

Simple Perceptrons

- Perform supervised learning
 - correct I/O associations are provided
- Feed-forward networks
 - connections are one-directional
- One layer
 - □ input layer + output layer

Notations

- □ *N*: dimension of the input vector
- *M*: dimension of the output vector
- inputs
- real outputs
- weight vectors
- activation function

$$x_{j}, j = 1,...,N$$

$$y_i, i = 1,...,M$$

$$w_{ij}, i = 1, ..., M, j = 1, ..., N$$

g

$$y_{1}$$
 y_{2} y_{3} $y_{i} = g(net_{i}) = g(\sum_{j=1}^{N} w_{ij} x_{j})$

Perceptron Training

- given
 - □ input patterns

- X "
- desired output patterns
- O^{u}
- □ how to adapt the connection weights such that the actual outputs conform the desired outputs

$$O_i^{u} = y_i^{u} i = 1, \cdots, M$$

Simplest case

- two types of inputs
- binary outputs (-1,1)
- * thresholding $\operatorname{sgn}(\mathbf{w} \cdot \mathbf{x}) = \operatorname{sgn}(w_1 x_1^u + w_2 x_2^u + w_o) = \mathbf{y}^u$

Examples

Linear separability

- Is it at all possible to learn the desired I/O associations?
 - yes, if w_{ij} can be found such that

$$O_i^u = \text{sgn}(\sum_{j=1}^N w_{ij} x_j^u - w_{i0}) = y_i^u \text{ for all i and u}$$

- \square no, otherwise $^{j=1}$
- Single-layer perceptron is severely limited in what it can learn

Perceptron Learning

- * Linear separable or not, how to find the set of weights?
- Using tagged samples
 - □ closed form solution
 - □ iterative solutions

Closed Form Solution

$$\begin{bmatrix} x_1^1 & \dots & x_n^1 & 1 \\ x_1^2 & \dots & x_n^2 & 1 \\ \vdots & \ddots & \ddots & \ddots \\ x_1^u & \dots & x_n^u & 1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_o \end{bmatrix} = \begin{bmatrix} O^1 \\ O^2 \\ \vdots \\ O^u \end{bmatrix}$$

$$\mathbf{AW} = \mathbf{B}$$

$$\mathbf{W} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{B}$$

 Not practical when number of samples is large (most likely case)

Perceptron Learning Rule

If a pattern is correctly classified, no action

Perceptron Learning Rule (cont.)

If a positive pattern becomes a negative pattern

Perceptron Learning Rule (cont.)

If a negative pattern becomes a positive pattern

$$\mathbf{w}^{(k+1)} = \begin{cases} \mathbf{w}^{(k)} + c\mathbf{x} & \mathbf{w}^{(k)} \cdot \mathbf{x} < 0, \mathbf{x} \in + \\ \mathbf{w}^{(k)} - c\mathbf{x} & \mathbf{w}^{(k)} \cdot \mathbf{x} > 0, \mathbf{x} \in - \\ \mathbf{w}^{(k)} & otherwise \end{cases}$$

$$\mathbf{w}^{(k+1)} = \begin{cases} \mathbf{w}^{(k)} + cy\mathbf{x} & y(\mathbf{w}^{(k)} \cdot \mathbf{x}) < 0, \mathbf{x} \in +or - \\ \mathbf{w}^{(k)} & otherwise \end{cases}$$

- * How should *c* be decided?
 - □ Fixed increment
 - □ Fractional correction

Perceptron Learning Rule (cont.)

- Weight is a signed, linear combination of training points
- Use those informative points (those the classifier made a mistake, mistake driven)
- This is VERY important, lead later to generalization to Support Vector Machines

Comparison

- Version space
 - □ The (w1-w2) space of all feasible solutions
- Perceptron learning
 - Greedy, gradient descent that often ends up at boundary of the version space with little space for error
- SVM learning
 - Center of largest imbedded sphere in the version space (maximum margin) W_2
- Bayes point machine
 - Centroid of the version space

15

Perceptron Usage Rules

* After the weight has been determined

$$y = \mathbf{w} \cdot \mathbf{x} = (\sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}) \cdot \mathbf{x} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \cdot \mathbf{x}$$

- Classification involves inner product of training samples and test samples
- This is again VERY important, lead later to generalization to Kernel Methods

Hebb's Learning Rule

Synapse strength should be increased when both pre- and post-synapse neurons fire vigorously

for binary outputs
$$\mathbf{w}_{ij}^{new} = \mathbf{w}_{ij}^{old} + \Delta \mathbf{w}_{ij}$$

$$\Delta \mathbf{w}_{ij} = \begin{cases} 2\eta y_i^u x_j^u & \text{if } y_i^u \neq O_i^u \\ 0 & \text{otherwise} \end{cases}$$

$$= \eta (1 - y_i^u O_i^u) y_i^u x_j^u$$

$$= \eta (y_i^u - y_i^u O_i^u) x_j^u$$

$$= \eta (y_i^u - O_i^u) x_j^u$$

***** Case 1:
$$O = -1, y = 1$$
 ***** Case 2: $O = 1, y = -1$

LMS (Widrow-Hoff, Delta)

- Not restricted to binary outputs
 - Gradient search

$$E(\mathbf{w}) = \frac{1}{2} \sum_{u} \sum_{i} (O_{i}^{u} - y_{i}^{u})^{2} = \frac{1}{2} \sum_{u} \sum_{i} (O_{i}^{u} - g(\sum_{j=1}^{N} w_{ij} x_{j}^{u}))^{2}$$

$$\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}_{ij}} = -\sum_{u} (O_{i}^{u} - g(net_{i}^{u})) g'(net_{i}^{u}) x_{j}^{u}$$

$$\mathbf{w}_{ij}^{new} = \mathbf{w}_{ij}^{old} + \Delta \mathbf{w}_{ij}$$

Nothing but Chain Rule

$$\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}_{ij}} = \frac{\partial (O_i^u - y_i^u)^2}{\partial (O_i^u - y_i^u)} \frac{\partial (O_i^u - y_i^u)}{\partial y_i^u} \frac{\partial y_i^u}{\partial y_i^u} \frac{\partial net_i^u}{\partial \mathbf{w}_{ij}}$$

$$= -\sum_{u} \left(O_i^{u} - g(net_i^{u})\right) g'(net_i^{u}) x_j^{u}$$

$$O = g(net) = sgn(w_1x_1 + w_2x_2 + b)$$

$$w_1 = 0.4299$$

$$w_2 = -0.2793$$

$$b = -0.1312$$

Error vs. training epoch

$$y = g(net) = sgn(w_1x_1 + w_2x_2 + w_3x_3 + b)$$

$$x_1 = x$$
 $x_2 = y$ $x_3 = z$ pr, ann, e.m.

$$w_1 = 0.4232$$

 $w_2 = -0.7411$
 $w_3 = -0.3196$
 $b = 0.7550$

Error vs. training epoch

0

P(1)

2

Error vs. training epoch

-2

-2

Error vs. training epoch

