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Mixture Data

� Data that are mingled from multiple sources

� May not know how many sources

� May not know the mixing mechanism

� Good Representation

� Uncorrelated, information-bearing components

� PCA and Fisher’s linear discriminant

� De-mixing or separation

� ICA (Independent component analysis)

� How do they differ? 
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PCA vs. ICA
� Independent events vs. Uncorrelated events

Knowing X1 doesn’t tell anything about X2

Knowing X1 does tell something about X2

x1

x2 x2
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Uncorrelated vs. Independence

� Uncorrelated

� Global property

� Not valid under 

nonlinear transform

� PCA requires 

uncorrelation

� Independence

� Local property

� Valid for nonlinear 

transform

� ICA assumes 

independence
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Uncorrelated vs. Independence

� Independence is stronger, requiring every 

possible function of x1 to be uncorrelated 

with x2

� E((y1-E(y1))(y2-E(y2))=0 -> uncorrelated

� y2= y12 -> not independent
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Uncorrelated vs. Independence

� Discrete variables X1 and X2

� (0,1), (0,-1),(1,0),(-1,0) all with ¼

probability

� X1 and X2 are uncorrelated

� E(x12x22)=0!=1/4=E(x12)E(x22)
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ICA Limitation
� Any symmetrical distribution of x1 and x2 

around origin (centered at Ex1 and Ex2) is 

uncorrelated

� Corollary: ICA does not apply to Gaussian 

variables

� Because any orthogonal transform (rotation and 

reflection) of Gaussian doesn’t change anything
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Blind Source Separation
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Blind Source Separation

� Brain imaging

� Different parts of brain emit signals that are 
mixed up in the sensors outside the bead

� Teleconferencing

� Different speakers talk at the same time that are 
mixed up in the microphones

� Geology

� Oil exploration with underground detonation 
and shock waves being registered at multiple 
sensors
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Approaches

� Nonlinear de-correlation

� The de-correlated components are uncorrelated 
and the transformed de-correlated components 
are uncorrelated

� Minimum mutual information model 

� Maximum non-Gaussianity

� Maximum non-Gaussianity

� Central limit theorem states more Gaussianity
with successive mixture

� Go above covariance matrix (kurtosis, a higher-
order cumulant)
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Mathematic Formulation

� si: sources, xj: mixtures

� A: mixture matrix

� W: de-mixing matrix

� Implication

� Cannot determine the variance of sources

� Cannot determine the ordering of source
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A Simple Formulation

� Central Limit Theorem states that sum of 

independent random variables tends to 

Gaussian

� Non-Gaussianity is desired for each 

independent component
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A Simple Formulation

� Gaussian variables have zero Kurtosis

� Supergaussian: spiky pdf with heavy tails  

(e.g., Laplace distribution)

� Subgaussian: flat pdf (e.g., uniform)

� Maximize magnitude of the Kurtosis
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Math Framework: 

2 variables 2 observations

� All variables, s and y, are of unit variance

� Z is constrained to the unit circle 

� Maximum kurtosis at two directions that lie in 
� z1=1 (-1), z2=0 or 

� z2=1 (-1) z1=0

� Through gradient search in w

� Drawback: noise sensitivity
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Information

� Recall some important concepts

� Random variable (x)

� Probability distribution on a random variable

� Amount of information, surprise, uncertainty

� Entropy  (weighted, average)
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Entropy Basics 

H(x)

H(y)

I(x;y)

H(x|y)

H(y|x)

H(x;y)

H[X,Y] = H[Y] + H[X|Y]
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Mutual Information

H(x)

H(y)

I(x;y)

H(x|y)

H(y|x)

H(x;y)



PR , ANN, & ML 18

Kullback-Leibler divergence

� Information divergence, relative entropy

� Measure of difference between two distributions, but it is 
not a metric

� Dp||q is positive and is zero if and only if p and q have the 
same distribution

� Can be a useful measurement of independence, if
� p is joint probability

� q is marginal probability

� Then Dp||q is zero if and only if random variables are 
independent 

� p = p(x,y) and q=p(x)p(y), the same as saying that x and y 
are independent
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Intuition

� Independence implies product of marginal 

probabilities equals total probability

� The Kullback-Leibler divergence should be 

minimized

)()(),,,(

))(())(())(,),(),((

121

112211

nn

nnnn

xpxpxxxp

xgpxgpxgxgxgp

LL

LL

=

=

∑
∏ =

=

==
k

i

ky

pp

ii
p

p
pD

ky

kyyy
log

~||

∑
∏ =

=

==
k

i

kyg

g

gpp

ii

gg p

p
pD

)(

)(

)(|| log
)~()(

ky

kyyy



PR , ANN, & ML 20

Math Details

� A should minimize the mutual information 

between the new signal H(Yi) and the 

original signal H(X)

)()(

)log(det)()()(

)()()(

XHYH

AXHYHYI

AXY

XHXHXI

i

i

i

i

i

i

−=

−−=

=

−=

∑

∑

∑



PR , ANN, & ML 21

Information Theoretic Approach

� Gaussian variable has the largest entropy among 

all variables of equal variance

� Negentropy (non-Gaussianality) J is to be 

maximized (Xgauss and X have the same variance)

� J(X) = H(Xgauss)-H(X)

� Difficulty: computing H requires pdf

� Estimation:
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Maximum Entropy Approach
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