
Unsupervised Learning 

Learning the parametric forms
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Unsupervised Learning

 Samples are not labeled 

 Labeling can be very expensive

Data mining & pattern discovery

Adapting to time varying behaviors

 Insight into the problem domains
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Learning Parametric Forms

 In the supervised learning, we can do one of 
the three things

 Parametric Estimation

Assume a particular parametric form

Nonparametric estimation

No particular parametric form

 Discriminant function

Decision boundary 

 We can do similar things for unsupervised 
learning
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Learning Density Function

 The simplest way – just collect samples and 

put them in the d-dimensional  (d: # of 

features) collection bins, without regard to 

where they come from

 The same old technique applies here

 A description of the mixture, not the 

components
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Learning Parametric Forms

 Samples are not labeled but follow a 

particular distribution 

 For simplicity, we will assume Gaussian

 Might not know

How many Gaussian

What are the priors

What are the means

What are the variances
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Difficulty

 With labeled samples
 Separate learning into c identical problems – that of 

learning the mean and variance of each class

 With unlabeled samples
 Separate learning is not possible, a sample may come 

from one of the c classes (we might not even know how 

many!)

 Dealing with mixture densities

 The problem is harder and may not even 

have a solution
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Mixture Density

 May not know

 # of classes

Class priors

 Form

Mean

Variance

…
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Identifiably

 Can we actually do anything about this? 

 p(x|) is identifiable if there exists an x such 

that p(x|) != p(x|’) if !=’

 I.e., you can at least make observations that 

show different behaviors
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Example

 A discrete, binary distribution where x=0,1 

from a mixture distribution

 Samples can be used to estimate 

 p(x|)=1 & p(x|)=0

 But all we can say is about 1+2
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Two coins

With 1 and 2 probability of head

Randomly choose one to perform the 

experiment (equal chance for two)

Register the outcome
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Caveats

 Any discrete probability where the number of 

states of nature are less than free variables (more 

variables than constraints) is completely 

unidentifiable

 E.g., three coins and two outcomes (head and tail) is 

completely unidentifiable

 In general, parametric estimation is interesting 

mainly from a theoretical point of view (i.e., if you 

are a mathematician )

 Our discussion here necessarily will be very brief 

and limited
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Maximum-Likelihood Estimates

 We will illustrate this using examples

 For mixture of Gaussians
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General Formula
 Be warned: this is not pretty
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As applied to Gaussian Case I
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As applied to Gaussian (cont.)

 However, how do you determine

 If you are still awake, then that is a 
posterior probability and the good way to 
estimate it is to use Bayes rule to convert it 
into a prior + conditional 
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expression is hard to evaluate (no closed 
form solution)
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As applied to Gaussian (cont.)

 Here, advanced optimization technique such 

as EM is used (or gradient descent is used)
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A concrete example
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 The landscape is fairly 
complicated even in this 
simple case

 Solution is not unique, 
depending on the search start 
point
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Case II
 Impossible to solve with so many parameters, 

theoretically

 Can make likelihood estimator arbitrarily large 
(e.g., by have u to be one of the samples and s as 
zero)
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What does it mean?

 To maximize probability

Make something very unlikely to happen 

 E.g.  One of the Gaussian has very narrow spread

Try to fit the data to make that unlikely thing to 

happen

 E.g., make a data point to coincide with the 

Gaussian mean

 Then, all others notwithstanding, because of 

this highly unlikely event, the particular model 

will win
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Case II (cont.)
 Pathological solutions aside, in general

 Prior

 To be the posterior class likelihood of given 

samples and estimated parameters

Mean

 To be the weighted average of all samples, weighted 

by likelihood of samples in that particular class

Variance

 To be the weighted average of sample variances, 

weighted by likelihood of samples in that particular 

class
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EM (Expectation & Maximization)

 An iterative algorithm (with an initial guess)

 E stage: given the parameters, finding the right 

mixture (where does each sample come from?)

M stage: given the mixtures, finding the right 

parameters (what is the traits of each class?)

Can be considered a gradient descent technique 

which guarantees convergence to a local minimum 

Global minimum requires good initial guess (or 

many different starting points)
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Intuition
1) How do we know the traits of each class?

 Estimate that from samples (as always)

 Need to know which samples to use 

2) How do we know where each sample come 

from? 

 If we know the class parameters (traits)

 The sample comes from the class with a 

probability proportional to how likely is a class 

to generate that sample (i.e., Bayes rule)
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Intution (cont)
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EM Example

 The equation looks terribly complex and 

very confusing

 But the concept is quite easy to understand 

in English

 Assume that there n mixtures with (ui, i, 

Pi) (mean, variance, and prior)

 There are k samples (xk) which are drawn 

from these n mixtures, but don’t know 

where they are from
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EM Example: E Step

 E-Step: 

 Given the parameters

 Prior P(wi) and ’s

 Estimate the mixture 

 P(wi|Xk,)
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EM Example: M Step

 Give the mixture, update the prior and other 

parameters

 Prior 
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EM Example: M Step

 Prior

 Mean

 Variance

 where
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Bayesian Learning

 Similar thing can 
happen as in 
supervised 
learning (a 
sharpening of 
belief) 

 However, the math 
is much more 
complicated to say 
the least


