## Linear Regression

## When outcome is not binary

* Outcome can model trend, price, etc.
* Ability to both interpolate (make inference) and extrapolate (make prediction)
* A rich math area studied in many disciplines (e.g., spline theory)




Gure the. The forward part of the busp is refleme mad drawz crand to create a ssoat.





Figere 12d. The hig of the seost is refined and prellod deva iem a hakk.

 senatrusiod.


## Basic Formulation

$*$ Given $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right), \mathrm{i}=1, ., \mathrm{n}$, find $y=f(x)$
$\square x$ can be a long vector (multi-dimensional features)
$\square f$ can be many different types of functions and of many different orders

## Linear Regression

$\because f$ is linear (hyper-plane)

$$
f(X)=\beta_{0}+\sum_{j=1}^{p} X_{j} \beta_{j}
$$

$\square n$ : \# of training data $\left(x_{1}, y_{1}\right) \ldots\left(x_{N}, y_{N}\right)$
$\square p$ dimension of feature vectors $x_{i}=\left(x_{i 1}, x_{i 2}, \ldots, x_{i p}\right)^{T}$
$\square p+1:$ model variables $\beta=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{p}\right)^{T}$

* Minimize RSS

$$
\begin{aligned}
\operatorname{RSS}(\beta) & =\sum_{i=1}^{N}\left(y_{i}-f\left(x_{i}\right)\right)^{2} \\
& =\sum_{i=1}^{N}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} x_{i j} \beta_{j}\right)^{2} .
\end{aligned}
$$

## Linear Regression (cont.)

$\operatorname{RSS}(\beta)=(\mathbf{y}-\mathbf{X} \beta)^{T}(\mathbf{y}-\mathbf{X} \beta)$.
$\frac{\partial \operatorname{RSS}}{\partial \beta}=-2 \mathbf{X}^{T}(\mathbf{y}-\mathbf{X} \beta)$
$\mathbf{X}^{T}(\mathbf{y}-\mathbf{X} \beta)=0$
$\hat{\beta}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}$.
个
Normal equation


## Why Linear Regression?

* Orthogonal projection $\operatorname{RSS}(\beta)=\|\mathbf{y}-\mathbf{X} \beta\|^{2}$ onto the "known" space
* Minimum variance solutions
* Possible "massaging" $x$ (feature vectors) to achieve nonlinearity



## Many Generalizations

* Polynomial models
- Basis (spline, Fourier, wavelet) expansion
* Regularization
* Outlier removals


## Regularization

$$
\hat{\beta}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

*When feature vectors are correlated $\left(x_{2}=3 x_{1}\right)$, the coefficient matrix become degenerate

* A large $\beta_{2}$ can be cancelled out by a equally large, negative $\beta_{1}$
* Think of regularization as controlling the magnitude of these coefficients


## Ridge Regression

* $\lambda$ is a "weighting" or "shrinking" term

$$
\hat{\beta}^{\text {ridge }}=\underset{\beta}{\operatorname{argmin}}\left\{\sum_{i=1}^{N}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} x_{i j} \beta_{j}\right)^{2}+\lambda \sum_{j=1}^{p} \beta_{j}^{2}\right\} .
$$

* RSS is slightly different

$$
\operatorname{RSS}(\lambda)=(\mathbf{y}-\mathbf{X} \beta)^{T}(\mathbf{y}-\mathbf{X} \beta)+\lambda \beta^{T} \beta,
$$

* Solution is

$$
\hat{\beta}^{\text {ridge }}=\left(\mathbf{X}^{T} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{T} \mathbf{y},
$$

* See slides on RBF for details


## General Curve Fitting

$$
y=f\left(x, a_{1}, a_{2}, \cdots, a_{n}\right) \quad y=a x^{2}+b x+c
$$

$n$ input points
$\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \cdots,\left(x_{n}, y_{n}\right)$
n equations

| n equations | 3 equations |
| :---: | :---: |
| $y_{1}=f\left(x_{1}, a_{1}, a_{2}, \cdots, a_{n}\right)$ <br> $y_{2}=f\left(x_{2}, a_{1}, a_{2}, \cdots, a_{n}\right)$ <br> $\cdots$ <br> $y_{n}=f\left(x_{n}, a_{1}, a_{2}, \cdots, a_{n}\right)$ | $a+b+c=1$ <br> $4 a+2 b+c=2$ <br> $9 a+3 b+c=1$ |
| $\left[\begin{array}{c}f\left(x_{1}\right) \\ \cdots \\ f\left(x_{n}\right)\end{array}\right]\left[\begin{array}{l}a_{1} \\ a_{2} \\ \cdots \\ a_{n}\end{array}\right]=\left[\begin{array}{l}y_{1} \\ \cdots \\ y_{n}\end{array}\right]$ | $\left[\begin{array}{ccc}1 & 1 & 1 \\ 4 & 2 & 1 \\ 9 & 3 & 1\end{array}\right]\left[\begin{array}{l}a \\ c\end{array}\right]\left[\begin{array}{l}1 \\ b \\ 1\end{array}\right]=\left[\begin{array}{l} \\ \text { solve for } a_{1}, \cdots, a_{n}\end{array}\right.$ |
|  |  |

3 input points $(1,1),(2,2),(3,1)$

## General Least Square Regression

$$
\begin{aligned}
& \min _{\theta=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)} E \\
& \text { where } E=\sum_{i=1}^{m}\left(y_{i}-\hat{y}_{i}\right)^{2}= \\
& \min _{\theta=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)} \sum_{i=1}^{m}\left(y_{i}-\left(a_{n-1} x_{i}^{n-1}+a_{n-2} x_{i}^{n-2}+\ldots+a_{1} x_{i}^{1}+a_{0}\right)\right)^{2} \\
& \frac{\partial E}{\partial a_{j}}=0, j=1, \ldots, n \\
& \sum_{i=1}^{m} x_{i}^{j}\left(y_{i}-\left(a_{n-1} x_{i}^{n-1}+a_{n-2} x_{i}^{n-2}+\ldots+a_{1} x_{i}^{1}+a_{0}\right)\right)=0
\end{aligned}
$$

## General Least Square Regression

$\sum_{i=1}^{m} x_{i}^{j}\left(y_{i}-\left(a_{n-1} x_{i}^{n-1}+a_{n-2} x_{i}^{n-2}+\ldots+a_{1} x_{i}^{1}+a_{0}\right)\right)=0$
$\left(\sum_{i=1}^{m} x_{i}^{j} x_{i}^{n-1}\right) a_{n-1}+\left(\sum_{i=1}^{m} x_{i}{ }^{j} x_{i}^{n-2}\right) a_{n-2}+\ldots+\left(\sum_{i=1}^{m} x_{i}{ }^{j} x_{i}{ }^{1}\right) a_{1}+\left(\sum_{i=1}^{m} x_{i}^{j}\right) a_{0}=\sum_{i=1}^{m} x_{i}{ }^{j} y_{i}$
$\left[\begin{array}{cccc}\sum_{i=1}^{m} x_{i}^{n-1} x_{i}^{n-1} & \sum_{i=1}^{m} x_{i}^{n-1} x_{i}^{n-2} & \ldots & \sum_{i=1}^{m} x_{i}^{n-1} \\ \sum_{i=1}^{m} x_{i}^{n-2} x_{i}^{n-1} & \sum_{i=1}^{m} x_{i}^{n-2} x_{i}^{n-2} & \ldots & \sum_{i=1}^{m} x_{i}^{n-2} \\ \ldots & \ldots & \ldots & \vdots \\ \sum_{i=1}^{m} x_{i}^{n-1} & \sum_{i=1}^{m} x_{i}^{n-2} & \ldots & \sum_{i=1}^{m} 1\end{array}\right]\left[\begin{array}{c}a_{n-1} \\ a_{n-2} \\ \vdots \\ a_{o}\end{array}\right]=\left[\begin{array}{c}\sum_{i=1}^{m} x_{i}^{n-1} y_{i} \\ \sum_{i=1}^{m} x_{i}^{n-2} y_{i} \\ \vdots \\ \sum_{i=1}^{m} y_{i}\end{array}\right]$

## Caveats

## * LS

$\square$ Democracy, everybody gets an equal say
$\square$ Perform badly with "outliers"



Noisy Data vs.
Outliers


- noisy data
- outliers


## Outliers

* Outliers (y)

* Outliers (x, leverage points)



## Randomized Algorithm

$\%$ Choose p points at random from the set of n data points

* Compute the fit of model to the p points
* Compute the median of the fitting error for the remaining $n-p$ points
* The fitting procedure is repeated until a fit is found with sufficiently small median of squared residuals or up to some predetermined number of fitting steps (Monte Carlo Sampling)


## How Many Trials?

* Well, theoretically it is $C(n, p)$ to find all possible $p$-tuples
* Very expensive
$1-\left(1-(1-\varepsilon)^{p}\right)^{m}$
$\varepsilon$ : fraction of bad data
( $1-\varepsilon$ ) : fraction of good data
$(1-\varepsilon)^{p}$ : all $p$ samples are good
$1-(1-\varepsilon)^{p}$ : at least one sample is bad
$\left(1-(1-\varepsilon)^{p}\right)^{m}:$ got bad data in all $m$ tries
$1-\left(1-(1-\varepsilon)^{p}\right)^{m}$ : got at least one good $p$ set in $m$ tries


## How Many Trials (cont.)

* Make sure the probability is high (e.g. >95\%)
* given p and epsilon, calculate $m$

| p | $5 \%$ | 10 | 20 | 25 | 30 | 40 | 50 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | $\%$ | $\%$ | $\%$ | $\%$ | $\%$ | $\%$ |
| 1 | 1 | 2 | 2 | 3 | 3 | 4 | 5 |
| 2 | 2 | 2 | 3 | 4 | 5 | 7 | 11 |
| 3 | 2 | 3 | 5 | 6 | 8 | 13 | 23 |
| 4 | 2 | 3 | 6 | 8 | 11 | 22 | 47 |
| 5 | 3 | 4 | 8 | 12 | 17 | 38 | 95 |

## Best Practice

* Randomized selection * LS is most fair, can completely remove outliers
* "plutocratic"
* Results are based on a small set of features everyone get an equal say
*"democratic"
* But can be seriously influenced by bad data
* Use randomized algorithm to remove outliers
* Use LS for final "polishing" of results (using all "good" data)
* Allow up to $50 \%$ outliers theoretically


## Logistic Regression

## Logistic Regression

* Despite the name, LR is a classification scheme, not a "regression" (curve or surface fitting routine)
* Considered more general than LDA, but formulated in a way to be solved efficiently using Gradient Descent
* Introduce the concept of margin


## Motivation


$y($ tumor/not tumor $)=f($ size $)=a *$ size $+b$

## Motivation



## Lesson Learned

* Regression should not be used for classification
$\square$ Linear regression pays attention to all data equally, outliers can easily skew the results (hence, the concepts of "inliers" or "importance")
$\square$ Linear regression outputs a continuous range of values, while a classification scheme outputs [0..1]


## Details

$$
0 \leq h_{\theta}(x) \leq 1
$$

$\theta \leftrightarrow \omega$

$$
\begin{aligned}
h_{\theta}(x) & =g\left(\theta^{T} x\right) \\
g(z) & =\frac{1}{1+e^{-z}}
\end{aligned}
$$



Compress the parameter range

$$
\begin{aligned}
\mathrm{y}=\omega^{T} x \leftrightarrow \mathrm{z} & =\theta^{\boldsymbol{T}} \boldsymbol{x} \\
J(\theta) & =\frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}\left(h_{\theta}\left(x^{(i)}\right), y^{(i)}\right)
\end{aligned}
$$

$\operatorname{Cost}\left(h_{\theta}(x), y\right)=\left\{\begin{aligned}-\log \left(h_{\theta}(x)\right) & \text { if } y=1 \\ -\log \left(1-h_{\theta}(x)\right) & \text { if } y=0\end{aligned}\right.$
Note: $y=0$ or 1 always

$$
\begin{aligned}
J(\theta) & =\frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}\left(h_{\theta}\left(x^{(i)}\right), y^{(i)}\right) \\
& =-\frac{1}{m}\left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}\left(x^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-h_{\theta}\left(x^{(i)}\right)\right)\right]+\frac{\lambda}{2 m} \sum_{j=1}^{n} \theta_{j}^{2}
\end{aligned}
$$

## If $y=1\left(\right.$ want $\left.\theta^{T} x \gg 0\right)$ :




Repeat \{

$$
\theta_{j}:=\theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} J(\theta)
$$

(simultaneously update all $\theta_{j}$ )

## Multi-Classes

* Generalization of binary case
$\square \mathrm{k}$ : number of classes
- m: number of samples
$\square 1\{$.$\} : indicator function, true: 1$, false: 0

$$
J(\theta)=-\left[\sum_{i=1}^{m} \sum_{k=1}^{K} 1\left\{y^{(i)}=k\right\} \log \frac{\exp \left(\theta^{(k) \top} x^{(i)}\right)}{\sum_{j=1}^{K} \exp \left(\theta^{(j) \top} x^{(i)}\right)}\right]
$$

## Multi-Classes

$* h_{\theta}(x)$ functions are probabilities
$\square h_{\theta}(x)$ in the range of 0 and 1
$\square$ With correct class, $\mathrm{h}_{\theta}(\mathrm{x})->1$, or small penalty $(-\log )$

$$
h_{\theta}(x)=\left[\begin{array}{c}
P(y=1 \mid x ; \theta) \\
P(y=2 \mid x ; \theta) \\
\vdots \\
P(y=K \mid x ; \theta)
\end{array}\right]=\frac{1}{\sum_{j=1}^{K} \exp \left(\theta^{(j) \top} x\right)}\left[\begin{array}{c}
\exp \left(\theta^{(1) \top} x\right) \\
\exp \left(\theta^{(2) \top} x\right) \\
\vdots \\
\exp \left(\theta^{(K) \top} x\right)
\end{array}\right]
$$

If $y=1$ (want $\theta^{T} x \gg 0$ ):



## Numerical Solutions

$$
\nabla_{\theta^{(k)}} J(\theta)=-\sum_{i=1}^{m}\left[x^{(i)}\left(1\left\{y^{(i)}=k\right\}-P\left(y^{(i)}=k \mid x^{(i)} ; \theta\right)\right)\right]
$$

