Independent Component Analvsis

Mixture Data

* Data that are mingled from multiple sources
- May not know how many sources
\square May not know the mixing mechanism
* Good Representation
\square Uncorrelated, information-bearing components
> PCA and Fisher's linear discriminant
\square De-mixing or separation
$>$ ICA (Independent component analysis)
* How do they differ?

PCA vs. ICA

* Independent events vs. Uncorrelated events

Fig. 1.4 A sample of independent compo- Fig. 1.5 Uncorrelated mixtures x_{1} and x_{2}. nents s_{1} and s_{2} with uniform distributions. Horizontal axis: \boldsymbol{z}_{1}; vertical axis: \boldsymbol{x}_{2}. Horizontal axis: Ω_{1}; vertical axis: Ω_{2}.

Uncorrelated vs. Independence

* Uncorrelated
- Global property
- Not valid under nonlinear transform
- PCA requires uncorrelation
* Independence
- Local property
- Valid for nonlinear transform
- ICA assumes independence
independen ce: $E\left(g_{1}\left(x_{1}\right), g_{2}\left(x_{2}\right), \cdots, g_{n}\left(x_{n}\right)\right)=E\left(g_{1}\left(x_{1}\right)\right) \cdots E\left(g_{n}\left(x_{n}\right)\right) \forall g$ uncorrelated: $E\left(\left(x_{1}-E x_{1}\right)\left(x_{2}-E x_{2}\right)\right)=0$

Uncorrelated vs. Independence

* Independence is stronger, requiring every possible function of x 1 to be uncorrelated with x2
* $\mathrm{E}((\mathrm{y} 1-\mathrm{E}(\mathrm{y} 1))(\mathrm{y} 2-\mathrm{E}(\mathrm{y} 2))=0->$ uncorrelated
* $\mathrm{y} 2=y 1^{2}->$ not independent

y_{2}		-2	-1	1	2	0.50
	1	0.00	0.25	0.25	0.00	
	4	0.25	0.00	0.00	0.25	0.50
		0.25	0.25	0.25	0.25	1.00

Uncorrelated vs. Independence

* Discrete variables X1 and X2
* $(0,1),(0,-1),(1,0),(-1,0)$ all with $1 / 4$ probability
* X 1 and X 2 are uncorrelated
* $\mathrm{E}\left(\mathrm{x} 1^{2} \times 2^{2}\right)=0!=1 / 4=\mathrm{E}\left(\mathrm{x} 1^{2}\right) \mathrm{E}\left(\mathrm{x}^{2}\right)$

ICA Limitation

* Any symmetrical distribution of x1 and x2 around origin (centered at Ex1 and Ex2) is uncorrelated
* Corollary: ICA does not apply to Gaussian variables
\square Because any orthogonal transform (rotation and reflection) of Gaussian doesn't change anything

Blind Source Separation

* Brain imaging
\square Different parts of brain emit signals that are mixed up in the sensors outside the bead
* Teleconferencing
\square Different speakers talk at the same time that are mixed up in the microphones
* Geology
- Oil exploration with underground detonation and shock waves being registered at multiple sensors

Approaches

* Nonlinear de-correlation
\square The de-correlated components are uncorrelated and the transformed de-correlated components are uncorrelated
> Minimum mutual information model
> Maximum non-Gaussianity
* Maximum non-Gaussianity
- Central limit theorem states more Gaussianity with successive mixture
> Go above covariance matrix (kurtosis, a higherorder cumulant)

Mathematic Formulation

$$
\begin{aligned}
& x_{j}=a_{j 1} s_{1}+a_{j 2} s_{2}+\ldots+a_{j n} s_{n}, \text { for all } j \\
& \mathbf{x}=\mathbf{A s} \\
& \mathbf{s}=\mathbf{W} \mathbf{w}
\end{aligned}
$$

* s_{i} : sources, x_{j} : mixtures
* A: mixture matrix
* W: de-mixing matrix
* Implication
\square Cannot determine the variance of sources
\square Cannot determine the ordering of source

A Simple Formulation

* Central Limit Theorem states that sum of independent random variables tends to Gaussian
* Non-Gaussianity is desired for each independent component

A Simple Formulation

* Gaussian variables have zero Kurtosis

$$
\operatorname{kurt}(x)=E\left(x^{4}\right)-3\left(E\left(x^{2}\right)\right)^{2}=E\left(x^{4}\right)-3 \text { if } E\left(x^{2}\right)=1
$$

* Supergaussian: spiky pdf with heavy tails (e.g., Laplace distribution) $p(x)=\frac{1}{\sqrt{2}} e^{-\sqrt{2} \mid x}$
* Subgaussian: flat pdf (e.g., uniform)
* Maximize magnitude of the Kurtosis

Math Framework:

2 variables 2 observations

For independent variables:

$$
\begin{aligned}
& \operatorname{kurt}\left(x_{1}+x_{2}\right)=\operatorname{kurt}\left(x_{1}\right)+\operatorname{kurt}\left(x_{2}\right) \\
& \operatorname{kurt}\left(\operatorname{ax} x_{1}\right)=a^{4} \operatorname{kurt}\left(x_{1}\right) \\
& y=\mathbf{w}^{T} \mathbf{x}=\mathbf{w}^{T} \mathbf{A s}=\mathbf{z}^{T} \mathbf{s}=z_{1} s_{1}+z_{2} s_{2} \\
& \operatorname{kurt}(y)=\operatorname{kurt}\left(z_{1} s_{1}\right)+\operatorname{kurt}\left(z_{2} s_{2}\right)=z_{1}^{4} \operatorname{kurt}\left(s_{1}\right)+z_{2}^{4} \operatorname{kurt}\left(s_{2}\right) \\
& E\left\{y^{2}\right\}=z_{1}^{2}+z_{2}^{2}=1
\end{aligned}
$$

* All variables, s and y, are of unit variance
$\therefore \mathrm{Z}$ is constrained to the unit circle
* Maximum kurtosis at two directions that lie in
- $\mathrm{z} 1=1(-1), \mathrm{z} 2=0$ or
- $\mathrm{z} 2=1(-1) \mathrm{z} 1=0$
* Through gradient search in w
* Drawback: noise sensitivity

Information

* Recall some important concepts
\square Random variable (\mathbf{x})

$$
0 \leq p_{k}=p\left(x=x_{k}\right) \leq 1
$$

\square Probability distribution on a random variable
\square Amount of information, surprise, uncertainty

$$
I\left(\mathbf{x}=\mathbf{x}_{k}\right)=\log \left(\frac{1}{p_{k}}\right)=-\log p_{k}
$$

\square Entropy (weighted, average)

$$
H(\mathbf{x})=E\left(I\left(x_{k}\right)\right)=\sum_{k} p_{k} I\left(x_{k}\right)=-\sum_{k} p_{k} \log p_{k}
$$

Entropy Basics

Mutual Information

$$
\begin{aligned}
I(X ; Y) & =\sum_{y \in Y} \sum_{x \in X} p(x, y) \log \frac{p(x, y)}{p(x) p(y)} \\
I(X ; Y) & =H(X)-H(X \mid Y) \\
& =H(Y)-H(Y \mid X) \\
& =H(X)+H(Y)-H(X, Y)
\end{aligned}
$$

$$
I(X ; Y)=D_{\mathrm{KL}}(p(x, y) \| p(x) p(y))
$$

$$
I(X ; Y)=\sum_{y} p(y) \sum_{x} p(x \mid y) \log _{2} \frac{p(x \mid y)}{p(x)}
$$

$$
=\sum_{y}^{y} p(y) D_{\mathrm{KL}}(p(x \mid y) \| p(x))
$$

$$
=\mathbb{E}_{Y}\left\{D_{\mathrm{KL}}(p(x \mid y) \| p(x))\right\} .
$$

H(ylx)

Kullback-Leibler divergence

$D_{p \| q}(\mathbf{x})=\sum_{k} p_{k} \log \frac{p_{k}}{q_{k}}=-\sum_{k} p_{k} \log q_{k}+\sum_{k} p_{k} \log p_{k}=H(p, q)-H(p)$

* Information divergence, relative entropy
* Measure of difference between two distributions, but it is not a metric

$$
D_{p l q}(\mathbf{x}) \neq D_{q\| \| p}(\mathbf{x})
$$

$* \mathrm{D}_{\text {pllq }}$ is positive and is zero if and only if p and q have the same distribution

* Can be a useful measurement of independence, if
- p is joint probability
$\square q$ is marginal probability
* Then $\mathrm{D}_{\mathrm{pllq}}$ is zero if and only if random variables are independent
$* p=p(x, y)$ and $q=p(x) p(y)$, the same as saying that x and y are independent

Intuition

* Independence implies product of marginal probabilities equals total probability

$$
\begin{aligned}
& p\left(g_{1}\left(x_{1}\right), g_{2}\left(x_{2}\right), \cdots, g_{n}\left(x_{n}\right)\right)=p\left(g_{1}\left(x_{1}\right)\right) \cdots p\left(g_{n}\left(x_{n}\right)\right) \\
& p\left(x_{1}, x_{2}, \cdots, x_{n}\right)=p\left(x_{1}\right) \cdots p\left(x_{n}\right)
\end{aligned}
$$

* The Kullback-Leibler divergence should be minimized

$$
D_{p_{g(\mathrm{y})} \| p_{g(\bar{Y})}}=\sum_{k} p_{g(\mathrm{y})=\mathrm{k}} \log \frac{p_{g(\mathrm{y})=\mathrm{k}}}{\prod_{i} p_{g\left(y_{i}\right)=k_{i}}}
$$

$$
D_{p_{\mathbf{y}} \| p_{\bar{y}}}=\sum_{k} p_{\mathbf{y}=\mathbf{k}} \log \frac{p_{\mathbf{y}=\mathbf{k}}}{\prod_{i} p_{y_{i}=k_{i}}}
$$

Math Details

* A should minimize the mutual information between the new signal $H\left(Y_{i}\right)$ and the original signal $H(X)$

$$
\begin{aligned}
& I(X)=\sum_{i} H\left(X_{i}\right)-H(X) \\
& Y=A X \\
& I(Y)=\sum_{i} H\left(Y_{i}\right)-H(X)-\log (\operatorname{det} A) \\
& =\sum_{i} H\left(Y_{i}\right)-H(X)
\end{aligned}
$$

Information Theoretic Approach

* Gaussian variable has the largest entropy among all variables of equal variance
* Negentropy (non-Gaussianality) J is to be maximized ($X_{\text {gauss }}$ and X have the same variance)

$$
J(X)=H\left(X_{\text {gauss }}\right)-H(X)
$$

* Difficulty: computing H requires pdf
* Estimation:

$$
\begin{aligned}
J(x) & \approx \frac{1}{12} E\left(x^{3}\right)^{2}+\frac{1}{48} \operatorname{kurt}(x)^{2} \\
J(y) & \propto[E\{G(y)\}-E\{G(v)\}]^{2} \\
G_{1}(u) & =\frac{1}{a_{1}} \log \cosh a_{1} u, \quad G_{2}(u)=-\exp \left(-u^{2} / 2\right)
\end{aligned}
$$

Maximum Entropy Approach

d sources
k sensed signals $s(t)$
$P R, \mathcal{A N J N}, \mathcal{L} \mathcal{M L}$,
$y(t)$

