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Memory Models

 There exits many other NN 

models/architectures to perform functions 

other than pattern recognition

 As an associative memory

 content addressable

 partial (noisy) information retrievable

 An optimization tool

minimize a cost function



Two Questions for Memory Models

 A learned ANN (fixed parameters)

Given some input (with error, missing data, 

etc.) how does it retrieve stored information? 

Content-based retrieval

 An unlearned ANN (random parameters)

How to impose data and store the data? 
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 A completely connected graph with no 

hidden unit 
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Mathematical model

 A recurrent network (with feedback connections)

 Binary (1, -1) inputs

 Update can be either synchronous or asynchronous

 Synchronous

 central clock

 one-step 

 Not realistic for real NN

 Asynchronous

 random update sequence 

 settle down “eventually”

 Continuously

 in analog circuitry
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i j

k

Associate Memory (Learned)

 Pictorially, as an associate memory

 tolerate certain imprecision
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 As an associate memory: one pattern

 to force

we have

Hebbian rule: Neurons that fire together, wire 

together. Neurons that fire out of sync, fail to link

 If wij is positive, neuron j will attract neuron i close. 

Otherwise, neuron j will push neuron i away

 Simple learning rule: both strength and weakness of 

the model
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 Ideally, no error 
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 Pictorially, as an associate memory with 

two states

i
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Associate Memory (cont.)
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More than one pattern

 Remember all of them (Hebb’s rule or prescription)

 Can a stored pattern still be retrieved?

 Yes, if size of the second term is < 1

 u: training patterns, v: test pattern 
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Storage capacity

 the cross-over term must be small

 if 
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 If p>>1 & N>>1 & N>>p

 p: # of patterns

N: length of the pattern 

 If the p stored patterns are random 
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Error rate dependence

0.001 0.105

0.0036 0.138

0.01 0.185

0.05 0.37

0.1 0.61

Perror P Nmax /
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 distinct states

 p stored values

 network moves from vertex to vertex until 

stabilization 
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Define an energy function (E) over the landscape

E is non-increasing as the system evolves 

 Stored patterns are local minimums

 E evolves according to Hebb’s rule
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E evolves according to Hebb’s rule
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- or Hebb’s rule is simple gradient descent

- identify an energy function 

- extract and store       terms

- given input will relax to a local minimum
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Energy Function (cont.)



 E is non-increasing as the system evolves
 Caveats: energy function exists if w is symmetric (e.g., by Hebb)

 Sequential update model, neuron p update while all others held steady

 Before update: xp

 After update: x*p

Energy Function



 E change will only depends on terms with xp and x*p

 Remember that wij = wji, 

 -1 to 1, (xp-x*p)=-2, sum(wpi*xi)>0 (accumulated input must be +)

 1 to -1, (xp-x*p)=2, sum(wpi*xi)<0 (accumulated input must be -)

 In either case, DE < 0 

Energy Function



Stored patterns as attractors 

(local minimums)
 Minimize when Si = ei
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Spurious states (attractors)
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Spurious states (attractors)
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Caveats

 As associate memory, local minimum might 

be ok (the corrupted patterns are not far 

from the correct ones)

 As an optimization tool, it might not be ok 

to get stuck at local minimum

 However, Hopfield net using Hebb learning 

performs a deterministic, gradient descent 

search

 Other search techniques, more stochastic in 

nature, are needed for global minimum
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Caveats (cont.)

 Techniques such as simulated annealing and 

ANN like Boltzman machine are needed for 

global minimum search
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Simulated Annealing

 Randomness in search to jump out of local 

minimum

 Rely on an analogy with statistical 

mechanics 
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 Consider a system of a large number of particles 

and configurations (e.g., a bucket of water)

 An energy function is defined for each possible 

configuration of particles

 The likelihood of a particular configuration in 

thermal equilibrium is given by the Boltzmann-

Gibbs distribution
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 At high temperature, all configurations are 
(almost) equally likely

 The system can transit from low to high as easily it 
can from high to low

 This corresponds to a global, coarse search

 At low temperature, configurations with small 
energy are preferred

 The system transitions are mostly from high to low

 this corresponds to a local, fine search
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Simulated Annealing (cont.)
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Simulated Annealing Procedure

 Start from high temperature and gradually 

lower the temperature 

 Allow enough time for evolution at each

temperature setting for equilibrium 

 At each temperature setting, the system can 

evolve either by increasing or decreasing 

energy

 The probability of increasing system energy 

is controlled by temperature (the higher (lower) the 

temperature, the more (less) likely system will increase its energy)
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 The transition probability is
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SA  in Hopfield Networks

 Analogy: consider S forms a system with a 

large number of states

 Instead of using Hebb’s rule which is 

gradient descent, the system is allowed to 

increase energy based on current 

temperature
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 Recall that Hopfield energy definition is
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 This can lead to an increase or a decrease in 

system energy

 if energy decreases, great!, let it happen

 if energy increases, not so great, let it happen 

by probability
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An example - weight matching

A set of N points

with a known distance between each pair

 link points together in pairs 

 each point is linked to exactly one other

minimize total length of the link

minimize L d n with n for all iij ij ij
ji j
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Energy function
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Hardware implementation
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parameters
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An application - curve fitting
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Extension - stochastic networks

Analogy of statistical mechanics of magnetic 

systems

 Spin orientation as a probabilistic function of 

the temperature
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An application - curve fitting 

with discontinuity
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General Energy-Based Models



PR and ANN



General Energy-Based Models

 Binary, nearest neighbor interaction gives 

rise to Ising model explaining 

ferromagneism 

An n-d lattice structure

 Each particle spins up or down

Neighboring particles interact with each other

All particles subject to an environmental field 

PR and ANN

Energy: Hamiltonian function Probability: Boltzmann distribution



In ANN


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Caveats

 Reproduce a probability distribution that 

matches input

Using KL divergence as error (cost) function 

 Generally, not possible to examine every 

location in the probability state space (even 

with binary neurons, n such neurons means 

2n state space)

 Sampling (e.g., MCMC, Gibbs) is a must 

PR and ANN



KL Divergency

 Discrepancy (increase in code length) of 

using a code book tuned for one distribution 

for another 

 P(i): base (observed) distribution with 

entropy (code length) − 𝑖 𝑃 𝑖 𝑙𝑜𝑔𝑃(𝑖)

 Q(i): test (recovered) distribution with 

entropy 𝑐𝑜𝑑𝑒 𝑙𝑒𝑛𝑔𝑡ℎ −  𝑖 𝑃 𝑖 𝑙𝑜𝑔𝑄(𝑖)

 Increase in code length = 

−  𝑖 𝑃 𝑖 𝑙𝑜𝑔𝑄(𝑖)-(− 𝑖 𝑃 𝑖 𝑙𝑜𝑔𝑃(𝑖))

PR and ANN



KL Divergence

 Always positive, zero if P=Q

 Not symmetrical so not strictly a distance 

measurement 

 Useful for BM for cost function: how 

observed distribution (P) differs from 

recovered distribution (Q)

PR and ANN



Energy-Based Models

 Without hidden units 

(e.g., Hopfield)

 Likelihood

 L: log-likelihood, l: loss

 Minimize loss 

 With hidden units 

(e.g., Boltzmann)

 Minimize loss 

 Positive vs. 

negative phases
 Increase p(samples) decrease 

p(samples from models)

PR and ANN



Boltzmann Machine

 Stochastic, generative, recurrent neural 

network

 Maintain an internal representation 

(Hopfield is all external)

 Binary states (on or off)

 Allow unconstrained connectivity

Between hidden and visible units

Between hidden units

Between visible units

PR and ANN



Two Questions

 A learned Boltzmann machine (wij fixed)

Given some input (with error, missing data, 

etc.) how does it retrieve stored information? 

Content-based retrieval: similar to Hopfield 

network but with hidden unit to “memorize” or 

“organize” information

 An unlearned Boltzmann machine (wij

random)

How to impose v (visible) data and learn h 

(latent) variables? 



Stochastic State Change

 Energy the same as Hopfield Net

 Change of energy from flipping a state 

 Energy is proportional to the negative log 

probability of the state (less likely <-> 

higher energy, or Boltzmann distribution)

PR and ANN
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Stochastic State Rep

PR and ANN

 Probability of state transition 

 Lower (higher) energy <-> high (low) probability

NOT change probability



Stochastic State Evolution

 Choose a unit, flip or not flip based on T 

(temperature)

High T, both flip and not flip are likely

Low T

 Lower energy, high chance of flipping

Higher energy, low chance of flipping

 Equilibrium state 

Approach Boltzmann distribution

Depend on T, not on initial configuration

Attractors are the final equilibrium states

PR and ANN



Specification of Attractors

 Similar to Hebbian rules (as in Hopfield 

network), but

Visible states, V (settable) P+(V)

Hidden states, H (not settable)

 After running, P-(V)

 Want + and – to be the same, using KL 

divergence (v: all possible states)

PR and ANN



GD Operations

 Positive clamping – visible unit clamped 

according to P+

 Negative phase – no clamping

 P+ij: i and j  both on in positive phase

 P-ij: i and j both on in negative phase

PR and ANN



Details of GD 

PR and ANN

 X (state), V (visible), H (hidden): X = V+H

 Likelihood of Observing  V=v : L(|v) = 

p(v|), {wij} ( Bayes rule)

 Log likelihood



Details of GD (cont.)

 q(x): the distribution underlying the 

observation (xi)

 p(x): the distribution of the BM (based on 

parameters wij)

 Minimize KL difference as error 

measurement (only 2nd term depends on 

BM)

 Maximize log-likelihood ln(p(x))

PR and ANN



Details of GD (cont.)

 Red: vanilla gradient descent

 Green: regularization term (from 2)

 Blue: momentum term

 An added twist: there are both visible and 

hidden states 

PR and ANN



Gradient of Log likelihood 

PR and ANN



Details of GD

 +: correlation in the positive state (clamping 

v)

 -: correlation in the negative state (clamping 

nothing, day dreaming)

PR and ANN



In Reality

 The energy functions

Under model distribution of the hidden 

variables given training samples

Under pure model distribution

 Are exponential in the number of states

 MCMC (Gibbs) is used to obtain a sampling 

based estimate

PR and ANN



Restricted Boltzmann Machine

 Does not allow unconstrained connectivity

Between hidden and visible units

Between hidden units (x)

Between visible units (x)

PR and ANN



Training

 Think about Auto-encoder

 Forward (from visible to hidden)

Clamp visible to input, compute hidden 

Backward (from hidden to visible)

Nothing clamped

 Goal: Forward + backward should 

reproduce original pattern of probability

 Again, error is in KL divergence

Much faster with simplified structures

PR and ANN



Conditional Independence

 A Markov Random Field property

Hidden units are independent given the visible 

unit they connect to

Visible units are independent give hidden unit 

they connect to

PR and ANN



PR and ANN

Product of experts 



Faster Update – Contrastive  

Divergent (approximate GD)
 For each sample

 “+” :  set v to sample, for each hidden (h) state

Compute activation for hi

 Turn hi on with probability  

Compte eij
+ = hi vj

 “-”: For each visible (v) state 

Compute activation for vj

 Turn vj on with probability  

Compte eij
- = hi vj

Update with wij =L(eij
+ - eij

- ) (L: learning rate)

PR and ANN

)(sigmod 
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jijvw

)(sigmod 
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Deep Belief Network

 Think about Auto-encoder

 Forward (from visible to hidden)

Clamp visible to input, compute hidden 

Backward (from hidden to visible)

Nothing clamped

 Goal: Forward + backward should 

reproduce original pattern 

 The hidden units become the visible units of 

the next layer

 Learned layer by layer with fine tuning at 

the end by backpropagation
PR and ANN


