
Memory Models

PR and ANN

Memory Models

 There exits many other NN

models/architectures to perform functions

other than pattern recognition

 As an associative memory

 content addressable

 partial (noisy) information retrievable

 An optimization tool

minimize a cost function

Two Questions for Memory Models

 A learned ANN (fixed parameters)

Given some input (with error, missing data,

etc.) how does it retrieve stored information?

Content-based retrieval

 An unlearned ANN (random parameters)

How to impose data and store the data?

PR and ANN

(usually) 0

)sgn(

ii

i

j

jiji

w

SwS

S1

S2

S3

S4

w11

w12

w13

w14

21w22w

Hopfield Net

 A completely connected graph with no

hidden unit

PR and ANN

Mathematical model

 A recurrent network (with feedback connections)

 Binary (1, -1) inputs

 Update can be either synchronous or asynchronous

 Synchronous

 central clock

 one-step

 Not realistic for real NN

 Asynchronous

 random update sequence

 settle down “eventually”

 Continuously

 in analog circuitry

PR and ANN

i j

k

Associate Memory (Learned)

 Pictorially, as an associate memory

 tolerate certain imprecision

PR and ANN

 As an associate memory: one pattern

 to force

we have

Hebbian rule: Neurons that fire together, wire

together. Neurons that fire out of sync, fail to link

 If wij is positive, neuron j will attract neuron i close.

Otherwise, neuron j will push neuron i away

 Simple learning rule: both strength and weakness of

the model

 i ij j
j

w sgn()

w
N

ij i j
1

Learning Rule

PR and ANN

 Ideally, no error

i

j

i

j

jji

j

jiji

kk

N

N
Sw

N
h

S

)
1

sgn(

)
1

sgn()
1

sgn(

With <50% error

0)
1

sgn(

))(
1

sgn()
1

sgn(

ii

j

jji

j

jiji

N

N
Sw

N
h

Otherwise, end up at

two steady states
 i

Associate Memory (cont.)

PR and ANN

 Pictorially, as an associate memory with

two states

i
j

Associate Memory (cont.)

PR and ANN

More than one pattern

 Remember all of them (Hebb’s rule or prescription)

 Can a stored pattern still be retrieved?

 Yes, if size of the second term is < 1

 u: training patterns, v: test pattern

w
N

ij i
u

j
u

u

p

1

1

sgn() ()h for all i

h w
N

N

i
v

i
v

i
v

ij j
v

j
i
u

j
u

uj
j
v

i
v

i
u

j
u

u vj
j
v

1

1

PR and ANN

Storage capacity

 the cross-over term must be small

 if

v

j

j vu

u

j

u

i

v

i

v

i
N

C

1

Ci
v

1 then output will be incorrect

0

P Ci
v

()

1-1

 p N/

Perror

PR and ANN

 If p>>1 & N>>1 & N>>p

 p: # of patterns

N: length of the pattern

 If the p stored patterns are random

iupp

u

i

u

i ,
2

1
)1(

2

1
)1(

binomial distribution with zero mean and variance p/N

when p>>1 and N>>1 can be approximated by a Gaussian

v

iC

v

j

j vu

u

j

u

i

v

i

v

i
N

C

1

jiupp
u

j

u

i

u

j

u

i ,
2

1
)1(

2

1
)1(

jivupp
v

j

u

j

u

i

v

j

u

j

u

i ,
2

1
)1(

2

1
)1(

PR and ANN

Error rate dependence

0.001 0.105

0.0036 0.138

0.01 0.185

0.05 0.37

0.1 0.61

Perror P Nmax /

PR and ANN

S1

S2

w11
w12

21w22w

1b

2b

PR and ANN

PR and ANN

S1

S2

S3

w11
w12w13

21w22w23w

31w
32w33w

1b

2b

3b

PR and ANN

PR and ANN

 distinct states

 p stored values

 network moves from vertex to vertex until

stabilization

0001

10 11

000
001

010 011

100
101

110
111

2 neurons 3 neurons

2n

Optimization Tool

Define an energy function (E) over the landscape

E is non-increasing as the system evolves

 Stored patterns are local minimums

 E evolves according to Hebb’s rule

PR and ANN

i

ii

ij

jiij

i

ii

j

jj

ij

jiij

SSSwE

ShShSSwE

2

1

2

1

2

1

2

1

Hopfield’s Contribution

Column sum

Row sum

PR and ANN

1S

iS

nS

ij

jiij SSwE
2

1

S

),(21 SSS

PR and ANN

E evolves according to Hebb’s rule

j

jij

i

Sw
S

E

- or Hebb’s rule is simple gradient descent

- identify an energy function

- extract and store terms

- given input will relax to a local minimum

wij

Energy Function (cont.)

 E is non-increasing as the system evolves
 Caveats: energy function exists if w is symmetric (e.g., by Hebb)

 Sequential update model, neuron p update while all others held steady

 Before update: xp

 After update: x*p

Energy Function

 E change will only depends on terms with xp and x*p

 Remember that wij = wji,

 -1 to 1, (xp-x*p)=-2, sum(wpi*xi)>0 (accumulated input must be +)

 1 to -1, (xp-x*p)=2, sum(wpi*xi)<0 (accumulated input must be -)

 In either case, DE < 0

Energy Function

Stored patterns as attractors

(local minimums)
 Minimize when Si = ei

PR and ANN

i j

jiij

p

u

ji

u

j

u

i

i j

j

u

jj

p

u i

u

ii

p

u i

u

ii

i

ii

SSw

SS
N

SS
N

E

S
N

E

S
N

E

2

1

)
1

(
2

1

)()(
2

1

)(
2

1

)(
2

1

1

1

1

2

2

 one pattern

p patterns

Energy expression

PR and ANN

Spurious states (attractors)

i

ii

i

ii

u S
N

S
N

E 22)]([
2

1
)(

2

1

v

i

v

i

v

j

j vu

u

j

u

i

v

i

v

j

j u

u

j

u

i

j

v

jij

v

i

h

N

N
wh

)sgn(

1

)(
1

)(

i
mix

i
u

i
u

i
u

i
mix

i
u

j u
j
u

j
mix

i
u

i
u

i
u

h
N

cross terms

sgn()

,

1 2 3

1 2 3
1 1

2

1

2

1

2

PR and ANN

Spurious states (attractors)

i

ii

i

ii

u S
N

S
N

E 22)]([
2

1
)(

2

1

v

i

v

i

v

j

j vu

u

j

u

i

v

i

v

j

j u

u

j

u

i

j

v

jij

v

i

h

N

N
wh

)sgn(

1

)(
1

)(

i
mix

i
u

i
u

i
u

i
mix

i
u

j u
j
u

j
mix

i
u

i
u

i
u

h
N

cross terms

sgn()

,

1 2 3

1 2 3
1 1

2

1

2

1

2

PR and ANN

PR and ANN

Caveats

 As associate memory, local minimum might

be ok (the corrupted patterns are not far

from the correct ones)

 As an optimization tool, it might not be ok

to get stuck at local minimum

 However, Hopfield net using Hebb learning

performs a deterministic, gradient descent

search

 Other search techniques, more stochastic in

nature, are needed for global minimum

PR and ANN

Caveats (cont.)

 Techniques such as simulated annealing and

ANN like Boltzman machine are needed for

global minimum search

PR and ANN

Simulated Annealing

 Randomness in search to jump out of local

minimum

 Rely on an analogy with statistical

mechanics

PR and ANN

 Consider a system of a large number of particles

and configurations (e.g., a bucket of water)

 An energy function is defined for each possible

configuration of particles

 The likelihood of a particular configuration in

thermal equilibrium is given by the Boltzmann-

Gibbs distribution

etemperaturT

Boltzmannk

eZe
Z

P
i

kT

E

kT

E
ii

i

:

constant :

1

Simulated Annealing (cont.)

PR and ANN

 At high temperature, all configurations are
(almost) equally likely

 The system can transit from low to high as easily it
can from high to low

 This corresponds to a global, coarse search

 At low temperature, configurations with small
energy are preferred

 The system transitions are mostly from high to low

 this corresponds to a local, fine search

kT

EE
ji

j

i e
P

P

Simulated Annealing (cont.)

PR and ANN

Simulated Annealing Procedure

 Start from high temperature and gradually

lower the temperature

 Allow enough time for evolution at each

temperature setting for equilibrium

 At each temperature setting, the system can

evolve either by increasing or decreasing

energy

 The probability of increasing system energy

is controlled by temperature (the higher (lower) the

temperature, the more (less) likely system will increase its energy)

PR and ANN

 The transition probability is

 D

otherwisee

EEE

P
kT

EE
ji ij

ij

01

)(

 Can lead to

 equilibrium

 limit cycle

 chaos

 Equilibrium requires
)()(ijji PPPP

ji

PR and ANN

SA in Hopfield Networks

 Analogy: consider S forms a system with a

large number of states

 Instead of using Hebb’s rule which is

gradient descent, the system is allowed to

increase energy based on current

temperature

PR and ANN

 Recall that Hopfield energy definition is

ij

jiij SSwE
2

1

 If a change is made to, Sj, energy is going

to change

 D
i

iij

ij

jiij

ij

jiij SwSSwSSwEEE
2

1

2

1
'

'

SA in Hopfield Networks

PR and ANN

 This can lead to an increase or a decrease in

system energy

 if energy decreases, great!, let it happen

 if energy increases, not so great, let it happen

by probability

kT

E

jj eSSP
D

)(
'

SA in Hopfield Networks

PR and ANN

An example - weight matching

A set of N points

with a known distance between each pair

 link points together in pairs

 each point is linked to exactly one other

minimize total length of the link

minimize L d n with n for all iij ij ij
ji j

1()

PR and ANN

Energy function

H n d n n

n n n d n
N

S S S S d S
N

ij ij
i j

ij
ji

ij
i j

ij
j i
k i
j k

i
ik ij ij

i j

k
k

k k l
k l

k k
k

() ()

2
1

2 2

2 2

2

2

12 13

14

2324

34

PR and ANN

V g u g w Vi i ij j
j

 () ()

1 1

0 1
1

1 2

V g x x

V g x
e

i

i x

() tanh()

()

i
i

i i i ij j
j

i
i

i ij j
j

i ij j
j

dV

dt
V g u V g w V

du

dt
u w V u w g u

() ()

()

V1

V4

u1

u4

.

.

Extension - continuous inputs

PR and ANN

Hardware implementation

g

V4

V1

C

u1

u4

g

g

g

R12 R13 R14

 C

PR and ANN

parameters

C
du

dt

u

R
V u

du

dt
u w g u

R C
R R

w
R

R

if R then w
R

i i

ijj
j i

i
i

i ij j
j

i i

i ijj
ij

i

ij

i ij

ij

1

1 1 1

()

()

PR and ANN

An application - curve fitting

X

di

Vi

H V V V d

H

V
V V V d V

dV

dt
V V V d V

i
i

i i
i

i

i

i i i i i

i
i i i i i

1

2

1

2

2

2

1
2 2

1 1

1 1

() ()

() ()

() ()

PR and ANN

Extension - stochastic networks

Analogy of statistical mechanics of magnetic

systems

 Spin orientation as a probabilistic function of

the temperature

P S f h
e

h w Si i h i ij j
ji

() ()

 1
1

1 2

-2 -1 0 1 2

f h ()

h

0.5

PR and ANN

An application - curve fitting

with discontinuity

x

Vi

di

H S V V V d S

S
line process in between V and V

i i
i

i i
i

i i
i

i
i i

1

2
1

1

2
1

1

1
2 2

1

 ()() ()

()

General Energy-Based Models

PR and ANN

General Energy-Based Models

 Binary, nearest neighbor interaction gives

rise to Ising model explaining

ferromagneism

An n-d lattice structure

 Each particle spins up or down

Neighboring particles interact with each other

All particles subject to an environmental field

PR and ANN

Energy: Hamiltonian function Probability: Boltzmann distribution

In ANN

PR and ANN

Caveats

 Reproduce a probability distribution that

matches input

Using KL divergence as error (cost) function

 Generally, not possible to examine every

location in the probability state space (even

with binary neurons, n such neurons means

2n state space)

 Sampling (e.g., MCMC, Gibbs) is a must

PR and ANN

KL Divergency

 Discrepancy (increase in code length) of

using a code book tuned for one distribution

for another

 P(i): base (observed) distribution with

entropy (code length) − 𝑖 𝑃 𝑖 𝑙𝑜𝑔𝑃(𝑖)

 Q(i): test (recovered) distribution with

entropy 𝑐𝑜𝑑𝑒 𝑙𝑒𝑛𝑔𝑡ℎ − 𝑖 𝑃 𝑖 𝑙𝑜𝑔𝑄(𝑖)

 Increase in code length =

− 𝑖 𝑃 𝑖 𝑙𝑜𝑔𝑄(𝑖)-(− 𝑖 𝑃 𝑖 𝑙𝑜𝑔𝑃(𝑖))

PR and ANN

KL Divergence

 Always positive, zero if P=Q

 Not symmetrical so not strictly a distance

measurement

 Useful for BM for cost function: how

observed distribution (P) differs from

recovered distribution (Q)

PR and ANN

Energy-Based Models

 Without hidden units

(e.g., Hopfield)

 Likelihood

 L: log-likelihood, l: loss

 Minimize loss

 With hidden units

(e.g., Boltzmann)

 Minimize loss

 Positive vs.

negative phases
 Increase p(samples) decrease

p(samples from models)

PR and ANN

Boltzmann Machine

 Stochastic, generative, recurrent neural

network

 Maintain an internal representation

(Hopfield is all external)

 Binary states (on or off)

 Allow unconstrained connectivity

Between hidden and visible units

Between hidden units

Between visible units

PR and ANN

Two Questions

 A learned Boltzmann machine (wij fixed)

Given some input (with error, missing data,

etc.) how does it retrieve stored information?

Content-based retrieval: similar to Hopfield

network but with hidden unit to “memorize” or

“organize” information

 An unlearned Boltzmann machine (wij

random)

How to impose v (visible) data and learn h

(latent) variables?

Stochastic State Change

 Energy the same as Hopfield Net

 Change of energy from flipping a state

 Energy is proportional to the negative log

probability of the state (less likely <->

higher energy, or Boltzmann distribution)

PR and ANN

𝑃 𝑥 ∝ 𝑒−
𝐸
𝑘𝑇

Stochastic State Rep

PR and ANN

 Probability of state transition

 Lower (higher) energy <-> high (low) probability

NOT change probability

Stochastic State Evolution

 Choose a unit, flip or not flip based on T

(temperature)

High T, both flip and not flip are likely

Low T

 Lower energy, high chance of flipping

Higher energy, low chance of flipping

 Equilibrium state

Approach Boltzmann distribution

Depend on T, not on initial configuration

Attractors are the final equilibrium states

PR and ANN

Specification of Attractors

 Similar to Hebbian rules (as in Hopfield

network), but

Visible states, V (settable) P+(V)

Hidden states, H (not settable)

 After running, P-(V)

 Want + and – to be the same, using KL

divergence (v: all possible states)

PR and ANN

GD Operations

 Positive clamping – visible unit clamped

according to P+

 Negative phase – no clamping

 P+ij: i and j both on in positive phase

 P-ij: i and j both on in negative phase

PR and ANN

Details of GD

PR and ANN

 X (state), V (visible), H (hidden): X = V+H

 Likelihood of Observing V=v : L(|v) =

p(v|), {wij} (Bayes rule)

 Log likelihood

Details of GD (cont.)

 q(x): the distribution underlying the

observation (xi)

 p(x): the distribution of the BM (based on

parameters wij)

 Minimize KL difference as error

measurement (only 2nd term depends on

BM)

 Maximize log-likelihood ln(p(x))

PR and ANN

Details of GD (cont.)

 Red: vanilla gradient descent

 Green: regularization term (from 2)

 Blue: momentum term

 An added twist: there are both visible and

hidden states

PR and ANN

Gradient of Log likelihood

PR and ANN

Details of GD

 +: correlation in the positive state (clamping

v)

 -: correlation in the negative state (clamping

nothing, day dreaming)

PR and ANN

In Reality

 The energy functions

Under model distribution of the hidden

variables given training samples

Under pure model distribution

 Are exponential in the number of states

 MCMC (Gibbs) is used to obtain a sampling

based estimate

PR and ANN

Restricted Boltzmann Machine

 Does not allow unconstrained connectivity

Between hidden and visible units

Between hidden units (x)

Between visible units (x)

PR and ANN

Training

 Think about Auto-encoder

 Forward (from visible to hidden)

Clamp visible to input, compute hidden

Backward (from hidden to visible)

Nothing clamped

 Goal: Forward + backward should

reproduce original pattern of probability

 Again, error is in KL divergence

Much faster with simplified structures

PR and ANN

Conditional Independence

 A Markov Random Field property

Hidden units are independent given the visible

unit they connect to

Visible units are independent give hidden unit

they connect to

PR and ANN

PR and ANN

Product of experts

Faster Update – Contrastive

Divergent (approximate GD)
 For each sample

 “+” : set v to sample, for each hidden (h) state

Compute activation for hi

 Turn hi on with probability

Compte eij
+ = hi vj

 “-”: For each visible (v) state

Compute activation for vj

 Turn vj on with probability

Compte eij
- = hi vj

Update with wij =L(eij
+ - eij

-) (L: learning rate)

PR and ANN

)(sigmod
j

jijvw

)(sigmod
j

jijvw

)(sigmod
i

iijhw

)(sigmod
i

iijhw

Deep Belief Network

 Think about Auto-encoder

 Forward (from visible to hidden)

Clamp visible to input, compute hidden

Backward (from hidden to visible)

Nothing clamped

 Goal: Forward + backward should

reproduce original pattern

 The hidden units become the visible units of

the next layer

 Learned layer by layer with fine tuning at

the end by backpropagation
PR and ANN

