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Memory Models

 There exits many other NN 

models/architectures to perform functions 

other than pattern recognition

 As an associative memory

 content addressable

 partial (noisy) information retrievable

 An optimization tool

minimize a cost function



Two Questions for Memory Models

 A learned ANN (fixed parameters)

Given some input (with error, missing data, 

etc.) how does it retrieve stored information? 

Content-based retrieval

 An unlearned ANN (random parameters)

How to impose data and store the data? 
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Hopfield Net

 A completely connected graph with no 

hidden unit 
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Mathematical model

 A recurrent network (with feedback connections)

 Binary (1, -1) inputs

 Update can be either synchronous or asynchronous

 Synchronous

 central clock

 one-step 

 Not realistic for real NN

 Asynchronous

 random update sequence 

 settle down “eventually”

 Continuously

 in analog circuitry
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Associate Memory (Learned)

 Pictorially, as an associate memory

 tolerate certain imprecision
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 As an associate memory: one pattern

 to force

we have

Hebbian rule: Neurons that fire together, wire 

together. Neurons that fire out of sync, fail to link

 If wij is positive, neuron j will attract neuron i close. 

Otherwise, neuron j will push neuron i away

 Simple learning rule: both strength and weakness of 

the model
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 Ideally, no error 
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Associate Memory (cont.)
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 Pictorially, as an associate memory with 

two states

i
j

Associate Memory (cont.)
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More than one pattern

 Remember all of them (Hebb’s rule or prescription)

 Can a stored pattern still be retrieved?

 Yes, if size of the second term is < 1

 u: training patterns, v: test pattern 
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Storage capacity

 the cross-over term must be small

 if 
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 If p>>1 & N>>1 & N>>p

 p: # of patterns

N: length of the pattern 

 If the p stored patterns are random 
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Error rate dependence

0.001 0.105

0.0036 0.138

0.01 0.185

0.05 0.37

0.1 0.61

Perror P Nmax /
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 distinct states

 p stored values

 network moves from vertex to vertex until 

stabilization 
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Optimization Tool



Define an energy function (E) over the landscape

E is non-increasing as the system evolves 

 Stored patterns are local minimums

 E evolves according to Hebb’s rule

PR and ANN
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E evolves according to Hebb’s rule
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- or Hebb’s rule is simple gradient descent

- identify an energy function 

- extract and store       terms

- given input will relax to a local minimum

wij

Energy Function (cont.)



 E is non-increasing as the system evolves
 Caveats: energy function exists if w is symmetric (e.g., by Hebb)

 Sequential update model, neuron p update while all others held steady

 Before update: xp

 After update: x*p

Energy Function



 E change will only depends on terms with xp and x*p

 Remember that wij = wji, 

 -1 to 1, (xp-x*p)=-2, sum(wpi*xi)>0 (accumulated input must be +)

 1 to -1, (xp-x*p)=2, sum(wpi*xi)<0 (accumulated input must be -)

 In either case, DE < 0 

Energy Function



Stored patterns as attractors 

(local minimums)
 Minimize when Si = ei

PR and ANN
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Spurious states (attractors)
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Spurious states (attractors)
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Caveats

 As associate memory, local minimum might 

be ok (the corrupted patterns are not far 

from the correct ones)

 As an optimization tool, it might not be ok 

to get stuck at local minimum

 However, Hopfield net using Hebb learning 

performs a deterministic, gradient descent 

search

 Other search techniques, more stochastic in 

nature, are needed for global minimum
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Caveats (cont.)

 Techniques such as simulated annealing and 

ANN like Boltzman machine are needed for 

global minimum search
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Simulated Annealing

 Randomness in search to jump out of local 

minimum

 Rely on an analogy with statistical 

mechanics 
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 Consider a system of a large number of particles 

and configurations (e.g., a bucket of water)

 An energy function is defined for each possible 

configuration of particles

 The likelihood of a particular configuration in 

thermal equilibrium is given by the Boltzmann-

Gibbs distribution
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Simulated Annealing (cont.)
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 At high temperature, all configurations are 
(almost) equally likely

 The system can transit from low to high as easily it 
can from high to low

 This corresponds to a global, coarse search

 At low temperature, configurations with small 
energy are preferred

 The system transitions are mostly from high to low

 this corresponds to a local, fine search
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Simulated Annealing (cont.)
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Simulated Annealing Procedure

 Start from high temperature and gradually 

lower the temperature 

 Allow enough time for evolution at each

temperature setting for equilibrium 

 At each temperature setting, the system can 

evolve either by increasing or decreasing 

energy

 The probability of increasing system energy 

is controlled by temperature (the higher (lower) the 

temperature, the more (less) likely system will increase its energy)



PR and ANN

 The transition probability is
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SA  in Hopfield Networks

 Analogy: consider S forms a system with a 

large number of states

 Instead of using Hebb’s rule which is 

gradient descent, the system is allowed to 

increase energy based on current 

temperature
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 Recall that Hopfield energy definition is
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 If a change is made to,  Sj, energy is going 

to change
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SA  in Hopfield Networks
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 This can lead to an increase or a decrease in 

system energy

 if energy decreases, great!, let it happen

 if energy increases, not so great, let it happen 

by probability
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SA  in Hopfield Networks



PR and ANN

An example - weight matching

A set of N points

with a known distance between each pair

 link points together in pairs 

 each point is linked to exactly one other

minimize total length of the link

minimize L d n with n for all iij ij ij
ji j
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Energy function
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Extension - continuous inputs
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Hardware implementation
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An application - curve fitting
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Extension - stochastic networks

Analogy of statistical mechanics of magnetic 

systems

 Spin orientation as a probabilistic function of 

the temperature
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An application - curve fitting 

with discontinuity
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General Energy-Based Models
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General Energy-Based Models

 Binary, nearest neighbor interaction gives 

rise to Ising model explaining 

ferromagneism 

An n-d lattice structure

 Each particle spins up or down

Neighboring particles interact with each other

All particles subject to an environmental field 

PR and ANN

Energy: Hamiltonian function Probability: Boltzmann distribution



In ANN
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Caveats

 Reproduce a probability distribution that 

matches input

Using KL divergence as error (cost) function 

 Generally, not possible to examine every 

location in the probability state space (even 

with binary neurons, n such neurons means 

2n state space)

 Sampling (e.g., MCMC, Gibbs) is a must 

PR and ANN



KL Divergency

 Discrepancy (increase in code length) of 

using a code book tuned for one distribution 

for another 

 P(i): base (observed) distribution with 

entropy (code length) − 𝑖 𝑃 𝑖 𝑙𝑜𝑔𝑃(𝑖)

 Q(i): test (recovered) distribution with 

entropy 𝑐𝑜𝑑𝑒 𝑙𝑒𝑛𝑔𝑡ℎ −  𝑖 𝑃 𝑖 𝑙𝑜𝑔𝑄(𝑖)

 Increase in code length = 

−  𝑖 𝑃 𝑖 𝑙𝑜𝑔𝑄(𝑖)-(− 𝑖 𝑃 𝑖 𝑙𝑜𝑔𝑃(𝑖))

PR and ANN



KL Divergence

 Always positive, zero if P=Q

 Not symmetrical so not strictly a distance 

measurement 

 Useful for BM for cost function: how 

observed distribution (P) differs from 

recovered distribution (Q)

PR and ANN



Energy-Based Models

 Without hidden units 

(e.g., Hopfield)

 Likelihood

 L: log-likelihood, l: loss

 Minimize loss 

 With hidden units 

(e.g., Boltzmann)

 Minimize loss 

 Positive vs. 

negative phases
 Increase p(samples) decrease 

p(samples from models)

PR and ANN



Boltzmann Machine

 Stochastic, generative, recurrent neural 

network

 Maintain an internal representation 

(Hopfield is all external)

 Binary states (on or off)

 Allow unconstrained connectivity

Between hidden and visible units

Between hidden units

Between visible units

PR and ANN



Two Questions

 A learned Boltzmann machine (wij fixed)

Given some input (with error, missing data, 

etc.) how does it retrieve stored information? 

Content-based retrieval: similar to Hopfield 

network but with hidden unit to “memorize” or 

“organize” information

 An unlearned Boltzmann machine (wij

random)

How to impose v (visible) data and learn h 

(latent) variables? 



Stochastic State Change

 Energy the same as Hopfield Net

 Change of energy from flipping a state 

 Energy is proportional to the negative log 

probability of the state (less likely <-> 

higher energy, or Boltzmann distribution)

PR and ANN
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Stochastic State Rep

PR and ANN

 Probability of state transition 

 Lower (higher) energy <-> high (low) probability

NOT change probability



Stochastic State Evolution

 Choose a unit, flip or not flip based on T 

(temperature)

High T, both flip and not flip are likely

Low T

 Lower energy, high chance of flipping

Higher energy, low chance of flipping

 Equilibrium state 

Approach Boltzmann distribution

Depend on T, not on initial configuration

Attractors are the final equilibrium states

PR and ANN



Specification of Attractors

 Similar to Hebbian rules (as in Hopfield 

network), but

Visible states, V (settable) P+(V)

Hidden states, H (not settable)

 After running, P-(V)

 Want + and – to be the same, using KL 

divergence (v: all possible states)

PR and ANN



GD Operations

 Positive clamping – visible unit clamped 

according to P+

 Negative phase – no clamping

 P+ij: i and j  both on in positive phase

 P-ij: i and j both on in negative phase

PR and ANN



Details of GD 

PR and ANN

 X (state), V (visible), H (hidden): X = V+H

 Likelihood of Observing  V=v : L(|v) = 

p(v|), {wij} ( Bayes rule)

 Log likelihood



Details of GD (cont.)

 q(x): the distribution underlying the 

observation (xi)

 p(x): the distribution of the BM (based on 

parameters wij)

 Minimize KL difference as error 

measurement (only 2nd term depends on 

BM)

 Maximize log-likelihood ln(p(x))

PR and ANN



Details of GD (cont.)

 Red: vanilla gradient descent

 Green: regularization term (from 2)

 Blue: momentum term

 An added twist: there are both visible and 

hidden states 

PR and ANN



Gradient of Log likelihood 
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Details of GD

 +: correlation in the positive state (clamping 

v)

 -: correlation in the negative state (clamping 

nothing, day dreaming)

PR and ANN



In Reality

 The energy functions

Under model distribution of the hidden 

variables given training samples

Under pure model distribution

 Are exponential in the number of states

 MCMC (Gibbs) is used to obtain a sampling 

based estimate
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Restricted Boltzmann Machine

 Does not allow unconstrained connectivity

Between hidden and visible units

Between hidden units (x)

Between visible units (x)

PR and ANN



Training

 Think about Auto-encoder

 Forward (from visible to hidden)

Clamp visible to input, compute hidden 

Backward (from hidden to visible)

Nothing clamped

 Goal: Forward + backward should 

reproduce original pattern of probability

 Again, error is in KL divergence

Much faster with simplified structures

PR and ANN



Conditional Independence

 A Markov Random Field property

Hidden units are independent given the visible 

unit they connect to

Visible units are independent give hidden unit 

they connect to

PR and ANN



PR and ANN

Product of experts 



Faster Update – Contrastive  

Divergent (approximate GD)
 For each sample

 “+” :  set v to sample, for each hidden (h) state

Compute activation for hi

 Turn hi on with probability  

Compte eij
+ = hi vj

 “-”: For each visible (v) state 

Compute activation for vj

 Turn vj on with probability  

Compte eij
- = hi vj

Update with wij =L(eij
+ - eij

- ) (L: learning rate)

PR and ANN
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Deep Belief Network

 Think about Auto-encoder

 Forward (from visible to hidden)

Clamp visible to input, compute hidden 

Backward (from hidden to visible)

Nothing clamped

 Goal: Forward + backward should 

reproduce original pattern 

 The hidden units become the visible units of 

the next layer

 Learned layer by layer with fine tuning at 

the end by backpropagation
PR and ANN


