Unsupervised Learning

Learning the parametric forms

Unsupervised Learning

* Samples are not labeled
- Labeling can be very expensive
\square Data mining \& pattern discovery
\square Adapting to time varying behaviors
\square Insight into the problem domains

Learning Parametric Forms

$*$ In the supervised learning, we can do one of the three things

- Parametric Estimation
> Assume a particular parametric form
\square Nonparametric estimation
$>$ No particular parametric form
- Discriminant function
$>$ Decision boundary
* We can do similar things for unsupervised learning

Learning Density Function

* The simplest way - just collect samples and put them in the d-dimensional (d : \# of features) collection bins, without regard to where they come from
* The same old technique applies here
* A description of the mixture, not the components

Learning Parametric Forms

* Samples are not labeled but follow a particular distribution
\square For simplicity, we will assume Gaussian
*Might not know
- How many Gaussian
\square What are the priors
\square What are the means
\square What are the variances

Difficulty

* With labeled samples
- Separate learning into c identical problems - that of learning the mean and variance of each class
* With unlabeled samples
- Separate learning is not possible, a sample may come from one of the c classes (we might not even know how many!)
- Dealing with mixture densities
* The problem is harder and may not even have a solution

Mixture Density

$$
\begin{aligned}
& p(x \mid \theta)=\sum_{j=1}^{c} p\left(x \mid w_{j}, \theta_{j}\right) P\left(w_{j}\right) \\
& \theta=\left(\theta_{1}, \theta_{2}, \cdots, \theta_{c}\right)
\end{aligned}
$$

* May not know
- \# of classes
\square Class priors
- Form
- Mean
\square Variance
* E.g., will assume we know
- \# of classes
- Class priors
-Form (Gaussian)
\square Variance
* Do not know
amean

Identifiably

* Can we actually do anything about this?
$* p(x \mid \theta)$ is identifiable if there exists an x such that $p(x \mid \theta)!=p\left(x \mid \theta^{\prime}\right)$ if $\theta^{\prime}=\theta^{\prime}$
\square I.e., you can at least make observations that show different behaviors

Example

* A discrete, binary distribution where $x=0,1$ from a mixture distribution
\therefore Samples can be used to estimate
$\square p(x \mid \theta)=1 \& p(x \mid \theta)=0$
* But all we can say is about $\theta_{1}+\theta_{2}$

$$
p(x \mid \theta)=\frac{1}{2} \theta_{1}^{x}\left(1-\theta_{1}\right)^{1-x}+\frac{1}{2} \theta_{2}^{x}\left(1-\theta_{2}\right)^{1-x}
$$

$$
=\left\{\begin{array}{cc}
\frac{1}{2}\left(\theta_{1}+\theta_{2}\right) & x=1 \\
1-\frac{1}{2}\left(\theta_{1}+\theta_{2}\right) & x=0
\end{array}\right.
$$

$\%$ Two coins
\therefore With θ_{1} and θ_{2} probability of head $*$ Randomly choose one to perform the experiment (equal chance for two)
\star Register the outcome

Caveats

* Any discrete probability where the number of states of nature are less than free variables (more variables than constraints) is completely unidentifiable
\square E.g., three coins and two outcomes (head and tail) is completely unidentifiable
* In general, parametric estimation is interesting mainly from a theoretical point of view (i.e., if you are a mathematician (:))
* Our discussion here necessarily will be very brief and limited

Maximum-Likelihood Estimates

* We will illustrate this using examples
\square For mixture of Gaussians

case	μ_{i}	Σ_{i}	$P\left(\varpi_{i}\right)$	c
1	$?$	yes	yes	yes
2	$?$	$?$	$?$	yes
3	$?$	$?$	$?$	$?$

General Formula

* Be warned: this is not pretty

$$
\begin{aligned}
& p(D \mid \theta)=\prod_{k=1}^{n} p\left(x_{k} \mid \theta\right) \\
& l=\sum_{k=1}^{n} \ln p\left(x_{k} \mid \theta\right) \\
& \nabla_{\theta_{i}} l=\sum_{k=1}^{n} \frac{1}{p\left(x_{k} \mid \theta\right)} \nabla_{\theta_{i}} p\left(x_{k} \mid \theta\right) \\
& =\sum_{k=1}^{n} \frac{1}{p\left(x_{k} \mid \theta\right)} \nabla_{\theta_{i}} \sum_{j=1}^{c} p\left(x_{k} \mid \varpi_{j}, \theta_{j}\right) P\left(\varpi_{j}\right) \quad \because \theta_{i}, \theta_{j} \text { independen } \mathrm{t}, i \neq j \\
& =\sum_{k=1}^{n} \frac{1}{p\left(x_{k} \mid \theta\right)} \nabla_{\theta_{i}} p\left(x_{k} \mid \varpi_{i}, \theta_{i}\right) P\left(\varpi_{i}\right) \quad \because \quad \because P\left(\varpi_{i} \mid x_{k}, \theta\right)=\frac{p(x}{} \\
& =\sum_{k=1}^{n} P\left(\varpi_{i} \mid x_{k}, \theta\right) \frac{1}{p\left(x_{k} \mid \varpi_{i}, \theta_{i}\right) P\left(\varpi_{i}\right)} \nabla_{\theta_{i}} p\left(x_{k} \mid w_{i}, \theta_{i}\right) P\left(\varpi_{i}\right) \\
& =\sum_{k=1}^{n} P\left(\varpi_{i} \mid x_{k}, \theta\right) \nabla_{\theta_{i}} \ln p\left(x_{k} \mid \varpi_{i}, \theta_{i}\right) P\left(\varpi_{i}\right)
\end{aligned}
$$

As applied to Gaussian Case I

$\ln p\left(x_{k} \mid \varpi_{i}, \mu_{i}\right)=-\ln \left[(2 \pi)^{d / 2}\left|\Sigma_{i}\right|^{1 / 2}\right]-\frac{1}{2}\left(x_{k}-\mu_{i}\right)^{t} \Sigma_{i}^{-1}\left(x_{k}-\mu_{i}\right)$
$\nabla_{u_{i}} \ln p\left(x_{k} \mid \varpi_{i}, \mu_{i}\right) P\left(\varpi_{i}\right)=\Sigma_{i}^{-1}\left(x_{k}-\mu_{i}\right)$
$\sum_{k=1}^{n} P\left(\varpi_{i} \mid x_{k}, \widehat{\mu}\right) \Sigma_{i}^{-1}\left(x_{k}-\widehat{\mu}_{i}\right)=0$
$\tilde{\mu}_{i}=\frac{\sum_{k=1}^{n} P\left(\varpi_{i} \mid x_{k}, \widehat{\mu}\right) x_{k}}{\sum_{k=1}^{n} P\left(\varpi_{i} \mid x_{k}, \widehat{\mu}\right)}$
cf $\quad \hat{u}_{i}=\frac{1}{N_{i}} \sum_{k=1}^{N_{i}} x_{k}$ in supervised training

- A weighted average of samples
-Weight \sim how likely is the sample in class i

As applied to Gaussian (cont.)

* However, how do you determine $P\left(\varpi_{i} \mid x_{k}, \hat{\mu}\right)$
* If you are still awake, then that is a posterior probability and the good way to estimate it is to use Bayes rule to convert it into a prior + conditional

$$
P\left(\varpi_{i} \mid x_{k}, \widehat{\mu}\right)=\frac{p\left(x_{k} \mid \varpi_{i}, \widehat{\mu}\right) P\left(\varpi_{i}\right)}{\sum_{j=1}^{c} p\left(x_{k} \mid \omega_{j}, \hat{\mu}\right) P\left(\sigma_{j}\right)}
$$

* Even with Gaussian assumption, this expression is hard to evaluate (no closed form solution)

As applied to Gaussian (cont.)

* Here, advanced optimization technique such as EM is used (or gradient descent is used)

$$
\widehat{\mu}_{i}^{(m+1)}=\frac{\sum_{k=1}^{n} P\left(\varpi_{i} \mid x_{k}, \widehat{\mu}^{(m)}\right) x_{k}}{\sum_{k=1}^{n} P\left(\varpi_{i} \mid x_{k}, \widehat{\mu}^{(m)}\right)} \quad \text { with known } \widehat{\mu}^{(0)}
$$

A concrete example

$$
\begin{aligned}
& p\left(x \mid \mu_{1}, \mu_{2}\right)=\frac{1}{3} \frac{1}{\sqrt{2 \pi}} e^{-\left(x-u_{1}\right)^{2}}+\frac{2}{3} \frac{1}{\sqrt{2 \pi}} e^{-\left(x-u_{2}\right)^{2}} \\
& p\left(D \mid \mu_{1}, \mu_{2}\right)=\prod_{k=1}^{n}\left[\frac{1}{3} \frac{1}{\sqrt{2 \pi}} e^{-\left(x_{k}-u_{1}\right)^{2}}+\frac{2}{3} \frac{1}{\sqrt{2 \pi}} e^{-\left(x_{k}-u_{2}\right)^{2}}\right] \\
& l=\sum_{k=1}^{n} \log \left[\frac{1}{3} \frac{1}{\sqrt{2 \pi}} e^{-\left(x_{k}-u_{1}\right)^{2}}+\frac{2}{3} \frac{1}{\sqrt{2 \pi}} e^{-\left(x_{k}-u_{2}\right)^{2}}\right]
\end{aligned}
$$

* The landscape is fairly complicated even in this simple case
* Solution is not unique, depending on the search start point

FIGURE 10.1. (Above) The source mixture density used to generate sample data, and two maximum-likelihood estimates based on the data in the table. (Bottom) Loglikelihood of a mixture model consisting of two univariate Gaussians as a function of their means, for the data in the table. Trajectories for the iterative maximum-likelihood estimation of the means of a two-Gaussian mixture model based on the data are shown as red lines. Two local optima (with log-likelihoods -52.2 and -56.7) correspond to the two density estimates shown above.

Case II

* Impossible to solve with so many parameters, theoretically
* Can make likelihood estimator arbitrarily large (e.g., by have u to be one of the samples and σ as zero)

$$
\begin{aligned}
& p(x \mid \mu, \sigma)=\frac{1}{2} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1(x-u)^{2}}{\sigma^{2}}}+\frac{1}{2} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} \\
& p\left(x_{1}(=u) \mid \mu, \sigma\right)=\frac{1}{2} \frac{1}{\sqrt{2 \pi} \sigma}+\frac{1}{2} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x_{1}^{2}} \\
& p\left(x_{i}(\neq u) \mid \mu, \sigma\right) \geq \frac{1}{2} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x_{i}^{2}}
\end{aligned}
$$

$$
p\left(x_{1}, x_{2}, \cdots, x_{n} \mid \mu, \sigma\right) \geq\left(\frac{1}{2} \frac{1}{\sqrt{2 \pi} \sigma}+\frac{1}{2} \frac{1}{\sqrt{2 \pi}} e^{-x_{1}^{2}}\right) \frac{1}{(2 \sqrt{2 \pi})^{n-1}} e^{-\sum_{i=2}^{n} x_{i}^{2}}
$$

What does it mean?

* To maximize probability
- Make something very unlikely to happen
$>$ E.g. One of the Gaussian has very narrow spread
\square Try to fit the data to make that unlikely thing to happen
$>$ E.g., make a data point to coincide with the Gaussian mean
\square Then, all others notwithstanding, because of this highly unlikely event, the particular model will win

Case II (cont.)

\therefore Pathological solutions aside, in general
\square Prior

$$
\widehat{P}\left(w_{i}\right)=\frac{1}{n} \sum_{k=1}^{n} \widehat{P}\left(w_{i} \mid x_{k}, \theta\right)
$$

$>$ To be the posterior class likelihood of given samples and estimated parameters

- Mean
$>$ To be the weighted average of all samples, weighted by likelihood of samples in that particular class
\square Variance
> To be the weighted average of sample variances, weighted by likelihood of samples in that particular class

EM (Expectation \& Maximization)

* An iterative algorithm (with an initial guess)
\square E stage: given the parameters, finding the right mixture (where does each sample come from?)
$\square \mathrm{M}$ stage: given the mixtures, finding the right parameters (what is the traits of each class?)
\square Can be considered a gradient descent technique which guarantees convergence to a local minimum
\square Global minimum requires good initial guess (or many different starting points)

Intuition

1) How do we know the traits of each class?

- Estimate that from samples (as always)
- Need to know which samples to use

2) How do we know where each sample come from?

- If we know the class parameters (traits)
- The sample comes from the class with a probability proportional to how likely is a class to generate that sample (i.e., Bayes rule)

Intution (cont)

Class parameters

$\widehat{\theta}^{(0)}, \widehat{P}\left(w_{i}\right)^{(0)}$

EM Example

* The equation looks terribly complex and very confusing
* But the concept is quite easy to understand in English
$*$ Assume that there n mixtures with ($\mathrm{u}_{\mathrm{i}}, \Sigma_{\mathrm{i}}$, P_{i}) (mean, variance, and prior)
*There are k samples $\left(\mathbf{x}_{\mathrm{k}}\right)$ which are drawn from these n mixtures, but don't know where they are from

EM Example: E Step

	1	2	\cdots	n
1				
2				
\cdots				
k				

$$
\hat{P}\left(w_{i} \mid x_{k}, \widehat{\theta}\right)=\frac{p\left(x_{k} \mid w_{i}, \hat{\theta}_{i}\right) \hat{P}\left(w_{i}\right)}{\sum_{j=1}^{c} p\left(x_{k} \mid w_{j}, \hat{\theta}_{j}\right) \hat{P}\left(w_{j}\right)}
$$

>Prior $P\left(w_{i}\right)$ and θ 's

- Estimate the mixture
$>P\left(w_{i} \mid X_{k}, \theta\right)$

EM Example: M Step

* Give the mixture, update the prior and other
parameters
* Prior $\quad \hat{P}\left(w_{i}\right)=\frac{1}{n} \sum_{k=1}^{n} \hat{P}\left(w_{i} \mid x_{k}, \hat{\theta}\right)$ models

samples | | 1 | 2 | \ldots | n |
| :--- | :--- | :--- | :--- | :--- |
| 1 | | | | |
| 2 | | | | |
| \cdots | | | | |
| k | | | | |

EM Example: M Step

* Prior

$$
\hat{P}\left(w_{i}\right)=\frac{1}{n} \sum_{k=1}^{n} \hat{P}\left(w_{i} \mid x_{k}, \hat{\theta}\right)
$$

- Mean

$$
\hat{u}_{i}=\frac{\sum_{k=1}^{n} \hat{P}\left(w_{i} \mid x_{k}, \widehat{\theta}\right) x_{k}}{\sum_{k=1}^{n} \hat{P}\left(w_{i} \mid x_{k}, \widehat{\theta}\right)}
$$

* Variance

$$
\widehat{\Sigma}_{i}=\frac{\sum_{k=1}^{n} \hat{P}\left(w_{i} \mid x_{k}, \hat{\theta}\right)\left(x_{k}-\widehat{u}_{i}\right)\left(x_{k}-\widehat{u}_{i}\right)^{t}}{\sum_{k=1}^{n} \hat{P}\left(w_{i} \mid x_{k}, \widehat{\theta}\right)}
$$

where

$$
\hat{P}\left(w_{i} \mid x_{k}, \hat{\theta}\right)=\frac{p\left(x_{k} \mid w_{i}, \hat{\theta}_{i}\right) \hat{P}\left(w_{i}\right)}{\sum_{j=1}^{c} p\left(x_{k} \mid w_{j}, \hat{\theta}_{j}\right) P\left(w_{j}\right)}
$$

Bayesian Learning

* Similar thing can happen as in supervised learning (a sharpening of belief)
* However, the math is much more complicated to say the least

 .noitsrrmotrii yoing silf emolerlwisvo zalqurnse grls

