Memory Models




Memory Models

<+ There exits many other NN
models/architectures to perform functions
other than pattern recognition

<« AS an assoclative memory

2 content addressable
a partial (noisy) information retrievable

< An optimization tool
2 minimize a cost function
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Two Questions for Memory Models

« A learned ANN (fixed parameters)

2 Given some input (with error, missing data,
etc.) how does it retrieve stored information?

0 Content-based retrieval

< An unlearned ANN (random parameters)
2 How to Impose data and store the data?




Hopfield Net

<« A completely connected graph with no
hidden unit

W. W.
¥ 5 1% 5e > S,
Wiz Wiy
> >>0 )82 S :Sgn(zwijsj_ei)
W22 W21 i
w,; =0 (usually)

EEENTENEE > S,

> > >0 > S 4
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Mathematical model

0 Arecurrent network (with feedback connections)
Q Binary (1, -1) inputs
0 Update can be either synchronous or asynchronous
0 Synchronous

» central clock

> one-step
> Not realistic for real NN

a Asynchronous
> random update sequence
> settle down “eventually”
2 Continuously
> in analog circuitry
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Assoclate Memory (Learned)

« Pictorially, as an associate memory
0 tolerate certain imprecision
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Learning Rule
<+ AS an associate memory: one pattern

0 to force & =sgn(X w;g;)
J
1
0 Hebbian rule: Neurens-that fire-together, wire

together. Neurons that fire out of sync, fail to link

a If w;; Is positive, neuron |

Otherwise, neuron j will

0 Simple learning rule: bot
the model
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will attract neuron 1 close.
push neuron 1 away

n strength and weakness of




Assoclate Memory (cont.)

<« ldeally, no error
S, = Sk

> hi = Sgn(%zwijsj) N Sgn(% Zglgjgj)

—son(=->&) = &
With <50% error

h, = sgn(— 3w, S,) = san(- > &, (£))

—sgn(&@) =& a=0

Otherwise,endupat — &
two steady states
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Assoclate Memory (cont.)

<« Pictorially, as an associate memory with
two states

o )

\// e 7€
Si =
AN AR

\_ /
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More than one pattern

+ Remember all of them (Hebb’s rule or prescription)

<« Can a stored pattern still be retrieved?

1T P
Wi :Nglfiu?ju

<+ Yes, If size of the second termis < 1
sgn(h,Y) = &Y ( for all i)

A\V4 \V4 1 u u \V4
h" = 3> w;; & :WZZ§' 5l S
i i

u

:giv_l_%zzéiufjugjv

J us=v

<« U: tralning patterns, v: test pattern
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Storage capacity

0 the cross-over term must be small

Civ :_év%Zzéiufjugjv
aif f g3
Ci" >1 then output will be incorrect

P(Ci")

> <o=.p/N
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e IFp>>1 & N>>1 & N>>p ¢ =—¢ —225 gle
Q p: # of patterns -
2 N: length of the pattern

< If the p stored patterns are random

Q0 PE =D=2 PE=-D=2Vui
= p(&'g; = )=% p(& &) =—1)=%VU i =

= PEUESE D=2 PGS =D =T VUV, # ]

'V binomial distribution with zero mean and variance p/N
I when p>>1 and N>>1 can be approximated by a Gaussian
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Error rate dependence

PEITOF P / N

Max

0.001 |0.105
0.0036 |0.138
0.01 0.185
0.05 0.37

0.1 0.61
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Optimization Tool

» 2" distinct states

<« p stored values

+ network moves from vertex to vertex until
stabilization

000
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10 11 110
2 heurons 3 nheurons
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Hopfield's Contribution

0 Define an energy function (E) over the landscape
2 E 1s non-increasing as the system evolves

0 Stored patterns are local minimums

a E evolves according to Hebb’s rule

1
E:—— WSS
2; P J Row sum

E :_%ZW-S-S. _I_ZHiSi Column sum
I i

=1
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Energy Function (cont.)

Q E evolves according to Hebb’s rule
ok
= -2 WS,
i J
- or Hebb’s rule 1s simple gradient descent
- 1dentify an energy function
- extract and store w; terms

- given input will relax to a local minimum
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Energy Function

<« E 1S non-increasing as the system evolves

0 Caveats: energy function exists if w is symmetric (e.g., by Hebb)
0 Sequential update model, neuron p update while all others held steady

+ Before update: x;

1 1 1 1
E(t) = —3 Wi TiTj = 5 Z WiTiT; — 5 Z WpjTpTj — 5 Z W;pT; Ty
J

1], 1FP.JFP i

1 1 1 1 .
E(t) = -3 Wi Tikj = -3 E Wi TiTj — 5 E WpiTpTj — 5 E WipTi T,
7 1

1],1#p,j7#P




Energy Function

<+ E change will only depends on terms with x, and x*,

1
AFE = — 2 Wp;i T, J:,. QZUEPJ‘EJ +QZEIPJJPIJ+QZ lipTilp

J

4

» Remember that w;; = w;;,

)

AFE = ZUJ‘I—I‘

+ =110 1, (X-x*,)=-2, sum(w,;*x;)>0 (accumulated input must be +)
» 110 -1, (X,-x*)=2, sum(w,;*x;)<0 (accumulated input must be -)
» In either case, AE <0




Stored patterns as attractors

(local minimums)
< MiInimize when S; = &

1 2
N(Z Sii) one pattern
el T
E:_Wé(zsié )
=LY (7S )
:_%ZZ(%Zéugju)SiSj

=—%ZZWuSiSj === Energy expression
b

E=-

p patterns
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Spurious states (attractors)

o= 1, 2_ 1 —EVFP
S TR O DR ) I DILYCEY)
hiv = ZWU- (—fjv) = %ZZﬁiuéju(_fjv)

=& + %Zzgiugjué:jv

] u=zv

= sgn(hy’) ==&

™ =sgn(+4* £ 4% £ 5*)
mixl uumixlulluzlu3
h :sz’ijé:i i G :iﬁfi +§§i +§§i
+ Cross — terms
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Spurious states (attractors)

o= 1, 2_ 1 —EVFP
S TR O DR ) I DILYCEY)
hiv = ZWU- (—fjv) = %ZZﬁiuéju(_fjv)

=& + %Zzgiugjué:jv

] u=zv

= sgn(hy’) ==&

™ =sgn(+4* £ 4% £ 5*)
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Caveats

<+ AS associate memory, local minimum might
be ok (the corrupted patterns are not far
from the correct ones)

+ As an optimization tool, it might not be ok
to get stuck at local minimum

«» However, Hopfield net using Hebb learning
performs a deterministic, gradient descent
search

<« Other search techniques, more stochastic in
nature, are needed for global minimum
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Caveats (cont.)

<+ Techniques such as simulated annealing and
ANN like Boltzman machine are needed for
global minimum search
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Simulated Annealing

< Randomness In search to jump out of local
minimum

<« Rely on an analogy with statistical
mechanics

PR and ANN



Simulated Annealing (cont.)

<« Consider a system of a large number of particles
and configurations (e.g., a bucket of water)

< An energy function is defined for each possible
configuration of particles

« The likelihood of a particular configuration in
thermal equilibrium is given by the Boltzmann-
Gibbs distribution

P, = %e% Z = Ze%

a;

k : Boltzmann constant
T :temperature

PR and ANN



Simulated Annealing (cont.)

« At high temperature, all configurations are
(almost) equally likely

2 The system can transit from low to high as easily it
can from high to low

2 This corresponds to a global, coarse search
«» At low temperature, configurations with small
energy are preferred
0 The system transitions are mostly from high to low
a this corresponds to a local, fine search

B SBS,

. — e kT
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Simulated Annealing Procedure

< Start from high temperature and gradually
lower the temperature

<« Allow enough time for evolution at each
temperature setting for equilibrium

<« At each temperature setting, the system can
evolve either by increasing or decreasing
energy

<« The probability of increasing system energy
|S COﬂtrO”ed by temperature (the higher (lower) the

temperature, the more (less) likely system will increase its energy)

PR and ANN



<« The transition probability is

1 AE=E, —E_, <O
P, — «;) = E., E.

e I otherwise

+ Can lead to
2 equilibrium
2 limit cycle
2 chaos

<« Equilibrium requires
P.Ple, > ;) =PF, P(a; > &)

PR and ANN



SA In Hopfield Networks

<« Analogy: consider S forms a system with a
large number of states

+ Instead of using Hebb’s rule which i1s
gradient descent, the system Is allowed to
Increase energy based on current
temperature

PR and ANN



SA In Hopfield Networks

<« Recall that Hopfield energy definition is
= ___ZWIJ i ]

+ If a change Is made to, S;, energy Is going
to change

AE =E'-E :_%ZWUS'SJ __ZWUSISJ _Z J '
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SA In Hopfield Networks

<« This can lead to an increase or a decrease In
system energy
0 If energy decreases, great!, let it happen

2 If energy Increases, not so great, let it happen
by probability

AE

P(S, >S,)=e ¥

PR and ANN




An example - weight matching

2 Aset of N points

2 with a known distance between each pair
2 link points together in pairs

2 each point is linked to exactly one other
o minimize total length of the link

minimize L= d;n; with Xn; =1(forall)
j

<]
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Energy function

H(n) = >.d;n; + Z(l Zn.,)

1< ]

yzn +?/Zznn|k+2dun +7/ﬁ
2|¢J I j=i i< ] 2
k=1
J=k

_ L3S S 7 >87S; + 2 dy Sy +7/|;|
k |/_1_|
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Extension - continuous inputs

=9g(y;) = g(%wijvj) A .V,
—-1<V; <1 g(x)=tanh(px) : :
0<V. <1 =2 E v

— Al g(x)_1+e_2ﬁx 4
dVv,

TiE—_V'Fg(u)__V_Fg(ZWU j)

du; _
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Hardware implementation

%C : ; Rz Rizl Ry Vi
LE%

ol

P C
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parameters

du u 1
C—=+r-=Y_——(Vi=U
it TR VimW
T-%_—U--FZW--Q(U-)
Idt | j 1] J

Ri=: 0= 3iER; Rj
if R ~ =
If R ~p then wy =

J
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An application - curve fitting

1 1
H = EKZ (Vi Vi) + iﬁZ(Vi —d;)’
| |

OoH

_E:K(\/ _2Vi +Vi_1)+ﬂv(di _Vi)

1+1
|
dv.

kt—=x(V

dt 1 — 2V +Vi )+ A(d; - V,)

PR and ANN




Extension - stochastic networks

2 Analogy of statistical mechanics of magnetic
systems

a Spin orientation as a probabilistic function of
the temperature

P(S; = 1) = f,(h) = 2 h, -zw, S.

14 o¥2/h 2]
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An application - curve fitting
with discontinuity

1 1
H = k2= Vi)’ + 0 AX(V; ;)" + xS
i ' :

g { 1 (line process) in betweenV; and V., ,
i

-1
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General Energy-Based Models

< 0O Many (n) trapped particles in a container

o,

0 State (configuration) space (X) comprises
locations S= (x;,y;,z;) of all these particles

2 Each configuration has an energy value
capturing the interactions (w ;;) of these
particles (E(X) =— ; iWiiSiS;)

Q Likelihood (probability) of a state o« -energy
and form a Boltzmann distribution (Z: partition
function)

—E(x) - —E(z)
p(z) = = Z=) ¢
Z ;
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General Energy-Based Models

<+ Binary, nearest neighbor interaction gives
rise to Ising model explaining
ferromagneism
2 An n-d lattice structure
0 Each particle spins up or down
2 Neighboring particles interact with each other
2 All particles subject to an environmental field

Energy: Hamiltonian function Probability: Boltzmann distribution

e—BH(0)
Y -wE ke Ba(o) - - Y e
(2 5) J
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In ANN

<+ A similar energy expression E(X) =
— X Wi;SiS) 1s often used (e.g., in
Hopfield net)
+ Particles (neurons): can be either visible (v)
and clamped or hidden (h, latent)
2 Two questions:
a How to store

2 How to retrieve

+ Both are more complicated with hidden

PR and ANN



Caveats

<+ Reproduce a probability distribution that
matches Input
2 Using KL divergence as error (cost) function

<+ Generally, not possible to examine every
location In the probability state space (even
with binary neurons, n such neurons means
2" state space)
a Sampling (e.g., MCMC, Gibbs) Is a must

PR and ANN



KL Divergency

<« Discrepancy (increase In code length) of
using a code book tuned for one distribution

for another

« P(1): base (observed) distribution with
entropy (code length) —».; P(i)logP (i)

« Q(1): test (recovered) distribution with
entropy (code length) — ).; P(i)logQ (i)

<« Increase In code length =

— 2 P(DlogQ(i)-(— 2; P(D)logP(i))

= 1) lo P(i)
D1 (P|Q) = ;P( ) log a0
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KL Divergence

<« Always positive, zero If P=Q
<« Not symmetrical so not strictly a distance
measurement

« Useful for BM for cost function: how
observed distribution (P) differs from
recovered distribution (Q)

PR and ANN



Energy-Based Models

< Without hidden units < With hidden units

(e.g., Hopfield) (e.q., Boltzmann)
plr) = e P Z = ZE—E{I‘J P(x) = F_;I} Z = 25—)’::].
Z T

Flr)=— 1(;.22(—!3{:_&}
* Likelthood HP("@) < MiInimize 10ss
< L: Iog_likelihocl)d, I: IOSS _{?lugp(.r]

de

L(6,D) = % Z log p(z') X POSitive VS.
2D -
€6,D) = —£(6,D) negative phases
. . | N « Increase p(samples) decrease
< Minimize loss gL 4 p(samples from models)
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Boltzmann Machine

< Stochastic, generative, recurrent neural
network

< Maintain an internal representation
(Hopfield is all external)

<+ Binary states (on or off) =g (Z R bi)
«» Allow unconstrained connectivity
0 Between hidden and visible units

0 Between hidden units
0 Between visible units

PR and ANN



Two Questions

+ Alearned Boltzmann machine (w;; fixed)

2 Given some input (with error, missing data,
etc.) how does it retrieve stored information?

0 Content-based retrieval: similar to Hopfield
network but with hidden unit to “memorize” or
“organize’ information

+ An unlearned Boltzmann machine (w;
random)

2 How to impose Vv (visible) data and learn h
(latent) variables?




Stochastic State Change

<+ Energy the same as Honfield Net
E=-— (Z’wij 8; 8; + Zﬁi 31‘)
«» Change of energy from flipping a state
AE; = Ei—off — Eizon AB: = ;“’“ g +;wﬁ %+ 0

<« Energy Is proportional to the negative log
probability of the state (less likely <->
higher energy, or Boltzmann distribution)

AE; = —kp TIn(pi—ott) — (—kp T In(pi=on))
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Stochastic State Rep

<« Probability of state transition
o Lower (higher) energy <-> high (low) probability
AEE — _kB Tln(pizoff) — (_kB Tln—(pi=on))

AE;

T — ln(pizon) - ]-n(pizoff)
AEFE;

T = Ill(pizon) — ln(]. - pi:on)

AE, i=on
T 1-— Pi=on
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Stochastic State Evolution

<+ Choose a unit, flip or not flip based on T
(temperature)
2 High T, both flip and not flip are likely

aLow T
> Lower energy, high chance of flipping
> Higher energy, low chance of flipping

< Equilibrium state
2 Approach Boltzmann distribution

2 Depend on T, not on initial configuration
0 Attractors are the final equilibrium states
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Specification of Attractors

<« Similar to Hebbian rules (as in Hopfield
network), but
2 Visible states, V (settable) P*(V)
0 Hidden states, H (not settable)

<« After running, P-(V)

< Want + and — to be the same, using KL
divergence (v: all possible states)

o e on(3)
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GD Operations

3 P (v)
¢ ;P+(”)ID(P-(U))
0G
ﬂwij

<« Positive clamping — visible unit clamped
according to P*

<« Negative phase — no clamping
< P*1J: 1and ] both on In positive phase
< P71J: 1 and ] both on In negative phase

1 3G=_i -
=-gPi-rl e T TR T
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Detalls of GD

«» X (state), V (visible), H (hidden): X = V+H

< Likelthood of Observing V=v : L(0|v) =
p(v|D), 0={w;} (<= Bayes rule)

<« Log likelthood

¢
InL(6|S —111Hp(r1|9 =) Inp(x,6)
1=1
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Details of GD (cont.)

% ((x): the distribution underlying the
observation (Xx;)

« p(x): the distribution of the BM (based on
parameters w;;)

< Minimize KL difference as error

measurement (only 2" term depends on
BM)

KL(q||p) = Z 111 Z qg(x)Ing(x Z qg(x)Inp(x

xref)l xref) xre?

«» Maximize Iog-llkellhood In(p(X))
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Details of GD (cont.)

N‘I’
(t+1) _ g(t) | . | ® 1.3 AN (t—1)
6 =6 590 (E_l InL(# |;1..1)) AV Hr A0

— —————
= AHY

« Red: vanilla gradient descent
<+ Green: regularization term (from 62)
<+ Blue: momentum term

< An added twist; there are both visible and
hidden states

PR and ANN




Gradient of Log Iikelihood

_ 1 —E('u h) __ (v,h) —E(v.h)
L@ |v)=Inp(v|0) —lngz 1112 lnz

h
E-')lnggw) jg (111; —E( vh)) jg 111 _E(w, h})
- _%: e 1 (v.h) Z e™ UE.E)T; " 1;1{“ (o) ; e~ FR) dEg‘; =
= - ¥p(;;1_,)dffgg 2N gp(fu ) ZEL0 1Y
Sh|v) = POR) e EOm B

p(rv) % Z E—E(‘U:h) Z E—E(’L‘r,h)

alnL(W”lv) Zp(hlv)SS +Zp(v h)S;S;

ow;;
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Detalls of GD

c')lnL(wU |v)
ow;;

o = ZZp(hlv)SS
pii =) ) p@w.hSS
% h

<« +:. correlation in the positive state (clamping
V)

<+ -. correlation in the negative state (clamping
nothing, day dreaming)

PR and ANN
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In Reality

alnL(wij|v) b~ Z

aWij

p(h|v)S;S; + Z p(v, h)S;S;
v,h

h

<+ The energy functions

0 Under model distribution of the hidden
variables given training samples

2 Under pure model distribution
« Are exponential in the number of states

«» MCMC (Gibbs) Is used to obtain a sampling
based estimate
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Restricted Boltzmann Machine

<« Does not allow unconstrained connectivity
0 Between hidden and visible units

0 Between hidden units (x)
0 Between visible units (x)

PR and ANN
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Training

< Think about Auto-encoder

0 Forward (from visible to hidden)
» Clamp visible to input, compute hidden

0 Backward (from hidden to visible)
> Nothing clamped

+» Goal: Forward + backward should
reproduce original pattern of probability

< Again, error Is In KL divergence
2 Much faster with simplified structures

PR and ANN




Conditional Independence

«» A Markov Random Field property

2 Hidden units are independent given the visible
unit they connect to

2 Visible units are independent give hidden unit
they connect to

T

plhlv) = H-p(h.i |v) and p(v|h) = Hp(-zr?; | h)

=1 i=1
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Product of experts
3
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Faster Update — Contrastive
Divergent (approximate GD)

« For each sample

Q“+” : set v to sample, for each hidden (h) state
» Compute activation for h,  sigmod(} w;v;)
~ Turn h, on with probability  sigmod(Xwy,
> Compte ;" = h; v, |

0 “-”: For each visible (V) state
> Compute activation forv;  sigmod(> w;h,)
> Turn v; on with probability sigmod(Zwi,-hi)
> Compte ;" = h; v,

0 Update with w;; =L (e;;* - ;) (L: learning rate)
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Deep Belief Network

<« Think about Auto-encoder
2 Forward (from visible to hidden)
> Clamp visible to input, compute hidden

0 Backward (from hidden to visible)
> Nothing clamped

+ Goal: Forward + backward should
reproduce original pattern

< The hidden units become the visible units of
the next layer

<« Learned layer by layer with fine tuning at
the end by backpropagation

PR and ANN




