Multi-Layer Perceptrons

Multi-Layer Perceptrons

* With "hidden" layers
* One hidden layer - any Boolean function or convex decision regions
* Two hidden layers - arbitrary decision regions

Decision boundaries

Decision Boundaries

Backpropagation Learning rule

Cost function

$$
E(\mathbf{W}, \mathbf{w})=\frac{1}{2} \sum_{u, i}\left(O_{i}^{u}-z_{i}^{u}\right)^{2}=\frac{1}{2} \sum_{u, i}\left(O_{i}^{u}-g\left(\sum_{j} W_{i j} g\left(\sum_{k} w_{j k} x_{k}^{u}\right)\right)^{2}\right.
$$

$$
\begin{aligned}
& \text { Change w.r.t. } W_{i j} \\
& \frac{\partial E}{W_{i j}}=-\eta \frac{\partial \frac{1}{2}\left(O_{i}{ }^{u}-g\left(\sum_{j} W_{i j} y_{j}{ }^{u}\right)\right)^{2}}{\partial W_{i j}}
\end{aligned}
$$

$=-\eta \frac{1}{2} \frac{\partial\left(O_{i}{ }^{u}-z_{i}{ }^{u}\right)^{2}}{\partial\left(O_{i}{ }^{u}-z_{i}{ }^{u}\right)} \frac{\partial\left(O_{i}{ }^{u}-g\left(N E T_{i}{ }^{u}\right)\right)}{\partial N E T_{i}{ }^{u}} \frac{\sum_{j} W_{i j} y_{j}{ }^{u}}{\partial W_{i j}}$
$=\eta \sum_{u} \underline{\left(O_{i}^{u}-z_{i}{ }^{u}\right) g^{\prime}\left(N E T_{i}^{u}\right)} y_{j}{ }^{u}$
$=\eta \sum_{u} \delta_{i}{ }^{u} y_{j}{ }^{u}$

$$
\delta_{i}^{u}=\left(O_{i}^{u}-z_{i}^{u}\right) g^{\prime}\left(N E T_{i}^{u}\right)
$$

Interpretation

Change w.r.t. $w_{i j}$

$$
\begin{aligned}
& \Delta w_{j k}=-\eta \frac{\partial E}{\partial w_{j k}}=-\eta \frac{\partial \sum_{u, i} \frac{1}{2}\left(O_{i}{ }^{u}-g\left(\sum_{j} W_{i j} g\left(\sum_{k} w_{j k} x_{k}{ }^{u}\right)\right)^{2}\right.}{\partial w_{j k}} \\
& =-\eta \begin{array}{|c||c|}
\begin{array}{c|c|}
\partial \sum_{u, i} \frac{1}{2}\left(O_{i}{ }^{u}-g\left(\sum_{j} W_{i j} g\left(\sum_{k} w_{j k} x_{k}{ }^{u}\right)\right)^{2}\right. & \partial \sum_{u, i}\left(O_{i}{ }^{u}-g\left(\sum_{j} W_{i j} g\left(\sum_{k} w_{j k} x_{k}{ }^{u}\right)\right)\right. \\
\hline \partial\left(O_{i}{ }^{u}-g\left(\sum_{j} W_{i j} g\left(\sum_{k} w_{j k} x_{k}{ }^{u}\right)\right)\right. & \partial\left(\sum_{j} W_{i j} g\left(\sum_{k} w_{j k} x_{k}{ }^{u}\right)\right) \\
\hline
\end{array} \\
\hline
\end{array} \\
& \begin{array}{|c|c|c|}
\hline \partial \sum_{u, i}\left(\sum_{j} W_{i j} g\left(\sum_{k} w_{j k} x_{k}{ }^{\prime}\right)\right. & \partial g\left(\sum_{k} w_{j k} x_{k}{ }^{u}\right) & \partial \sum_{k} w_{j k} x_{k}{ }^{u} \\
\hline \partial g\left(\sum_{k} w_{j k} x_{k}{ }^{u}\right) & \partial \sum_{k} w_{j k} x_{k}{ }^{u} & \frac{\partial v_{i k}}{} \\
\hline
\end{array} \\
& =\eta \sum_{w_{i}\left(O_{i}{ }^{u}-z_{i}{ }^{u}\right) g^{\prime}\left(N E T_{i}{ }^{u} W_{i} g^{\prime}\left(\text { net }_{j}{ }^{u}\right) x_{k}{ }^{u},\right.} \\
& =\eta \sum_{u, \delta_{i}{ }^{u} W_{i j}{ }^{u} g^{\prime}\left(\text { net }_{j}{ }^{u}\right) x_{k}{ }^{u}} \\
& =\eta \sum_{u} \delta_{j}{ }^{u} x_{k}{ }^{u} \quad \delta_{j}{ }^{u}=g^{\prime}\left(\text { net }_{j}{ }^{u}\right) \sum_{i} \delta_{i}{ }^{u} W_{i j}
\end{aligned}
$$

Change w.r.t. $w_{i j}$

$$
\begin{aligned}
& \Delta w_{j k}=-\eta \frac{\partial E}{\partial v_{j k}}=-\eta \frac{\partial \sum_{u, i} \frac{1}{2}\left(O_{i}{ }^{u}-g\left(\sum_{j} W_{i j} g\left(\sum_{k} w_{j k} x_{k}{ }^{u}\right)\right)^{2}\right.}{\partial w_{j k}} \\
& =-\eta \frac{\partial E}{\partial y_{j}{ }^{u}} \frac{\partial y_{j}{ }^{u}}{\partial w_{j k}} \\
& =\eta \sum_{u, i}\left(\underline{\left.O_{i}{ }^{u}-z_{i}{ }^{u}\right) g^{\prime}\left(N E T_{i}{ }^{u}\right) W_{i j} g^{\prime}\left(\text { net }_{j}{ }^{u}\right) x_{k}{ }^{u}}\right. \\
& =\eta \sum_{u, i} \delta_{i}{ }^{u} W_{i j}{ }^{u} g^{\prime}\left(\text { net }_{j}{ }^{u}\right) x_{k}{ }^{u} \\
& =\eta \sum_{u} \delta_{j}{ }^{u} x_{k}{ }^{u} \quad \delta_{j}{ }^{u}=g^{\prime}\left(n e t_{j}{ }^{u}\right) \sum_{i} \delta_{i}{ }^{u} W_{i j}
\end{aligned}
$$

Interpretation (cont.)

$$
\begin{gathered}
\text { Interpretation (cont.) } \\
\Delta w_{p q}=\eta \sum_{\text {patterns }} \delta_{\text {output }} \times V_{\text {input }}
\end{gathered}
$$

* Hebb's learning
* Error at the output end
* Activation at the input end
* Learning rate

File Edit Window Help

Graphics Illustration of Backpropagation

O_{1}

File Edit Window Help

Caveats on Backpropagation

* Slow
* Network Paralysis
\square if weights become large
\square operates at limits of squash (transfer) functions
\square derivatives of squash function (feedback) small
* Step size
\square too large may lead to saturation
\square too small cause slow convergence

Caveats on Backpropagation

* Local minima
a many different initial guesses
a momentum
\square varying step size (large initially, getting small as training goes on)
\square simulated annealing
* Temporal instability
- learn B and forgot about A

Other than BackPropagation

$\%$ In reality, gradient descent is slow and highly dependent on initial guess

* More sophisticated numerical methods exist Trust region methods, combination of
\square Gradient descent
- Newton's methods

Caveats

* Error backpropagation is the work horse of all such learning algorithms
* In reality, "hodge-podge" of hacks, tweaks and trials and errors are needed
* Experience and intuition (or dumb luck) are keys

Other Practical Issues

* Which transfer function (g)?
$\square \mathrm{g}$ must be nonlinear

$$
\operatorname{net}_{j}{ }^{u}=\sum_{k} w_{j k} x_{k}{ }^{u} \Rightarrow \mathbf{H}=\mathbf{W} \mathbf{X}
$$

$\square g$ should be continuous and smooth
>So g and g' are defined
$\square \mathrm{g}$ should saturate
$>$ Biologically (electronically) plausible

Sigmoid Function

Trend

* Sigmod is replaced by ReLu (rectified linear unit) or soft plus in many applications

Input Scaling

* Inputs (weight, size, etc.) have different units and dynamic range and may be learned at different rates
* Small input ranges make small contribution to the error and are often ignored
* Normalization to same range and same variance (similar to Whitening transform)

Weight initialization

: Don't set the initial weights to zero, the network is not going to learn at all

* Don't set the initial weights too high, that leads to paralysis and slow learning (with sigmoid function)
* Don't set the initial weight too small, output signal shrinkage is a problem

Weight initialization

* Random initialization
\square both positive and negative random weights to insure uniform learning
* Xaiver initialization
\square Certain variance of the weight distribution should be maintained (to avoid shrinkage and blowup problems)

Xavier Initialization

* A single neuron

$$
Y=W_{1} X_{1}+W_{2} X_{2}+\cdots+W_{n} X_{n}
$$

* Variance f a single term

$$
\operatorname{Var}\left(W_{i} X_{i}\right)=E\left[X_{i}\right]^{2} \operatorname{Var}\left(W_{i}\right)+E\left[W_{i}\right]^{2} \operatorname{Var}\left(X_{i}\right)+\operatorname{Var}\left(W_{i}\right) \operatorname{Var}\left(i_{i}\right)
$$

* Assume zero mean

$$
\operatorname{Var}\left(W_{i} X_{i}\right)=\operatorname{Var}\left(W_{i}\right) \operatorname{Var}\left(X_{i}\right)
$$

* Output variance $\quad \operatorname{Var}(Y)=\operatorname{Var}\left(W_{1} X_{1}+W_{2} X_{2}+\cdots+W_{n} X_{n}\right)=n \operatorname{Var}\left(W_{i}\right) \operatorname{Var}(X$
$\square \mathrm{n} \operatorname{var}\left(\mathrm{w}_{\mathrm{i}}\right)$ input variance
* Maintain same variance

$$
\operatorname{Var}\left(W_{i}\right)=\frac{1}{n}=\frac{1}{n_{\text {in }}}
$$

if $\mathrm{n}_{\text {in }}$ and $\mathrm{n}_{\text {out }}$ are different

$$
\operatorname{Var}\left(W_{i}\right)=\frac{2}{n_{\text {in }}+n_{\text {out }}}
$$

Output Scaling

* Rule of thumb: Avoid operating neurons in the saturation (tail) regions
\square Tendency for weight saturation
$\square g$ ' is small, learning is very slow
\square For sigmoid function as shown before, use range $(-1,1)$ instead of $(-1.716,1.716)$

Output Scaling: Batch Normalization

* Maintain mean and variance of not just input, but also output
* Xavier initialization (?)
\square Too many assumptions (independence, zero mean, etc.) not holding
* Forced renormalization after each layer
\square Zero mean and unit variance
\square Done batch by batch before ReLu

Error Functions

* Autoencoder
\square Reproducing output automatically
\square No single feature is more or less important than others
\square RMS error

Classifier

* Outputs untrimmed indicator scores
* Two cases:
\square One-hot encoding: a dog, a cat, a vehicle, a person, etc.
\square General encoding: President Obama predicting final-4 outcome. Political? Sports? Comedy?
> A probability function

Classifier Error Func

* Two components:
\square Forced normalization: e.g. softmax

$$
\begin{aligned}
& \sigma: \mathbb{R}^{K} \rightarrow[0,1]^{K} \\
& \sigma(\mathbf{z})_{j}=\frac{e^{z_{j}}}{\sum_{k=1}^{K} e^{z_{k}}} \quad \text { for } j=1, \ldots, K .
\end{aligned}
$$

* Error: cross entropy $\quad H(p, q)=-\sum_{x} p(x) \log q(x)$.
* E.g., in tensorflow
tf.nn.softmax_cross_entropy_with_logits

```
softmax_cross_entropy_with_logits(
    _sentinel=None,
    labels=None,
    logits=None,
    dim=-1
    name=None
```

)

Number of Hidden Layers

* Too few - poor fitting
* Too many - over fitting, poor generalization

Numerical Stability - step size

* Adaptive

$$
J(\mathbf{w}+\Delta \mathbf{w})=J(\mathbf{w})+\frac{\partial J}{\partial \mathbf{w}} \Delta \mathbf{w}+\frac{1}{2} \frac{\partial^{2} J}{\partial \mathbf{w}^{2}} \Delta \mathbf{w}^{2}
$$

$$
\frac{J(\mathbf{w}+\Delta \mathbf{w})-J(\mathbf{w})}{\Delta \mathbf{w}} \approx 0=\frac{\partial J}{\partial \mathbf{w}}+\frac{\partial^{2} J}{\partial \mathbf{w}^{2}} \Delta \mathbf{w}
$$

$$
\eta_{\text {opt }}<\eta<2 \eta_{\text {opt }}
$$

$$
\frac{\partial J}{\partial \mathbf{w}}=\frac{\partial^{2} J}{\partial \mathbf{w}^{2}} \Delta \mathbf{w}
$$

$$
\eta_{\text {opt }}=\left(\frac{\partial^{2} J}{\partial \mathbf{w}^{2}}\right)^{-1}
$$

Numerical Stability - momentum

$$
\mathbf{w}^{\text {new }}=\mathbf{w}^{\text {curr }}+(1-\alpha) \Delta \mathbf{w}_{b p}^{\text {curr }}+\alpha \Delta \mathbf{w}^{\text {prev }}
$$

Without

w. momentum
$*$ Red: as computed from current back propagation
\therefore Blue: as computed from previous back propagation

Numerical Stability

* Weight decay
\square To ensure no single large weight dominates the training process

$$
\mathbf{w}^{\text {new }}=\mathbf{w}^{\text {old }}(1-\xi)
$$

Optimizers

* Wrapper around error backpropagation
\square Stochastic GD, Moment, adaptive stepsize (advanced line search), and decay are often there
\square E.g., Adam Optimizer (adaptive and time varying learning rate for all parameters)
\square Not for fainted heart, ask around!

Essentially

* Yes, multi-layer perceptrons can distinguish classes even when they are not linearly separable?
* Questions: How many layers? How many neurons per layers?
* Can \# layers/\# neurons per layer be learned too? (in addition to weights)

Easier Said than Done

* Blind learning with large number of parameters is numerically impossible
* Major recent advance
- Reduced number of parameters
\square Layered learning

Emulation of Human Vision

* Sparsity of connection
layer $m+1$
layer m
layer m-I

504192

Emulation of Human Vision

* Shared weight

5041792

Layered Learning

* A hierarchical "feature descriptor"
* Learning automatically from input data
* Layer-by-layer learning with auto encoder
* Partition:
$\square \mathrm{CNN}$: feature detection
\square Fully-connected network: recognition

Adaptive Networks

* Network size/layer is not fixed initially
* Layer/size are added when necessary (or when a large number of epochs progress without finding suitable weights)
* Assumptions:
\square two classes (1,0)
\square may not be linearly separable (e.g., multiple concave regions)

Initially one neuron

\mathbf{O}^{u} Ideal
$\mathbf{y}^{u \text { Real }}$

wrongly on
$O^{u}=0$
$y^{u}=1$
wrongly off
$O^{u}=1$
$y^{u}=0$

Refinement with more neurons

* Train through a number of epochs
* if no wrongly on/off cases, the two classes are linearly separable, stop
* if there are wrongly on/off cases, the two classes are not linearly separable, then
\square remember the best weights (the weights that cause the less number of misclassification)
\square introduce more units (instead of throwing away everything and restarting from scratch with a larger network)

Increase Network Complexity

$N_{\text {In }}:$ correct wrongly-on error fire negative feedback only
O y action
action
don' t care
off
$0 \quad 0$ don' t care
11 off
$0 \quad 1$ large negative output 10 off
 \mathbf{O}^{u}
$N_{l p}:$ correct wrongly-off error fire positive feedback only
$\begin{array}{cccc}O & y & \text { action } \\ 0 & 0 & \text { off } \\ 1 & 1 & \text { don't care } \\ 0 & 1 & \text { off } \\ 1 & 0 & \text { large positive output }\end{array}$

Further Refinement

General Learning Rule

$* \mathrm{~N}_{\mathrm{xn}}$
\square Fire negative impulse
\square Correct wrongly on cases
\square Turn off if $\mathrm{O}=1$ (no matter what y is)
\square Don't care if $\mathrm{O}=0$ and $\mathrm{y}=0$
$\because \mathrm{N}_{\mathrm{xp}}$
\square Fire positive impulse
\square Correct wrongly off cases
\square Turn off if $\mathrm{O}=0$ (no matter what y is)
\square Don't care if $\mathrm{O}=1$ and $\mathrm{y}=1$

Backpropagation Learning rule

Change w.r.t. w_ij

$$
\begin{aligned}
\Delta W_{i j} & =-\eta \frac{\partial E}{\partial W_{i j}}=-\eta \frac{\partial\left(\zeta_{i}^{u}-g\left(\sum_{j} W_{i j} V_{j}^{u}\right)\right)^{2}}{\partial W_{i j}} \\
& =\eta \sum_{u}\left(\zeta_{i}^{u}-O_{i}^{u}\right) g^{\prime}\left(h_{i}^{u}\right) V_{j}^{u} \\
& =\eta \sum_{u} \delta_{i}^{u} V_{j}^{u} \quad \delta_{i}^{u}=\left(\zeta_{i}^{u}-O_{i}^{u}\right) g^{\prime}\left(h_{i}^{u}\right)
\end{aligned}
$$

Change w.r.t. w_ij

$$
\begin{aligned}
& =-\eta \frac{\partial E}{\partial w_{j k}}=-\eta \frac{\partial \sum_{u, i}\left(\zeta_{i}^{u}-g\left(\sum_{j} W_{i j} g\left(\sum_{k} w_{j k} \xi_{k}^{u}\right)\right)^{2}\right.}{\partial w_{j k}} \\
& =-\eta \frac{\partial E}{\partial V_{j}^{u}} \frac{\partial V_{j}^{u}}{\partial w_{j k}} \\
& =\eta \sum_{u, i}\left(\zeta_{i}^{u}-O_{i}^{u}\right) g^{\prime}\left(h_{i}^{u}\right) W_{i j} g^{\prime}\left(h_{j}^{u}\right) \xi_{k}^{u} \\
& =\eta \sum_{u, i} \delta_{i}^{u} W_{i j}^{u} g^{\prime}\left(h_{j}^{u}\right) \xi_{k}^{u} \\
& =\eta \sum_{u} \delta_{j}^{u} \xi_{k}^{u} \\
& \delta_{j}^{u}=g^{\prime}\left(h_{j}^{u}\right) \sum_{i} \delta_{i}^{u} W_{i j}
\end{aligned}
$$

Interpretation

Interpretation (cont.)

$$
\begin{array}{lll}
\zeta_{1} & \zeta_{2} & \delta_{i}^{u}=\left(\zeta_{i}^{u}-O_{i}^{u}\right) g^{\prime}\left(h_{i}^{u}\right) \\
O_{1} & O_{2} & \\
W_{i j} & \sum_{i} \delta_{i}^{u} W_{i j}{ }^{\prime} \\
\xi_{2} & \xi_{3} & \xi_{4} \\
\xi_{1} & g^{\prime}\left(h_{j}^{u}\right) \sum_{i} \delta_{i}^{u} W_{i j} \\
g^{\prime}\left(h_{j}^{u}\right)
\end{array}{ }^{\prime}
$$

