
Unsupervised Learning

Using ANNs
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 If correct I/O association is not provided

 A number of samples are imposed

 What does an ANN do with samples?

 Network topology

 Layers and connection

 Learning rules used

 familiarity, principal component analysis, feature mapping, etc.

 Learning paradigm 

 Competitive vs. cooperative

 Update

 Batch (off-line) update vs. interactive (on-line) update

Unsupervised Learning
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Again, the Recurring Theme of

 Finding to which a sample belongs

Belong to everyone 

Belong to only one 

Belong to a small group of classes

 How a sample affects class statistics

Global weighted update

Competitive update

Collaborative update
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Issues

 Network topology

Does multiple layers help? 

 Training mechanism?

 Separation of functionalities?

But lateral connections are often important

 Update rules

 Firing of neurons is instantaneous upon 

receiving inputs

Cf with k-mean which is batch
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Learning Rules

 Even though we can use the same networks, 

we have to be careful about the learning 

rules

 Rules that require backpropagation of error 

(knowing the correct I/O association) are 

not applicable

 E.g., Use Hebb rules instead

Reward for correlated pre- and post- firing
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Learning Paradigm

 Global learning

Nice guy, democratic approach

 Cooperative

 Try to maintain some kind of local structure 

with a radial basis attention function

 Competitive learning

 Playground bully approach

Mine only

Not only it is mine, stay far away as possible
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Simplest case

 One linear unit with Hebb’s learning rules
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 At equilibrium (with a lot of patterns 

observed and weight vectors do not change 

significantly)
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 Train a network with the same pattern over 

and over again

weights will go to infinity, dominated by the 

eigenvectors with the largest eigenvalues
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Oja’s learning rule

 similar learning effect as Hebb’s rule

 If the weight already confirms to the pattern, 

don’t learn

without divergence of weight vector

weight vector converges to the maximal 

eigenvector

 can be generalized to locate other eigenvectors 

(principal component analysis)
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Unsupervised Competitive Learning

 Clustering or categorizing data

 Only one output active (winner-take-all)

 Lateral inhibition

 Each output neuron y for one class 
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Simple competitive learning

 one-layer network

 decision rule: (most) similar one learns

 update rule: closer to the input pattern
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Competitive Learning Example
Input data Initial placement Final placement
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More Examples
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Vector Quantization

 A compression technique to represent input 

vectors with a smaller number of “code” 

(representative, prototype) vectors

 Standard decision rule + learning rule

 Learning Vector Quantization

 standard decision rule +
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Feature Mapping

 A topology preserving map

 Similar inputs map to outputs which are 

close-by

1x 2x
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Kohonen Map (Self-Organizing Map)

 Preserve neighborhood relations

 Decision rule

 Update rule

 initially, the neighborhood is large

 gradually the neighborhood narrows down 
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SOM Example
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1 2
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More Examples
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More Examples
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 Three data clusters in 3D

Projection

From 3D to 2D

SOM
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Traveling salesman problem

 Mapping from a plane to a 1D ring

 Modified Kohenen algorithm

 Standard decision rule + update rule:

 1st term: pulling weight to a particular city

 2nd term: minimize inter-city distance
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Hybrid Learning Schemes

 Improved speed

 Satisfactory performance

 Unsupervised layer: clustering (divide input 
space in a Voronoi tessellation)

 Supervised layer: key-value lookup

unsupervised

supervised
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 Example 1:

 input to hidden layer: competitive learning

 hidden to output layer: general delta rule

 Example 2 (radial basis function):

 input to hidden layer: 
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