

Mixture Data

Data that are mingled from multiple sources □ May not know how many sources □ May not know the mixing mechanism Good Representation Uncorrelated, information-bearing components > PCA and Fisher's linear discriminant De-mixing or separation > ICA (Independent component analysis) How do they differ?

PCA vs. ICA

Independent events vs. Uncorrelated events

Uncorrelated vs. Independence

- Uncorrelated
 - Global property
 - Not valid under nonlinear transform
 - PCA requires uncorrelation

- Independence
 - Local property
 - Valid for nonlinear transform
 - ICA assumes independence

independence: $E(g_1(x_1), g_2(x_2), \dots, g_n(x_n)) = E(g_1(x_1)) \dots E(g_n(x_n)) \forall g$ uncorrelated: $E((x_1 - Ex_1)(x_2 - Ex_2)) = 0$

Uncorrelated vs. Independence

- Independence is stronger, requiring *every* possible function of x1 to be uncorrelated with x2
- ★ E((y1-E(y1))(y2-E(y2))=0 -> uncorrelated
 ★ y2= y1² -> not independent

-1

:::

-2

1

2

 y_1

Uncorrelated vs. Independence

Discrete variables X1 and X2

- * (0,1), (0,-1),(1,0),(-1,0) all with ¼ probability
- * X1 and X2 are uncorrelated
- * $E(x1^2x2^2)=0!=1/4=E(x1^2)E(x2^2)$

ICA Limitation

- Any symmetrical distribution of x1 and x2 around origin (centered at Ex1 and Ex2) is uncorrelated
- Corollary: ICA does not apply to Gaussian variables
 - Because any orthogonal transform (rotation and reflection) of Gaussian doesn't change anything

Blind Source Separation

Brain imaging

Different parts of brain emit signals that are mixed up in the sensors outside the bead

Teleconferencing

- Different speakers talk at the same time that are mixed up in the microphones
- Geology
 - Oil exploration with underground detonation and shock waves being registered at multiple sensors

Approaches

Nonlinear de-correlation

- The de-correlated components are uncorrelated and the transformed de-correlated components are uncorrelated
 - > Minimum mutual information model
 - Maximum non-Gaussianity
- Maximum non-Gaussianity
 - Central limit theorem states more Gaussianity with successive mixture
 - Go above covariance matrix (kurtosis, a higherorder cumulant)

Mathematic Formulation

- $x_j = a_{j1}s_1 + a_{j2}s_2 + \dots + a_{jn}s_n$, for all j
- $\mathbf{x} = \mathbf{A}\mathbf{s}$

s = Wx

- \mathbf{s}_i : sources, \mathbf{x}_i : mixtures
- A: mixture matrix
- ✤ W: de-mixing matrix
- Implication
 - Cannot determine the variance of sources
 - Cannot determine the ordering of source

A Simple Formulation

- Central Limit Theorem states that sum of independent random variables tends to Gaussian
- Non-Gaussianity is desired for each independent component

A Simple Formulation Gaussian variables have zero Kurtosis $kurt(x) = E(x^4) - 3(E(x^2))^2 = E(x^4) - 3$ if $E(x^2) = 1$ Supergaussian: spiky pdf with heavy tails (e.g., Laplace distribution) $p(x) = \frac{1}{\sqrt{2}} e^{-\sqrt{2}|x|}$ Subgaussian: flat pdf (e.g., uniform) Maximize magnitude of the Kurtosis

Math Framework: 2 variables 2 observations For independent variables : $kurt(x_1 + x_2) = kurt(x_1) + kurt(x_2)$ $kurt(ax_1) = a^4 kurt(x_1)$ $y = \mathbf{w}^T \mathbf{x} = \mathbf{w}^T \mathbf{A}\mathbf{s} = \mathbf{z}^T \mathbf{s} = z_1 s_1 + z_2 s_2$ $kurt(y) = kurt(z_1s_1) + kurt(z_2s_2) = z_1^4 kurt(s_1) + z_2^4 kurt(s_2)$ $E\{y^2\} = z_1^2 + z_2^2 = 1$

All variables, s and y, are of unit variance

- Z is constrained to the unit circle
- Maximum kurtosis at two directions that lie in
 - □ z1=1 (-1), z2=0 or

□ z2=1 (-1) z1=0

- Through gradient search in w
- Drawback: noise sensitivity

Information

Recall some important concepts
 Random variable (x) 0≤ p_k = p(x = x_k)≤1
 Probability distribution on a random variable
 Amount of information, surprise, uncertainty

$$I(\mathbf{x} = \mathbf{x}_k) = \log(\frac{1}{p_k}) = -\log p_k$$

□ Entropy (weighted, average)

$$H(\mathbf{x}) = E(I(x_k)) = \sum_{k} p_k I(x_k) = -\sum_{k} p_k \log p_k$$

Mutual Information

$I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log \frac{p(x,y)}{p(x) p(y)}$
I(X;Y) = H(X) - H(X Y) $H(Y) = H(Y Y)$
= H(T) - H(T X) $= H(X) + H(Y) - H(X,Y)$
$I(X;Y) = D_{\mathrm{KL}}(p(x,y) \ p(x)p(y))$
$I(X;Y) = \sum_{y} p(y) \sum_{x} p(x y) \log_2 \frac{p(x y)}{p(x)}$
$=\sum_{y}^{y} p(y) D_{\mathrm{KL}}(p(x y) p(x))$
$= \mathbb{E}_{Y} \{ D_{\mathrm{KL}}(p(x y) \ p(x)) \}.$

Kullback-Leibler divergence

$$D_{p \parallel q}(\mathbf{x}) = \sum_{k} p_{k} \log \frac{p_{k}}{q_{k}} = -\sum_{k} p_{k} \log q_{k} + \sum_{k} p_{k} \log p_{k} = H(p,q) - H(p)$$

- Information divergence, relative entropy
- ★ Measure of difference between two distributions, but it is not a metric $D_{p\parallel q}(\mathbf{x}) \neq D_{a\parallel p}(\mathbf{x})$
- $D_{p||q}$ is positive and is zero if and only if p and q have the same distribution
- Can be a useful measurement of independence, if
 - p is joint probability
 - **q** is marginal probability
- * Then $D_{p||q}$ is zero if and only if random variables are independent
- p = p(x,y) and q=p(x)p(y), the same as saying that x and y are independent

Intuition

 Independence implies product of marginal probabilities equals total probability

 $p(g_1(x_1), g_2(x_2), \dots, g_n(x_n)) = p(g_1(x_1)) \dots p(g_n(x_n))$ $p(x_1, x_2, \dots, x_n) = p(x_1) \dots p(x_n)$

The Kullback-Leibler divergence should be minimized

$$D_{p_{g(\mathbf{y})} \parallel p_{g(\tilde{\mathbf{y}})}} = \sum_{k} p_{g(\mathbf{y})=\mathbf{k}} \log \frac{P_{g(\mathbf{y})=\mathbf{k}}}{\prod_{i} p_{g(y_{i})=k}}$$
$$D_{p_{\mathbf{y}} \parallel p_{\tilde{\mathbf{y}}}} = \sum_{k} p_{\mathbf{y}=\mathbf{k}} \log \frac{p_{\mathbf{y}=\mathbf{k}}}{\prod_{i} p_{y_{i}=k_{i}}}$$

Math Details

* A should minimize the mutual information between the new signal $H(Y_i)$ and the original signal H(X)

$$I(X) = \sum_{i} H(X_{i}) - H(X)$$
$$Y = AX$$
$$I(Y) = \sum_{i} H(Y_{i}) - H(X) - \log(\det A)$$
$$= \sum_{i} H(Y_{i}) - H(X)$$

Information Theoretic Approach

- Gaussian variable has the largest entropy among all variables of equal variance
- ♦ Negentropy (non-Gaussianality) *J* is to be maximized (*X_{gauss}* and *X* have the same variance)
 □ *J*(*X*) = *H*(*X_{gauss})-<i>H*(*X*)
- Difficulty: computing H requires pdf
- Stimation:

$$J(x) \approx \frac{1}{12} E(x^3)^2 + \frac{1}{48} kurt(x)^2$$
$$J(y) \propto [E\{G(y)\} - E\{G(y)\}]^2$$

 $a_1 \leq a_1 \leq 2$

$$G_1(u) = \frac{1}{a_1} \log \cosh a_1 u, \quad G_2(u) = -\exp(-u^2/2)$$

21

Maximum Entropy Approach

