

$$
\xi_{i}=\operatorname{sgn}\left(\sum_{j} w_{i j} \xi_{j}\right)
$$

a we have

$$
w_{i j}=\frac{1}{N} \xi_{i} \xi_{j}
$$

\square Hebbian rule: Neurons that fire together, wire together. Neurons that fire out of sync, fail to link
\square If w_{ij} is positive, neuron j will attract neuron i close. Otherwise, neuron j will push neuron i away
\square Simple learning rule: both strength and weakness of the model

Associate Memory (cont.)

* Ideally, no error

$$
\begin{aligned}
& S_{k}=\xi_{k} \\
& \Rightarrow h_{i}=\operatorname{sgn}\left(\frac{1}{N} \sum_{j} w_{i j} S_{j}\right)=\operatorname{sgn}\left(\frac{1}{N} \sum_{j} \xi_{i} \xi_{j} \xi_{j}\right) \\
& =\operatorname{sgn}\left(\frac{1}{N} \sum_{j} \xi_{i}\right)=\xi_{i}
\end{aligned}
$$

With $<50 \%$ error

$$
\begin{aligned}
& h_{i}=\operatorname{sgn}\left(\frac{1}{N} \sum_{j} w_{i j} S_{j}\right)=\operatorname{sgn}\left(\frac{1}{N} \sum_{j} \xi_{i} \xi_{j}\left(\pm \xi_{j}\right)\right) \\
& =\operatorname{sgn}\left(\frac{1}{N} \xi_{i} \alpha\right)=\xi_{i} \quad \alpha>0
\end{aligned}
$$

Otherwise, end up at $-\xi_{i}$ two steady states

Associate Memory (cont.)

* Pictorially, as an associate memory with two states

More than one pattern

* Remember all of them (Hebb's rule or prescription)
* Can a stored pattern still be retrieved?

$$
w_{i j}=\frac{1}{N} \sum_{u=1}^{p} \xi_{i}^{u} \xi_{j}^{u}
$$

* Yes, if size of the second term is < 1

$$
\begin{aligned}
& \left.\operatorname{sgn}\left(h_{i}^{v}\right)=\xi_{i}^{v} \quad \text { (for all } i\right) \\
& h_{i}^{v}=\sum_{j} w_{i j} \xi_{j}^{v}=\frac{1}{N} \sum_{j} \sum_{u} \xi_{i}^{u} \xi_{j}^{u} \xi_{j}^{v} \\
& =\xi_{i}^{v}+\frac{1}{N} \sum_{j} \sum_{u \neq v} \xi_{i}^{u} \xi_{j}^{u} \xi_{j}^{v}
\end{aligned}
$$

$* u$: training patterns, v : test pattern

Storage capacity

\square the cross-over term must be small

- if

$$
C_{i}^{v}=-\xi_{i}^{v} \frac{1}{N} \sum_{j} \sum_{u \neq v} \xi_{i}^{u} \xi_{j}^{u} \xi_{j}^{v}
$$

$C_{i}^{v}>1$ then output will be incorrect

$*$ If $\mathrm{p} \gg 1 \& \mathrm{~N} \gg 1 \& \mathrm{~N} \gg \mathrm{p} \quad C_{i}^{v}=-\xi_{i}^{*} \frac{1}{N} \sum_{j} \sum_{u v v} \xi_{i}^{\prime \prime} \xi_{j}^{\prime \prime} \xi_{j}^{*}$

- p : \# of patterns
$\square \mathrm{N}$: length of the pattern
* If the p stored patterns are random
$\square \quad p\left(\xi_{i}^{u}=1\right)=\frac{1}{2} \quad p\left(\xi_{i}^{u}=-1\right)=\frac{1}{2} \forall u, i$

$$
\begin{aligned}
& \Rightarrow p\left(\xi_{i}^{u} \xi_{j}^{u}=1\right)=\frac{1}{2} \quad p\left(\xi_{i}^{u} \xi_{j}^{u}=-1\right)=\frac{1}{2} \forall u, i \neq j \\
& \Rightarrow p\left(\xi_{i}^{u} \xi_{j}^{u} \xi_{j}^{v}=1\right)=\frac{1}{2} \quad p\left(\xi_{i}^{u} \xi_{j}^{u} \xi_{j}^{v}=-1\right)=\frac{1}{2} \forall u \neq v, i \neq j
\end{aligned}
$$

$C_{i}{ }^{v}$ binomial distribution with zero mean and variance p / N when $\mathrm{p} \gg 1$ and $\mathrm{N} \gg 1$ can be approximated by a Gaussian

Error rate dependence

$P_{\text {error }}$	$P_{\max } / N$
0.001	0.105
0.0036	0.138
0.01	0.185
0.05	0.37
0.1	0.61

- -

File Edit Window Help
Hopfield Network State Space

File Edit Window Help

Optimization Tool

* 2^{n} distinct states
* p stored values
* network moves from vertex to vertex until stabilization

Hopfield's Contribution

\square Define an energy function (E) over the landscape
$\square E$ is non-increasing as the system evolves
\square Stored patterns are local minimums
$\square E$ evolves according to Hebb's rule

$$
\begin{aligned}
& E=-\frac{1}{2} \sum_{i j} w_{i j} S_{i} S_{j}=\frac{1}{2} \sum_{i} h_{j} S_{j}=\frac{1}{2} \sum_{i} h_{i} S_{i} \text { Row sum } \\
& E=-\frac{1}{2} \sum_{i j} w_{i j} S_{i} S_{j}+\sum_{i} \theta_{i} S_{i} \text { Column sum }
\end{aligned}
$$

$$
E=-\frac{1}{2} \sum_{i j} w_{i j} S_{i} S_{j}
$$

Energy Function (cont.)

$\square \boldsymbol{E}$ evolves according to Hebb's rule

$$
\frac{\partial E}{\partial S_{i}}=-\sum_{j} w_{i j} S_{j}
$$

- or Hebb's rule is simple gradient descent
- identify an energy function
- extract and store $w_{i j}$ terms
- given input will relax to a local minimum

Energy Function

$* \boldsymbol{E}$ is non-increasing as the system evolves

- Caveats: energy function exists if w is symmetric (e.g., by Hebb)
- Sequential update model, neuron p update while all others held steady
* Before update: x_{p}

$$
E(t)=-\frac{1}{2} \sum w_{i j} x_{i} x_{j}=-\frac{1}{2} \sum_{i j, i \neq p, j \neq p} w_{i j} x_{i} x_{j}-\frac{1}{2} \sum_{j} w_{p j} x_{p} x_{j}-\frac{1}{2} \sum_{i} w_{i p} x_{i} x_{p}
$$

* After update: $X^{*}{ }_{p}$

$$
E(t)=-\frac{1}{2} \sum w_{i j} x_{i} x_{j}=-\frac{1}{2} \sum_{i j, i \neq p, j \neq p} w_{i j} x_{i} x_{j}-\frac{1}{2} \sum_{j} w_{p j} x_{p}^{*} x_{j}-\frac{1}{2} \sum_{i} w_{i p} x_{i} x_{p}^{*}
$$

Energy Function

$* \boldsymbol{E}$ change will only depends on terms with x_{p} and $x^{*}{ }_{p}$

$$
\Delta E=-\frac{1}{2} \sum_{j} w_{p j} x_{p}^{*} x_{j}-\frac{1}{2} \sum_{i} w_{i p} x_{i} x_{p}^{*}+\frac{1}{2} \sum_{j} w_{p j} x_{p} x_{j}+\frac{1}{2} \sum_{i} w_{i p} x_{i} x_{p}
$$

* Remember that $\mathrm{w}_{\mathrm{ij}}=\mathrm{w}_{\mathrm{j} \mathrm{i}}$,

$$
\Delta E=\sum_{i} w_{p i} x_{i}\left(x_{p}-x_{p}^{*}\right)
$$

$*-1$ to $\left.1,\left(\mathrm{x}_{\mathrm{p}}-\mathrm{x}_{\mathrm{p}}\right)\right)=-2, \operatorname{sum}\left(\mathrm{w}_{\mathrm{pi}}{ }^{*} \mathrm{x}_{\mathrm{i}}\right)>0($ accumulated input must be +)
$* 1$ to $-1,\left(\mathrm{x}_{\mathrm{p}}-\mathrm{x}^{*}{ }_{\mathrm{p}}\right)=2, \operatorname{sum}\left(\mathrm{w}_{\mathrm{pi}}{ }^{*} \mathrm{x}_{\mathrm{i}}\right)<0$ (accumulated input must be -)

* In either case, $\Delta \mathrm{E}<0$

Stored patterns as attractors (local minimums)

* Minimize when $S_{i}=\varepsilon_{i}$

$$
\begin{aligned}
& E=-\frac{1}{2 N}\left(\sum_{i} S_{i} \xi_{i}\right)^{2} \quad \text { one pattern } \\
& E=-\frac{1}{2 N} \sum_{u=1}^{p}\left(\sum_{i} S_{i} \xi_{i}^{u}\right)^{2} \quad \text { p patterns } \\
& E=-\frac{1}{2 N} \sum_{u=1}^{p}\left(\sum_{i} S_{i} \xi_{i}^{u}\right)\left(\sum_{j} S_{j} \xi_{j}^{u}\right) \\
& \\
& =-\frac{1}{2} \sum_{i} \sum_{j}\left(\frac{1}{N} \sum_{u=1}^{p} \xi_{i}^{u} \xi_{j}^{u}\right) S_{i} S_{j}
\end{aligned}
$$

$$
=-\frac{1}{2} \sum_{i} \sum_{j} w_{i j} S_{i} S_{j}
$$

Energy expression

Spurious states (attractors)

$$
\begin{aligned}
& -\xi^{u} \because E=-\frac{1}{2 N}\left(\sum_{i} S_{i} \xi_{i}\right)^{2}=-\frac{1}{2 N}\left[\sum_{i} S_{i}\left(-\xi_{i}\right)\right]^{2} \\
& \because h_{i}^{v}=\sum_{j} w_{i j}\left(-\xi_{j}^{v}\right)=\frac{1}{N} \sum_{j} \sum_{u} \xi_{i}^{u} \xi_{j}^{u}\left(-\xi_{j}^{v}\right) \\
& =-\xi_{i}^{v}+\frac{1}{N} \sum_{j} \sum_{u \neq v} \xi_{i}^{u} \xi_{j}^{u} \xi_{j}^{v} \\
& \Rightarrow \operatorname{sgn}\left(h_{i}^{v}\right)=-\xi_{i}^{v} \\
& \begin{aligned}
& \xi_{i}^{m i x}=\operatorname{sgn}\left(\pm \xi_{i}^{u_{1}} \pm \xi_{i}^{u_{2}} \pm \xi_{i}^{u_{3}}\right) \\
& h_{i}^{m i x}=\frac{1}{N} \sum_{j, u} \xi_{i}^{u} \xi_{j}^{u} \xi_{j}^{m i x}=\frac{1}{2} \xi_{i}^{u_{1}}+\frac{1}{2} \xi_{i}^{u_{2}}+\frac{1}{2} \xi_{i}^{u_{3}} \\
&+\operatorname{cross}-\text { terms }
\end{aligned}
\end{aligned}
$$

Spurious states (attractors)

$$
\begin{aligned}
& -\xi^{u} \because E=-\frac{1}{2 N}\left(\sum_{i} S_{i} \xi_{i}\right)^{2}=-\frac{1}{2 N}\left[\sum_{i} S_{i}\left(-\xi_{i}\right)\right]^{2} \\
& \because h_{i}^{v}=\sum_{j} w_{i j}\left(-\xi_{j}^{v}\right)=\frac{1}{N} \sum_{j} \sum_{u} \xi_{i}^{u} \xi_{j}^{u}\left(-\xi_{j}^{v}\right) \\
& =-\xi_{i}^{v}+\frac{1}{N} \sum_{j} \sum_{u \neq v} \xi_{i}^{u} \xi_{j}^{u} \xi_{j}^{v} \\
& \Rightarrow \operatorname{sgn}\left(h_{i}^{v}\right)=-\xi_{i}^{v} \\
& \begin{aligned}
& \xi_{i}^{m i x}=\operatorname{sgn}\left(\pm \xi_{i}^{u_{1}} \pm \xi_{i}^{u_{2}} \pm \xi_{i}^{u_{3}}\right) \\
& h_{i}^{m i x}=\frac{1}{N} \sum_{j, u} \xi_{i}^{u} \xi_{j}^{u} \xi_{j}^{m i x}=\frac{1}{2} \xi_{i}^{u_{1}}+\frac{1}{2} \xi_{i}^{u_{2}}+\frac{1}{2} \xi_{i}^{u_{3}} \\
&+\operatorname{cross}-\text { terms }
\end{aligned}
\end{aligned}
$$

Figure No. 3

-

File Edit Window Help

Caveats

* As associate memory, local minimum might be ok (the corrupted patterns are not far from the correct ones)
* As an optimization tool, it might not be ok to get stuck at local minimum
* However, Hopfield net using Hebb learning performs a deterministic, gradient descent search
* Other search techniques, more stochastic in nature, are needed for global minimum

Caveats (cont.)

* Techniques such as simulated annealing and ANN like Boltzman machine are needed for global minimum search

Simulated Annealing

* Randomness in search to jump out of local minimum
* Rely on an analogy with statistical mechanics

Simulated Annealing (cont.)

* Consider a system of a large number of particles and configurations (e.g., a bucket of water)
* An energy function is defined for each possible configuration of particles
* The likelihood of a particular configuration in thermal equilibrium is given by the BoltzmannGibbs distribution

$$
\begin{aligned}
& P_{\alpha_{i}}=\frac{1}{Z} e^{-\frac{E_{\alpha_{i}}}{k T}} \quad Z=\sum_{i} e^{-\frac{E_{\alpha_{i}}}{k T}} \\
& k: \text { Boltzmann constant } \\
& T: \text { temperature }
\end{aligned}
$$

Simulated Annealing (cont.)

* At high temperature, all configurations are (almost) equally likely
- The system can transit from low to high as easily it can from high to low
\square This corresponds to a global, coarse search
* At low temperature, configurations with small energy are preferred
\square The system transitions are mostly from high to low
\square this corresponds to a local, fine search

$$
\frac{P_{\alpha_{i}}}{P_{\alpha_{j}}}=e^{-\frac{E_{\alpha_{i}}-E_{\alpha_{j}}}{k T}}
$$

Simulated Annealing Procedure

* Start from high temperature and gradually lower the temperature
* Allow enough time for evolution at each temperature setting for equilibrium
* At each temperature setting, the system can evolve either by increasing or decreasing energy
* The probability of increasing system energy is controlled by temperature (the higher flower) the temperature, the more (less) likely system will increase its energy)
*The transition probability is

$$
P\left(\alpha_{i} \rightarrow \alpha_{j}\right)=\left\{\begin{array}{cc}
1 & \Delta E=E_{\alpha_{j}}-E_{\alpha_{i}}<0 \\
e^{-\frac{E_{\alpha_{j}}-E_{\alpha_{i}}}{k T}} & \text { otherwise }
\end{array}\right.
$$

* Can lead to
- equilibrium
- limit cycle
a chaos
* Equilibrium requires

$$
P_{\alpha_{i}} P\left(\alpha_{i} \rightarrow \alpha_{j}\right)=P_{\alpha_{j}} P\left(\alpha_{j} \rightarrow \alpha_{i}\right)
$$

SA in Hopfield Networks

* Analogy: consider S forms a system with a large number of states
* Instead of using Hebb's rule which is gradient descent, the system is allowed to increase energy based on current temperature

SA in Hopfield Networks

* Recall that Hopfield energy definition is

$$
E=-\frac{1}{2} \sum_{i j} w_{i j} S_{i} S_{j}
$$

* If a change is made to, S_{j}, energy is going to change

$$
\Delta E=E^{\prime}-E=-\frac{1}{2} \sum_{i j} w_{i j} S_{i} S_{j}^{\prime}-\frac{1}{2} \sum_{i j} w_{i j} S_{i} S_{j}=\sum_{i} w_{i j} S_{i}
$$

SA in Hopfield Networks

* This can lead to an increase or a decrease in system energy
\square if energy decreases, great!, let it happen
\square if energy increases, not so great, let it happen by probability

$$
P\left(S_{j} \rightarrow S_{j}^{\prime}\right)=e^{-\frac{\Delta E}{k T}}
$$

An example - weight matching
\square A set of N points
\square with a known distance between each pair
\square link points together in pairs

- each point is linked to exactly one other
- minimize total length of the link

$$
\text { minimize } L=\sum_{i<j} d_{i j} n_{i j} \text { with } \sum_{j} n_{i j}=1(\text { for all } i)
$$

Energy function

$$
H(n)=\sum_{i<j} d_{i j} n_{i j}+\frac{\gamma}{2} \sum_{i}\left(1-\sum_{j} n_{i j}\right)^{2}
$$

$$
=\frac{\gamma}{2} \sum_{i \neq j} n_{i j}^{2}+\gamma \sum_{\substack { i \\
\begin{subarray}{c}{j \neq i \\
k \neq i \\
j \neq k{ i \\
\begin{subarray} { c } { j \neq i \\
k \neq i \\
j \neq k } }\end{subarray}} n_{i j} n_{i k}+\sum_{i<j} d_{i j} n_{i j}+\gamma \frac{N}{2}
$$

$$
=\frac{\gamma}{2} \sum_{k} S_{k} S_{k}+\gamma \sum_{k \neq l} S_{k} S_{l}+\sum_{k} d_{k} S_{k}+\gamma \frac{N}{2}
$$

Extension - continuous inputs

$$
\begin{aligned}
& V_{i}=g\left(u_{i}\right)=g\left(\sum_{j} w_{i j} V_{j}\right) \\
& -1 \leq V_{i} \leq 1 \quad g(x)=\tanh (\beta x) \\
& 0 \leq V_{i} \leq 1 \quad g(x)=\frac{1}{1+e^{-2 \beta x}} \\
& \tau_{i} \frac{d V_{i}}{d t}=-V_{i}+g\left(u_{i}\right)=-V_{i}+g\left(\sum_{j} w_{i j} V_{j}\right) \\
& \tau_{i} \frac{d u_{i}}{d t}=-u_{i}+\sum_{j} w_{i j} V_{j}=-u_{i}+\sum_{j} w_{i j} g\left(u_{j}\right)
\end{aligned}
$$

Hardware implementation

parameters

$$
\begin{aligned}
& C \frac{d u_{i}}{d t}+\frac{u_{i}}{\rho}=\sum_{j} \frac{1}{R_{i j}}\left(V_{j}-u_{i}\right) \\
& \tau_{i} \frac{d u_{i}}{d t}=-u_{i}+\sum_{j} w_{i j} g\left(u_{j}\right) \\
& \tau_{i}=R_{i} C \quad \frac{1}{R_{i}}=\frac{1}{\rho}+\sum_{j} \frac{1}{R_{i j}} \quad w_{i j}=\frac{R_{i}}{R_{i j}}
\end{aligned}
$$

$$
\text { if } R_{i} \approx \rho \text { then } w_{i j}=\frac{\rho}{R_{i j}}
$$

An application - curve fitting

$$
\begin{aligned}
& H=\frac{1}{2} \kappa \sum_{i}\left(V_{i}-V_{i+1}\right)^{2}+\frac{1}{2} \lambda \sum_{i}\left(V_{i}-d_{i}\right)^{2} \\
& -\frac{\partial H}{\partial V_{i}}=\kappa\left(V_{i+1}-2 V_{i}+V_{i-1}\right)+\lambda\left(d_{i}-V_{i}\right) \\
& \kappa \tau \frac{d V_{i}}{d t}=\kappa\left(V_{i+1}-2 V_{i}+V_{i-1}\right)+\lambda\left(d_{i}-V_{i}\right)
\end{aligned}
$$

Extension - stochastic networks

\square Analogy of statistical mechanics of magnetic systems
\square Spin orientation as a probabilistic function of the temperature

$$
P\left(S_{i}= \pm 1\right)=f_{\beta}\left(\pm h_{i}\right)=\frac{1}{1+e^{\mp 2 \beta h_{i}}} \quad h_{i}=\sum_{j} w_{i j} S_{j}
$$

An application - curve fitting with discontinuity
$H=\frac{1}{2} \kappa \sum_{i}\left(1-S_{i}\right)\left(V_{i}-V_{i+1}\right)^{2}+\frac{1}{2} \lambda \sum_{i}\left(V_{i}-d_{i}\right)^{2}+\mu \sum_{i} S_{i}$
$S_{i}\left\{\begin{array}{r}1 \\ -1\end{array}\right.$ (line process) in between V_{i} and V_{i+1}

General Energy-Based Models

* a Many (n) trapped particles in a container
\square State (configuration) space (X) comprises locations $\mathrm{S}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}, \mathrm{z}_{\mathrm{i}}\right)$ of all these particles
\square Each configuration has an energy value capturing the interactions $\left(\mathrm{w}_{\mathrm{ij}}\right)$ of these particles ($\left.\mathrm{E}(\mathrm{X})=-\sum_{i, j} w_{i j} S_{i} S_{j}\right)$
\square Likelihood (probability) of a state \propto-energy and form a Boltzmann distribution (Z: partition function)

$$
p(x)=\frac{e^{-E(x)}}{Z} \quad Z=\sum_{x} e^{-E(x)}
$$

General Energy-Based Models

* Binary, nearest neighbor interaction gives rise to Ising model explaining ferromagneism
- An n-d lattice structure
\square Each particle spins up or down
\square Neighboring particles interact with each other
- All particles subject to an environmental field

Energy: Hamiltonian function Probability: Boltzmann distribution

$$
H(\sigma)=-\sum_{\langle i j\rangle} J_{i j} \sigma_{i} \sigma_{j}-\mu \sum_{j} h_{j} \sigma_{j} \quad P_{\beta}(\sigma)=\frac{e^{-\beta H(\sigma)}}{Z_{\beta}} \quad Z_{\beta}=\sum_{\sigma} e^{-\beta H(\sigma)}
$$

In ANN

* A similar energy expression $\mathrm{E}(\mathrm{X})=$ $-\sum_{i, j} w_{i j} S_{i} S_{j}$ is often used (e.g., in Hopfield net)
* Particles (neurons): can be either visible (v) and clamped or hidden (h, latent)
* Two questions:
- How to store
- How to retrieve
$*$ Both are more complicated with hidden

Caveats

* Reproduce a probability distribution that matches input
\square Using KL divergence as error (cost) function
* Generally, not possible to examine every location in the probability state space (even with binary neurons, n such neurons means 2^{n} state space)
a Sampling (e.g., MCMC, Gibbs) is a must

KL Divergency

* Discrepancy (increase in code length) of using a code book tuned for one distribution for another
$\% P(\mathrm{i})$: base (observed) distribution with entropy (code length) $-\sum_{i} P(i) \log P(i)$
$* Q(\mathrm{i})$: test (recovered) distribution with entropy (code length) $-\sum_{i} P(i) \log Q(i)$
* Increase in code length $=$
$-\sum_{i} P(i) \log Q(i)-\left(-\sum_{i} P(i) \log P(i)\right)$

$$
D_{\mathrm{KL}}(P \| Q)=\sum_{i} P(i) \log \frac{P(i)}{Q(i)}
$$

KL Divergence

* Always positive, zero if $P=Q$
* Not symmetrical so not strictly a distance measurement
* Useful for BM for cost function: how observed distribution (P) differs from recovered distribution (Q)

Energy-Based Models

* Without hidden units (e.g., Hopfield)

$$
p(x)=\frac{e^{-E(x)}}{Z} \quad Z=\sum_{x} e^{-E(x)}
$$

* Likelihood $\prod^{p\left(x^{(i)}\right)}$
* L: log-likelihood, l : loss

$$
\begin{array}{r}
\mathcal{L}(\theta, \mathcal{D})=\frac{1}{N} \sum_{x^{(i)} \in \mathcal{D}} \log p\left(x^{(i)}\right) \\
\ell(\theta, \mathcal{D})=-\mathcal{L}(\theta, \mathcal{D})
\end{array}
$$

* Minimize loss :- $-\frac{\operatorname{llog} p\left(p_{g}^{(\theta)}\right)}{\partial \theta}$,
* With hidden units (e.g., Boltzmann)

$$
P(x)=\frac{e^{-\mathcal{F}(x)}}{Z} \quad Z=\sum_{x} e^{-\mathcal{F}(x)} .
$$

$$
\mathcal{F}(x)=-\log \sum_{h} e^{-E(x, h)}
$$

* Minimize loss
$-\frac{\partial \log p(x)}{\partial \theta}=\frac{\partial \mathcal{F}(x)}{\partial \theta}-\sum_{\tilde{x}} p(\tilde{x}) \frac{\partial \mathcal{F}(\tilde{x})}{\partial \theta}$.
POSitive VS.
negative phases
* Increase p(samples) decrease p (samples from models)

Boltzmann Machine

* Stochastic, generative, recurrent neural network
* Maintain an internal representation (Hopfield is all external)
* Binary states (on or off)

$$
s_{i}=\sigma\left(\sum_{j} w_{i j} s_{j}+b_{i}\right)
$$

* Allow unconstrained connectivity
- Between hidden and visible units
- Between hidden units
\square Between visible units

Two Questions

* A learned Boltzmann machine (w_{ij} fixed)
\square Given some input (with error, missing data, etc.) how does it retrieve stored information?
\square Content-based retrieval: similar to Hopfield network but with hidden unit to "memorize" or "organize" information
* An unlearned Boltzmann machine (w_{ij} random)
- How to impose v (visible) data and learn h (latent) variables?

Stochastic State Change

$*$ Energy the same as Hopfield Net

$$
E=-\left(\sum_{i<j} w_{i j} s_{i} s_{j}+\sum_{i} \theta_{i} s_{i}\right)
$$

$*$ Change of energy from flipping a state

$$
\Delta E_{i}=E_{\mathrm{i}=\mathrm{off}}-E_{\mathrm{i}=\mathrm{on}} \quad \Delta E_{i}=\sum_{j>i} w_{i j} s_{j}+\sum_{j<i} w_{j i} s_{j}+\theta_{i}
$$

$*$ Energy is proportional to the negative log probability of the state (less likely <->
higher energy, or Boltzmann distribution)

$$
\begin{aligned}
\Delta E_{i}=-k_{B} T \ln \left(p_{\mathrm{i}=\mathrm{off}}\right)-\left(-k_{B} T \ln \left(p_{\mathrm{i}=\mathrm{on}}\right)\right) & p(x)=\frac{e^{-E(x)}}{Z} \\
& P(x) \propto e^{-\frac{E}{k T}}
\end{aligned}
$$

Stochastic State Rep

* Probability of state transition
- Lower (higher) energy <-> high (low) probability
$\Delta E_{i}=-k_{B} T \ln \left(p_{\text {i=off }}\right)-\left(-k_{B} T \ln \left(p_{\text {i=on }}\right)\right)$

$$
\begin{aligned}
& \frac{\Delta E_{i}}{T}=\ln \left(p_{\mathrm{i}=\text { on }}\right)-\ln \left(p_{\mathrm{i}=\text { off }}\right) \\
& \frac{\Delta E_{i}}{T}=\ln \left(p_{\mathrm{i}=\mathrm{on}}\right)-\ln \left(1-p_{\mathrm{i}=\mathrm{on}}\right) \\
& \frac{\Delta E_{i}}{T}=\ln \left(\frac{p_{\mathrm{i}=\mathrm{on}}}{1-p_{\mathrm{i}=\mathrm{on}}}\right) \\
& -\frac{\Delta E_{i}}{T}=\ln \left(\frac{1-p_{\mathrm{i}=\mathrm{on}}}{p_{\mathrm{i}=\mathrm{on}}}\right) \\
& -\frac{\Delta E_{i}}{T}=\ln \left(\frac{1}{p_{\mathrm{i}=\mathrm{on}}}-1\right) \\
& \exp \left(-\frac{\Delta E_{i}}{T}\right)=\frac{1}{p_{\mathrm{i}=\mathrm{on}}}-1
\end{aligned}
$$

NOT change probability

$$
p_{\mathrm{i}=\text { on }}=\frac{1}{\forall}
$$

Stochastic State Evolution

* Choose a unit, flip or not flip based on T (temperature)
- High T, both flip and not flip are likely
- Low T
$>$ Lower energy, high chance of flipping
$>$ Higher energy, low chance of flipping
* Equilibrium state
\square Approach Boltzmann distribution
\square Depend on T, not on initial configuration
\square Attractors are the final equilibrium states

Specification of Attractors

* Similar to Hebbian rules (as in Hopfield network), but
\square Visible states, V (settable) $\mathrm{P}^{+}(\mathrm{V})$
- Hidden states, H (not settable)
* After running, P -(V)
* Want + and - to be the same, using KL divergence (v : all possible states)

$$
G=\sum_{v} P^{+}(v) \ln \left(\frac{P^{+}(v)}{P^{-}(v)}\right)
$$

GD Operations

$$
\begin{aligned}
& G=\sum_{v} P^{+}(v) \ln \left(\frac{P^{+}(v)}{P^{-}(v)}\right) \\
& \frac{\partial G}{\partial w_{i j}}=-\frac{1}{R}\left[p_{i j}^{+}-p_{\overline{i j}}\right] \quad \frac{\partial G}{\partial \theta_{i}}=-\frac{1}{R}\left[p_{i}^{+}-p_{i}^{-}\right]
\end{aligned}
$$

* Positive clamping - visible unit clamped according to P^{+}
* Negative phase - no clamping
* $\mathrm{P}+\mathrm{ij}$: i and j both on in positive phase
$* \mathrm{P}-\mathrm{ij}: \mathrm{i}$ and j both on in negative phase

Details of GD

* X (state), V (visible), H (hidden): $\mathrm{X}=\mathrm{V}+\mathrm{H}$
* Likelihood of Observing $\mathrm{V}=\mathrm{v}: L(\theta \mid \mathrm{v})=$ $\mathrm{p}(\mathrm{v} \mid \theta), \theta=\left\{\omega_{\mathrm{ij}}\right\}$ (<= Bayes rule)
* Log likelihood

$$
\ln \mathcal{L}(\boldsymbol{\theta} \mid S)=\ln \prod_{i=1}^{\ell} p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)=\sum_{i=1}^{\ell} \ln p\left(\boldsymbol{x}_{i} \mid \boldsymbol{\theta}\right)
$$

Details of GD (cont.)

$\% q(x)$: the distribution underlying the observation (x_{i})
$* p(x)$: the distribution of the BM (based on parameters w_{ij})

* Minimize KL difference as error measurement (only $2^{\text {nd }}$ term depends on BM)

$$
K L(q \| p)=\sum_{x \in \Omega} q(x) \ln \frac{q(x)}{p(x)}=\sum_{x \in \Omega} q(x) \ln q(x)-\sum_{x \in \Omega} q(x) \ln p(x)
$$

* Maximize log-likelihood $\ln (\mathrm{p}(\mathrm{x})$)

$$
\begin{gathered}
\text { Details of GD (cont.) } \\
\boldsymbol{\theta}^{(t+1)}=\boldsymbol{\theta}^{(t)} \underbrace{\underbrace{\eta \frac{\partial}{\partial \theta^{(t)}}\left(\sum_{i=1}^{N} \ln \mathcal{L}\left(\theta^{(t)} \mid x_{i}\right)\right.})}_{:=\Delta \theta^{(t)}}-\lambda \theta^{(t)}++^{\nu \Delta \theta^{(t-1)}}
\end{gathered}
$$

* Red: vanilla gradient descent
* Green: regularization term (from θ^{2})
* Blue: momentum term
* An added twist: there are both visible and hidden states

Gradient of Log likelihood

$$
\ln \mathcal{L}(\boldsymbol{\theta} \mid \boldsymbol{v})=\ln p(\boldsymbol{v} \mid \boldsymbol{\theta})=\ln \frac{1}{Z} \sum_{\boldsymbol{h}} e^{-E(\boldsymbol{v}, \boldsymbol{h})}=\ln \sum_{\boldsymbol{h}} e^{-E(\boldsymbol{v}, \boldsymbol{h})}-\ln \sum_{\boldsymbol{v}, \boldsymbol{h}} e^{-E(\boldsymbol{v}, \boldsymbol{h})}
$$

$$
\frac{\partial \ln \mathcal{L}(\boldsymbol{\theta} \mid \boldsymbol{v})}{\partial \boldsymbol{\theta}}=\frac{\partial}{\partial \boldsymbol{\theta}}\left(\ln \sum_{\boldsymbol{h}} e^{-E(\boldsymbol{v}, \boldsymbol{h})}\right)-\frac{\partial}{\partial \boldsymbol{\theta}}\left(\ln \sum_{\boldsymbol{v}, \boldsymbol{h}} e^{-E(\boldsymbol{v}, \boldsymbol{h})}\right)
$$

$$
=-\frac{1}{\sum_{\boldsymbol{h}} e^{-E(\boldsymbol{v}, \boldsymbol{h})}} \sum_{\boldsymbol{h}} e^{-E(\boldsymbol{v}, \boldsymbol{h})} \frac{\partial E(\boldsymbol{v}, \boldsymbol{h})}{\partial \boldsymbol{\theta}}+\frac{1}{\sum_{\boldsymbol{v}, \boldsymbol{h}} e^{-E(\boldsymbol{v}, \boldsymbol{h})}} \sum_{\boldsymbol{v}, \boldsymbol{h}} e^{-E(\boldsymbol{v}, \boldsymbol{h})} \frac{\partial E(\boldsymbol{v}, \boldsymbol{h})}{\partial \boldsymbol{\theta}}
$$

$$
=-\sum_{\boldsymbol{h}} p(\boldsymbol{h} \mid \boldsymbol{v}) \frac{\partial E(\boldsymbol{v}, \boldsymbol{h})}{\partial \boldsymbol{\theta}}+\sum_{\boldsymbol{v}, \boldsymbol{h}} p(\boldsymbol{v}, \boldsymbol{h}) \frac{\partial E(\boldsymbol{v}, \boldsymbol{h})}{\partial \boldsymbol{\theta}}
$$

$$
p(\boldsymbol{h} \mid \boldsymbol{v})=\frac{p(\boldsymbol{v}, \boldsymbol{h})}{p(\boldsymbol{v})}=\frac{\frac{1}{Z} e^{-E(\boldsymbol{v}, \boldsymbol{h})}}{\frac{1}{Z} \sum_{\boldsymbol{h}} e^{-E(\boldsymbol{v}, \boldsymbol{h})}}=\frac{e^{-E(\boldsymbol{v}, \boldsymbol{h})}}{\sum_{\boldsymbol{h}} e^{-E(\boldsymbol{v}, \boldsymbol{h})}}
$$

$$
\frac{\partial \ln L\left(w_{i j} \mid v\right)}{\partial w_{i j}}=-\sum_{h} p(h \mid v) S_{i} S_{j}+\sum_{v, h} p(v, h) S_{i} S_{j}
$$

Details of GD

$$
\begin{aligned}
& \frac{\partial \ln L\left(w_{i j} \mid v\right)}{\partial w_{i j}}=-\sum_{h} p(h \mid v) S_{i} S_{j}+\sum_{v, h} p(v, h) S_{i} S_{j} \\
& \rho_{i j}^{+}=\sum_{v} \sum_{h} p(h \mid v) S_{i} S_{j} \\
& \rho_{i j}^{-}=\sum_{v} \sum_{h} p(v, h) S_{i} S_{j}
\end{aligned}
$$

* +: correlation in the positive state (clamping v)
*-: correlation in the negative state (clamping nothing, day dreaming)

In Reality

$\frac{\partial \ln L\left(w_{i j} \mid v\right)}{\partial w_{i j}}=-\sum_{h} p(h \mid v) S_{i} S_{j}+\sum_{v, h} p(v, h) S_{i} S_{j}$

* The energy functions
\square Under model distribution of the hidden variables given training samples
\square Under pure model distribution
* Are exponential in the number of states
$*$ MCMC (Gibbs) is used to obtain a sampling based estimate

Restricted Boltzmann Machine

* Does not allow unconstrained connectivity
- Between hidden and visible units
\square Between hidden units (x)
\square Between visible units (x)

Training

* Think about Auto-encoder
a Forward (from visible to hidden)
> Clamp visible to input, compute hidden
\square Backward (from hidden to visible)
> Nothing clamped
* Goal: Forward + backward should reproduce original pattern of probability
* Again, error is in KL divergence
- Much faster with simplified structures

Conditional Independence

* A Markov Random Field property
\square Hidden units are independent given the visible unit they connect to
\square Visible units are independent give hidden unit they connect to

$$
p(\boldsymbol{h} \mid \boldsymbol{v})=\prod_{i=1}^{n} p\left(h_{i} \mid \boldsymbol{v}\right) \text { and } p(\boldsymbol{v} \mid \boldsymbol{h})=\prod_{i=1}^{m} p\left(v_{i} \mid \boldsymbol{h}\right)
$$

$$
\begin{aligned}
& E(\boldsymbol{v}, \boldsymbol{h})=-\sum_{i=1}^{n} \sum_{j=1}^{m} w_{i j} h_{i} v_{j}-\sum_{j=1}^{m} b_{j} v_{j}-\sum_{i=1}^{n} c_{i} h_{i} \\
& p(\boldsymbol{v})=\frac{1}{Z} \sum_{\boldsymbol{h}} p(\boldsymbol{v}, \boldsymbol{h})=\frac{1}{Z} \sum_{\boldsymbol{h}} e^{-E(v, \boldsymbol{h})} \\
& =\frac{1}{Z} \sum_{h_{1}} \sum_{h_{2}} \cdots \sum_{h_{n}} e^{\sum_{j=1}^{m} b_{j} v_{j}} \prod_{i=1}^{n} e^{h_{i}\left(c_{i}+\sum_{j=1}^{m} w_{i j} v_{j}\right)}
\end{aligned}
$$

$$
\begin{align*}
& =\frac{1}{Z}{ }^{\sum_{j=1}^{m} b_{j} v_{j}} \prod_{i=1}^{n} \sum_{h_{i}} e^{h_{i}\left(c_{i}+\sum_{j=1}^{m} w_{i j} v_{j}\right)} \\
& \text { Product of experts } \\
& =\frac{1}{Z} \prod_{j=1}^{m} e^{b_{j} v_{j}} \prod_{i=1}^{n}\left(1+e^{c_{i}+\sum_{j=1}^{m} w_{i j} v_{j}}\right) \tag{22}
\end{align*}
$$

Faster Update - Contrastive Divergent (approximate GD)
For each sample
\square "+" : set v to sample, for each hidden (h) state
$>$ Compute activation for $h_{i} \quad \operatorname{sigmod}\left(\sum_{j} w_{i} \nu_{j}\right)$
$>$ Turn h_{i} on with probability $\operatorname{sigmod}\left(\sum_{j} w_{i} v_{j}\right)$
$>$ Compte $\mathrm{e}_{\mathrm{ij}}{ }^{+}=\mathrm{h}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}$
\square "-": For each visible (v) state
$>$ Compute activation for $v_{j} \quad \operatorname{sigmod}\left(\sum_{i} w_{j} h_{i}\right)$
$>$ Turn v_{j} on with probability $\operatorname{sigmod}\left(\sum_{i} w_{j} h_{i}\right)$
$>$ Compte $\mathrm{e}_{\mathrm{ij}}{ }^{-}=\mathrm{h}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}$
\square Update with $\mathrm{w}_{\mathrm{ij}}=\mathrm{L}\left(\mathrm{e}_{\mathrm{ij}}{ }^{+}-\mathrm{e}_{\mathrm{ij}}{ }^{-}\right)(\mathrm{L}$: learning rate $)$

Deep Belief Network

* Think about Auto-encoder
\square Forward (from visible to hidden)
$>$ Clamp visible to input, compute hidden
\square Backward (from hidden to visible)
$>$ Nothing clamped
* Goal: Forward + backward should reproduce original pattern
* The hidden units become the visible units of the next layer
* Learned layer by layer with fine tuning at the end by backpropagation

