Unsupervised Learning

Learning the parametric forms




Unsupervised Learning

«» Samples are not labeled
0 Labeling can be very expensive
0 Data mining & pattern discovery
0 Adapting to time varying behaviors
2 Insight into the problem domains
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Learning Parametric Forms

<+ In the supervised learning, we can do one of
the three things
0 Parametric Estimation
> Assume a particular parametric form
2 Nonparametric estimation
> No particular parametric form

2 Discriminant function
> Decision boundary

<« We can do similar things for unsupervised
learning
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Learning Density Function

<+ The simplest way — just collect samples and
put them in the d-dimensional (d: # of
features) collection bins, without regard to
where they come from

«» The same old technique applies here

« A description of the mixture, not the
components
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Learning Parametric Forms

«» Samples are not labeled but follow a
particular distribution

2 For simplicity, we will assume Gaussian

< Might not know
0 How many Gaussian
2 What are the priors
2 What are the means
0 What are the variances
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Difficulty

< With labeled samples

0 Separate learning into c identical problems — that of
learning the mean and variance of each class

<« With unlabeled samples

O Separate learning is not possible, a sample may come
from one of the c classes (we might not even know how
many!)

a Dealing with mixture densities

<« The problem Is harder and may not even
have a solution
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Mixture Density
p(x|6) = Zp(xlw,,e )P(w,)

0 = (91,6’2, -, 6.)
«» May not know < E.g., will assume we know
a # of classes Q# of classes
2 Class priors Q Class priors
0 Form a Form (Gaussian)
a Mean Q Variance
a Variance < Do not know

Q... dmean
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|dentifiably

<+ Can we actually do anything about this?

« P(x| 6 1s identifiable If there exists an x such
that p(x|0) '=p(x|&’) If O1=6"
2 l.e., you can at least make observations that
show different behaviors
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Example

<« A discrete, binary distribution where x=0,1
from a mixture distribution

«» Samples can be used to estimate
ap(x|0)=1 & p(x|)=0
< But all we can say Is about 8,+6,

1 X —X 1 X —X
p(x|<9):§6?1 (1_‘91)l "'5‘92 (1_‘92)1
e ' +Two coins
E (6, +6,) x=1 «+With 6, and &, probability of head
= «+Randomly choose one to perform the
1 iment | ch fort
1_ E (6,+6,) x=0 experiment (equal chance for two)

«Register the outcome
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Caveats

« Any discrete probability where the number of
states of nature are less than free variables (more
variables than constraints) is completely
unidentifiable

a E.g., three coins and two outcomes (head and tail) is
completely unidentifiable
<+ In general, parametric estimation Is interesting
mainly from a theoretical point of view (i.e., if you
are a mathematician ©)

< Our discussion here necessarily will be very brief
and limited
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Maximum-Likelithood Estimates

< \We will illustrate this using examples
2 For mixture of Gaussians

case | . x. P(@,) ¢

1 ?7 yes yes yes
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General Formula
< Be warned: this Is not pretty

p(Dw):kr”[ p(x, |6)

=1 p(x, |6)

s 1
Vil= Z Vo P(X | 0)
a P(x [0) . “re
33 1 v chp(x @ .0.)P(@ ) .+ 0;,0; Independent, 1 = |
i P(x |0) 4 =1 s J
L 1
= Vo, P(X | @;,6,)P (@) o b (x  0)P(w.
i P [0) 1 - P(@, ] %,,0) = ¢ L@(UX |';) ()
= > P(@, | x.,6) vV, p(x |w,0)P(@;) «—«1 S
; ‘ P(X | @,,6,)P(@;) 4 %] )P (@)

:anp(wi | %, 0)V,, Inp(X, |@;,6,)P(a;)
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As applied to Gaussian Case |

In p(x, | @, 44) =—IN[(27)°2 |5, |1’2]—§(xk ) = )
V., Inp(X |@;, 1) P(@;) zzi_l(xk — 1)

Z P(w, | Xk’ﬁ)z:i_l(xk —44) =0
k=1

Z P(@; | X, )%
k=1

N

1= Sk : 1l
n cf U =— ) X insupervised training
> P(@; | %, A) i
k=1

A weighted average of samples

*\Weight ~ how likely is the sample in class |
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As applied to Gaussian (cont.)

<« However, how do you determine p(. |x,, 2)

<« If you are still awake, then that is a
posterior probability and the good way to
estimate It Is to use Bayes rule to convert it
Into a prior + conditional

e ) e D1 GS)
ZIO(Xk @, 1)P(@))

< Even with Gaussian assumption, this
expression Is hard to evaluate (no closed
form solution)
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As applied to Gaussian (cont.)

« Here, advanced optimization technique such
as EM Is used (or gradient descent is used)

n
Z P(@, | Xk’[l(m))xk
~ (m+1) _ k=1

Z P(@; | X, ﬁ(m))
k=1

with known 2
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A concrete example

oGy 2 1 o)’

P(X| 14, 11,) = 1 la -
11772 3 \/? 3 272- P, S~

1 2 1 e_(xk _uz )2 ] Py ,’ \'x\ source density

D| m, =gl :
p( |:u1 /uz) k o Sr 3 \/E P Y

7 N \\
n 1 2 1 2 // & @ 0-0—ouWH— G— > |
I — IO ¥y e_(xk_ul) _(Xk_UZ) ‘ 3 - 0 ! 3 § Rl
Z o 327 ] —

"3V2z

The landscape is fairly
complicated even in this
simple case

SO I uti On iS not u ni ue FIGURE 10.1. (Above) The source mixture densily used to generate sample dala, and
q ] two maximum-likelihood estimates based on the data in the table. (Bottom) Log-

d d = h h likelihood of a mixture model consisting of two univariate Gaussians as a function of
epen I ng On t e Searc Start their means, for the data in the table. Traie(‘tr,lries for the iterative maximum-likelihood
estimation of the means of a two-Gaussian mixture model based on the data are shown

pOI nt as red lines. Two local optima (with log-likelihoods —52.2 and —56.7) correspond to

the two density estimates shown above.
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Case ||

<+ Impossible to solve with so many parameters,
theoretically

«» Can make likelihood estimator arbitrarily large
(e.g., by have u to be one of the samples and o as
Zero)

pP(X| 1 cf)—E : e_;(x;g)2+£—1 e_;X2
: 2 \2ro 2 \2T
it e s T
X, (=U)|u,o)=— +— e-%
N e A e N
| W TR,
137 1.4 2 1 >

X Xy X | g1, 0) = (= - e
— PO, %, | 145 (2\/27rc7 2 \2rx (2~ 27)"
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What does 1t mean?

< TO maximize probability
0 Make something very unlikely to happen
> E.g. One of the Gaussian has very narrow spread
a Try to fit the data to make that unlikely thing to
happen

> E.g., make a data point to coincide with the
Gaussian mean
2 Then, all others notwithstanding, because of
this highly unlikely event, the particular model
will win
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Case Il (cont.)
<+ Pathological solutions aside, in general

a Prior P(w) == ZP(W|X 0)

> To be the posterior class Ilkellhood of given
samples and estimated parameters

2 Mean

> To be the weighted average of all samples, weighted
by likelihood of samples in that particular class

o Variance

> To be the weighted average of sample variances,
weighted by likelihood of samples in that particular
class
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EM (Expectation & Maximization)

< An Iterative algorithm (with an initial guess)

0 E stage: given the parameters, finding the right
mixture (where does each sample come from?)

0 M stage: given the mixtures, finding the right
parameters (what is the traits of each class?)

0 Can be considered a gradient descent technique
which guarantees convergence to a local minimum

0 Global minimum requires good initial guess (or
many different starting points)
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Intuition

1) How do we know the traits of each class?
0 Estimate that from samples (as always)
0 Need to know which samples to use

2) How do we know where each sample come
from?
o If we know the class parameters (traits)

2 The sample comes from the class with a
probability proportional to how likely is a class
to generate that sample (i.e., Bayes rule)
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Intution (cont)

Class parameters

P(w; | X,,0)

mixture

| 9(0)’ |S(W_)(0)
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EM Example

<+ The equation looks terribly complex and
very confusing

<« But the concept Is quite easy to understand
In English

<+ Assume that there n mixtures with (u;, X,
P;) (mean, variance, and prior)

<+ There are k samples (Xx,) which are drawn
from these n mixtures, but don’t know
where they are from
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EM Example: E Step

model
1 2 n
1
samples :
: | (% | W, 6,)P(w,)
P(W, | %,,0) = S

£\~ > (%, |w,.0,)P(w,)
0 Given the parameters j=1

> Prior P(w;) and 0’s
0 Estimate the mixture
> P(w;] X, 60)




EM Example: M Step

« Glve the mixture, update the prior and other

parameters

2 s N =
« Dri P(w)=—)> P(w|x,8&)
» Prior n; k e 35

1 2 n

samples

U
N

PR, ANN, L ML

25



EM Example: M Step

< Prior

<+ Mean

< Varlance

< Where

2 el 3
P(w;) :HZP(Wi | X, 0)
k=1

|S(Wi | Xk’é)(xk _Gi)(xk _Gi)t

Z IS(WI | Xk ) é\)
k=1

ﬁ(Wi |Xk,é) = a0 P(X, |Wi’§i3|S(AWi)
> PO [w,,0,)P(w,)
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Bayesian Learning

< Similar thing can -
happen as In * w\
supervised AL
learning (a AT

sharpening of il
belief) o

«» However, the math
IS much more Y
complicated to say

= (8)q 10i1q motinu abiw & 2920 2910ugi1 qoi orlT .29z8910ni 2alqms2 o 1adrmun ol 25

101 S\ = (8)q ;910 19wonsn & 292U agit mottod sl slidw & = 6 > E— 01 8\
‘ E noad averl 2algmee €< lls ofts enoituditeib 10iq 1navsilib s2arh otiqead £ = & > |

ni noilermolni sri—eo262 owl o) ni Isoitnabi yllsuniv s16 29itiznob 10i19120q 9rl) hozy

.noitsrriotni vonq ori ernlarbwiavo eslgmse ol
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