Multi-Layer Perceptrons

ERE

LIGHT

RBI

Multi-Layer Perceptrons

- With "hidden" layers
- One hidden layer any Boolean function or convex decision regions
- Two hidden layers arbitrary decision regions

Decision boundaries

Decision Boundaries

Backpropagation Learning rule

$$O_{i} \qquad O_{1} \qquad O_{2} \qquad z_{i}^{u} = g(NET_{i}^{u}) = g(\sum_{j} W_{ij}y_{j}^{u}) = g(\sum_{j} W_{ij}g(\sum_{k} w_{jk}x_{k}^{u}))$$

$$z_{i} \qquad z_{1} \qquad z_{2}$$

$$W_{ij} \qquad NET_{i}^{u} = \sum_{j} W_{ij}y_{j}^{u} = \sum_{j} W_{ij}g(\sum_{k} w_{jk}x_{k}^{u})$$

$$y_{j} \qquad y_{1} \qquad y_{2} \qquad y_{3}$$

$$w_{jk} \qquad x_{1} \qquad x_{2} \qquad x_{3} \qquad x_{4}$$

$$net_{j}^{u} = \sum_{k} w_{jk}x_{k}^{u}$$

Cost function

$$Change w.r.t. W_{ij}$$

$$\Delta W_{ij} = -\eta \frac{\partial E}{\partial W_{ij}} = -\eta \frac{\partial \frac{1}{2} (O_i^u - g(\sum_j W_{ij} y_j^u))^2}{\partial W_{ij}}$$

$$= -\eta \frac{1}{2} \frac{\partial (O_i^u - z_i^u)^2}{\partial (O_i^u - z_i^u)} \frac{\partial (O_i^u - g(NET_i^u))}{\partial NET_i^u} \frac{\sum_j W_{ij} y_j^u}{\partial W_{ij}}$$

$$= \eta \sum_u (O_i^u - z_i^u) g'(NET_i^u) y_j^u$$

$$= \eta \sum_u \delta_i^u y_j^u \qquad \delta_i^u = (O_i^u - z_i^u) g'(NET_i^u)$$

Interpretation

large input)

$$Change w.r.t. W_{ij}$$

$$\Delta w_{jk} = -\eta \frac{\partial E}{\partial w_{jk}} = -\eta \frac{\partial \sum_{u,i} \frac{1}{2} (O_i^{\ u} - g(\sum_j W_{ij}g(\sum_k w_{jk}x_k^{\ u}))^2}{\partial w_{jk}}$$

$$= -\eta \frac{\partial \sum_{u,i} \frac{1}{2} (O_i^{\ u} - g(\sum_j W_{ij}g(\sum_k w_{jk}x_k^{\ u}))^2}{\partial (O_i^{\ u} - g(\sum_j W_{ij}g(\sum_k w_{jk}x_k^{\ u}))} \frac{\partial \sum_{u,i} (O_i^{\ u} - g(\sum_j W_{ij}g(\sum_k w_{jk}x_k^{\ u}))}{\partial (\sum_j W_{ij}g(\sum_k w_{jk}x_k^{\ u}))} \frac{\partial (\sum_j W_{ij}g(\sum_k w_{jk}x_k^{\ u}))}{\partial (\sum_k W_{jk}x_k^{\ u})}$$

$$= \eta \sum_{u,i} (O_i^{\ u} - z_i^{\ u})g'(NET_i^{\ u})W_i g'(net_j^{\ u})x_k^{\ u}$$

$$= \eta \sum_{u,i} \frac{\delta_j^{\ u} w_{ij}^{\ u} g'(net_j^{\ u})x_k^{\ u}}{\partial y_i} = g'(net_j^{\ u}) \sum_i \delta_i^{\ u} W_{ij}$$

Change w.r.t. w_{ii}

$$= \eta \sum_{u,i} (O_i^{\ u} - z_i^{\ u}) g'(NET_i^{\ u}) W_{ij} g'(net_j^{\ u}) x_k^{\ u}$$

$$= \eta \sum_{u,i} \delta_{j}^{\ u} W_{ij}^{\ u} g'(net_{j}^{\ u}) x_{k}^{\ u}$$
$$= \eta \sum_{u} \delta_{j}^{\ u} x_{k}^{\ u} \qquad \delta_{j}^{\ u} = g'(net_{j}^{\ u}) \sum_{i} \delta_{i}^{\ u} W_{ij}$$

Interpretation (cont.)

Interpretation (cont.)

$$\Delta w_{pq} = \eta \sum_{patterns} \delta_{output} \times V_{input}$$

- Hebb's learning
- Error at the output end
- Activation at the input end
- Learning rate

Graphics Illustration of Backpropagation

Caveats on Backpropagation

- Slow
- Network Paralysis
 - □ if weights become large
 - operates at limits of squash (transfer) functions
 - derivatives of squash function (feedback) small

Step size

- □ too large may lead to saturation
- □ too small cause slow convergence

Caveats on Backpropagation

- Local minima
 - many different initial guesses
 - momentum
 - varying step size (large initially, getting small as training goes on)
 - □ simulated annealing
- Temporal instability
 - □ learn B and forgot about A

Other than BackPropagation

- In reality, gradient descent is slow and highly dependent on initial guess
- More sophisticated numerical methods exist Trust region methods, combination of
 - Gradient descent
 - Newton's methods

Caveats

- Error backpropagation is the work horse of all such learning algorithms
- In reality, "hodge-podge" of hacks, tweaks and trials and errors are needed
- Experience and intuition (or dumb luck) are keys

Other Practical Issues

Which transfer function (g)?
g must be nonlinear

$$net_j^{\ u} = \sum_k w_{jk} x_k^{\ u} \Longrightarrow \mathbf{H} = \mathbf{W}\mathbf{X}$$

g should be continuous and smooth

- > So g and g' are defined
- □ g should saturate
 - >Biologically (electronically) plausible

Sigmoid Function

Trend

Sigmod is replaced by ReLu (rectified linear unit) or soft plus in many applications

Input Scaling

- Inputs (weight, size, etc.) have different units and dynamic range and may be learned at different rates
- Small input ranges make small contribution to the error and are often ignored
- Normalization to same range and same variance (similar to Whitening transform)

Weight initialization

- Don't set the initial weights to zero, the network is not going to learn at all
- Don't set the initial weights too high, that leads to paralysis and slow learning (with sigmoid function)
- Don't set the initial weight too small, output signal shrinkage is a problem

Weight initialization

Random initialization

both positive and negative random weights to insure uniform learning

Xaiver initialization

Certain variance of the weight distribution should be maintained (to avoid shrinkage and blowup problems)

Xavier Initialization

A single neuron $Y = W_1 X_1 + W_2 X_2 + \dots + W_n X_n$ Variance f a single term

 $\operatorname{Var}(W_iX_i) = E[X_i]^2\operatorname{Var}(W_i) + E[W_i]^2\operatorname{Var}(X_i) + \operatorname{Var}(W_i)\operatorname{Var}(i_i)$

Assume zero mean

 $\operatorname{Var}(W_iX_i) = \operatorname{Var}(W_i)\operatorname{Var}(X_i)$

var(*Y*) = Var(*W*₁*X*₁ + *W*₂*X*₂ + ··· + *W_nX_n*) = *n*Var(*W_i*)Var(*X_i* **n** var(*w_i*) input variance **v**ar(*w_i*) = $\frac{1}{n} = \frac{1}{n_{in}}$ **v**ar(*W_i*) = $\frac{1}{n} = \frac{1}{n_{in}}$ **v**ar(*W_i*) = $\frac{2}{n_{in} + n_{out}}$

Output Scaling

- Rule of thumb: Avoid operating neurons in the saturation (tail) regions
 - □ Tendency for weight saturation
 - □ g' is small, learning is very slow
 - □ For sigmoid function as shown before, use range (-1, 1) instead of (-1.716, 1.716)

Output Scaling: Batch Normalization

- Maintain mean and variance of not just input, but also output
- Xavier initialization (?)
 - Too many assumptions (independence, zero mean, etc.) not holding
- Forced renormalization after each layer
 - Zero mean and unit variance
 - Done batch by batch before ReLu

Error Functions

Autoencoder

- Reproducing output automatically
- No single feature is more or less important than others
- **RMS** error

Classifier

- Outputs untrimmed indicator scores
 Two cases:
 - One-hot encoding: a dog, a cat, a vehicle, a person, etc.
 - General encoding: President Obama predicting final-4 outcome. Political? Sports? Comedy?
 - A probability function

Classifier Error Func

Two components:

□ Forced normalization: e.g. softmax

$$egin{aligned} &\sigma: \mathbb{R}^K o [0,1]^K \ &\sigma(\mathbf{z})_j = rac{e^{z_j}}{\sum_{k=1}^K e^{z_k}} & ext{for } j = 1, \, ..., \, \mathit{K}. \end{aligned}$$

$$H(p,q) = -\sum_x p(x) \, \log q(x).$$

tf.nn.softmax_cross_entropy_with_logits

```
softmax_cross_entropy_with_logits(
    _sentinel=None,
    labels=None,
    logits=None,
    dim=-1,
    name=None
)
```


Number of Hidden Layers

Too few – poor fitting
Too many – over fitting, poor generalization

PR, ANN, & ML

Numerical Stability - momentum

Red: as computed from current back propagation

Blue: as computed from previous back propagation

W

Numerical Stability

Weight decay

To ensure no single large weight dominates the training process

$$\mathbf{w}^{new} = \mathbf{w}^{old} \left(1 - \boldsymbol{\xi} \right)$$

Optimizers

- Wrapper around error backpropagation
 Stochastic GD, Moment, adaptive stepsize (advanced line search), and decay are often there
 - E.g., Adam Optimizer (adaptive and time varying learning rate for all parameters)
 Not for fainted heart, ask around!

Essentially

- Yes, multi-layer perceptrons can distinguish classes even when they are not linearly separable?
- Questions: How many layers? How many neurons per layers?
- Can # layers/# neurons per layer be *learned* too? (in addition to weights)

Easier Said than Done

- Blind learning with large number of parameters is numerically impossible
- Major recent advance
 - Reduced number of parameters
 - Layered learning

Emulation of Human Vision

Sparsity of connection

Emulation of Human Vision

Shared weight

Layered Learning

- A hierarchical "feature descriptor"
- Learning automatically from input data
- Layer-by-layer learning with auto encoder
- Partition:
 - **CNN:** feature detection
 - □ Fully-connected network: recognition

Adaptive Networks

- Network size/layer is not fixed initially
- Layer/size are added when necessary (or when a large number of epochs progress without finding suitable weights)
- Assumptions:
 - □ two classes (1,0)
 - may not be linearly separable (e.g., multiple concave regions)

Initially one neuron

Refinement with more neurons

- Train through a number of epochs
- if no wrongly on/off cases, the two classes are linearly separable, stop
- If there are wrongly on/off cases, the two classes are not linearly separable, then
 - remember the best weights (the weights that cause the less number of misclassification)
 - introduce more units (instead of throwing away everything and restarting from scratch with a larger network)

Increase Network Complexity

46

Further Refinement

General Learning Rule

$\bullet N_{xn}$ □ Fire negative impulse Correct wrongly on cases □ Turn off if O=1 (no matter what y is) □ Don't care if O=0 and y=0 * N_{xp} □ Fire positive impulse Correct wrongly off cases □ Turn off if O=0 (no matter what y is) □ Don't care if O=1 and y=1

Backpropagation Learning rule

Change w.r.t. w_ij

$$\Delta W_{ij} = -\eta \frac{\partial E}{\partial W_{ij}} = -\eta \frac{\partial (\zeta_i^u - g(\sum_j W_{ij} V_j^u))^2}{\partial W_{ij}}$$

$$= \eta \sum_{u} (\zeta_{i}^{u} - O_{i}^{u}) g'(h_{i}^{u}) V_{j}^{u}$$

$$Change w.r.t. w_{ij}$$

$$\Delta w_{jk} = -\eta \frac{\partial E}{\partial w_{jk}} = -\eta \frac{\partial \sum_{u,i} (\zeta_i^u - g(\sum_j W_{ij}g(\sum_k w_{jk}\xi_k^u))^2}{\partial w_{jk}}$$

$$= -\eta \frac{\partial E}{\partial V_j^u} \frac{\partial V_j^u}{\partial w_{jk}}$$

$$= \eta \sum_{u,i} (\zeta_i^u - O_i^u) g'(h_i^u) W_{ij} g'(h_j^u) \xi_k^u$$

$$= \eta \sum_{u,i} \delta_i^u W_{ij}^u g'(h_j^u) \xi_k^u$$

$$= \eta \sum_u \delta_j^u \xi_k^u \qquad \delta_j^u = g'(h_j^u) \sum_i \delta_i^u W_{ij}$$

$$W_{ij} = g'(h_j^u) \sum_i \delta_i^u W_{ij}$$

C

Interpretation

Interpretation (cont.)

