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A Little History
! Support Vector Machines (SVM) introduced in COLT-

92 (conference on learning theory) greatly developed 
since then.

! Result: a class of algorithms for Pattern Recognition 
(Kernel Machines)

! Now: a large and diverse community, from machine 
learning, optimization, statistics, neural networks, 
functional analysis, etc. etc

! Centralized website: www.kernel-machines.org
! Textbook (2000): see www.support-vector.net
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Basic Idea
! Kernel Methods work 

by embedding the data 
into a vector space, 
and by detecting linear 
relations in that space

! Convex Optimization, 
Statistical Learning 
Theory, Functional 
Analysis are the main 
tools

www.support-vector.net

Basic Idea

! “Linear relations”: 
can be regressions, 
classifications, 
correlations, 
principal 
components, etc.

! If the feature space 
chosen suitably, 
pattern recognition 
can be easy
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General Structure 
of Kernel-Based Algorithms

!Two 
Separate
Modules:

Learning
Module

Kernel
Function

A learning algorithm: 
performs the learning
In the embedding space

A kernel function: takes 
care of the embedding

www.support-vector.net

Overview of the Tutorial

! Introduce basic concepts with 
extended example of Kernel 
Perceptron

! Derive Support Vector Machines 
! Other kernel based algorithms

(PCA;regression; clustering;…)
! Bioinformatics Applications
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Just in case …

! Inner product between vectors 

! Hyperplane:
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Preview

! Kernel methods exploit information about 
the inner products between data items

! Many standard algorithms can be rewritten 
so that they only require inner products 
between data (inputs)

! Kernel functions = inner products in some 
feature space (potentially very complex)

! If kernel given, no need to specify what 
features of the data are being used
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Basic Notation

! Input space
! Output space
! Hypothesis
! Real-valued:
! Training Set
! Test error
! Dot product
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Basic Example: 
the Kernel-Perceptron

! We will introduce the main ideas of 
this approach by using an example: 
the simplest algorithm with the 
simplest kernel

! Then we will generalize to general 
algorithms and general kernels
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Perceptron

! Simplest case: classification. Decision 
function is a hyperplane in input 
space

! The Perceptron Algorithm 
(Rosenblatt, 57)

! Useful to analyze the Perceptron 
algorithm, before looking at SVMs
and Kernel Methods in general

www.support-vector.net

Perceptron

! Linear Separation 
of the input space
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Perceptron Algorithm

Update rule 
(ignoring 
threshold):

! if                           

then

y w xi k i( , ) ≤ 0

w w y x
k k

k k i i+ ← +
← +

1

1
η
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Observations

!Solution is a linear combination of 
training points

!Only used informative points (mistake 
driven)

!The coefficient of a point in 
combination reflects its ‘difficulty’ 
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Observations - 2
! Mistake bound:

! coefficients are non-
negative

! possible to rewrite the 
algorithm using this 
alternative 
representation
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Dual Representation

The decision function can be re-written 
as follows:

f x w x b y x x bi i i( ) , ,= + = +∑α

w y xi i i=∑α

IMPORTANT
CONCEPT
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Dual Representation
! And also the update 

rule can be rewritten as 
follows:

! If

then

! Note: in dual 
representation, data 
appears only inside dot 
products

α α ηi i← +
∑ ≤+

j
ijjji bxxyy 0,α
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Duality: First Property of SVMs

!DUALITY is the first feature of Support 
Vector Machines (and KM in general)

!SVMs are Linear Learning Machines 
represented in a dual fashion

!Data appear only within dot products 
(in decision function and in training 
algorithm)

f x w x b y x x bi i i( ) , ,= + = +∑α
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Limitations of Perceptron

!Only linear separations
!Only defined on vectorial data
!Only converges for linearly separable 

data

www.support-vector.net

x

x

x

x

o
o

o

o

f (o)
f (x)

f (x)

f (o)

f (o)

f (o) f (x)

f (x)

f

X F

Learning in the Feature Space

!Map data into a feature space where 
they are linearly separable  

x x→ φ( )



11

www.support-vector.net

Trick

!Often very high dimensional spaces 
are needed

!We can save computation by not 
explicitly mapping the data to feature 
space, but just working out the inner 
product in that space

!We will call this implicit mapping
!(many algorithms only need this 

information to work)

www.support-vector.net

Kernel-Induced Feature Spaces

!In the dual representation, the data 
points only appear inside dot 
products:

!The dimensionality of space F not 
necessarily important. May not even 
know the map 

f x y x x bi i i( ) ( , ( ))= +∑α φ φ

φ
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Kernels 

!A function that returns the value of 
the dot product between the images of 
the two arguments

!Given a function K, it is possible to 
verify that it is a kernel

K x x x x( , ) ( ), ( )1 2 1 2= φ φ

IMPORTANT
CONCEPT
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Kernels

!One can use LLMs in a feature space 
by simply rewriting it in dual 
representation and replacing dot 
products with kernels:

x x K x x x x1 2 1 2 1 2, ( , ) ( ), ( )← = φ φ
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Example: Polynomial Kernels
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Example: Polynomial Kernels
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The Kernel Matrix

! (aka the Gram matrix):

K(m,m)…K(m,3)K(m,2)K(m,1
)

……………

K(2,m)…K(2,3)K(2,2)K(2,1)

K(1,m)…K(1,3)K(1,2)K(1,1)

IMPORTANT
CONCEPT

K=
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The Kernel Matrix

! The central structure in kernel 
machines

! Information ‘bottleneck’: contains all 
necessary information for the learning 
algorithm 

! Fuses information about the data AND 
the kernel

! Many interesting properties:
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Mercer’s Theorem

! The kernel matrix is Symmetric 
Positive Definite 
(has positive eigenvalues)

! Any symmetric positive definite 
matrix can be regarded as a kernel 
matrix, that is as an inner product 
matrix in some space

www.support-vector.net

Mercer’s Theorem
! Eigenvalues expansion 

of Mercer’s Kernels:

! The features are the 
eigenfunctions of the 
integral operator 

K x x x xi

i

i i( , ) ( ) ( )1 2 1 2=∑λφ φ
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Examples of Kernels

! Simple examples of kernels are:

K x z x z

K x z e

d

x z

( , ) ,

( , ) /

=

= − − 2 2σ
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Example: the two spirals 

! Separated by a 
hyperplane in 
feature space 
(gaussian kernels)
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Making kernels

!From kernels (see closure properties):
can obtain complex kernels by 
combining simpler ones according to 
specific rules

www.support-vector.net

Closure properties
! List of closure 

properties:

if K1 and K2 are
kernels, and c>o

! Then also K is a kernel )()(),(
:

),(),(),(
),(),(),(

),(),(
),(),(
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Some Practical Consequences

! if K1 and K2 are
kernels, and c>o
d>0 integer

!Then also K is a 
kernel ),(),(
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Making kernels 

!From features: 
start from the features, then obtain 
the kernel. 
Example: the polynomial kernel, the 
string kernel, …
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Learning Kernels

!From data: 
!either adapting parameters in a 

parametric family
!or modifying the kernel matrix (as 

seen below)
!Or training a generative model, then 

extract kernel as described before 

www.support-vector.net

Second Property of SVMs:

SVMs are Linear Learning Machines, 
that 

! Use a dual representation 
AND
! Operate in a kernel induced feature 

space
(that is: 
is a linear function in the feature space 

implicitely defined by K)

f x y x x bi i i( ) ( , ( ))= +∑α φ φ
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Kernels over General Structures

! Haussler, Watkins, etc: kernels over 
sets, over sequences, over trees, etc.

! Applied in text categorization, 
bioinformatics, etc

www.support-vector.net

A bad kernel …

! … would be a kernel whose kernel 
matrix is mostly diagonal: all points 
orthogonal to each other, no clusters, 
no structure …

1…000
……………

1
0…010
0…001
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No Free Kernel

! If mapping in a space with too many 
irrelevant features, kernel matrix 
becomes diagonal

! Need some prior knowledge of target 
so choose a good kernel

IMPORTANT
CONCEPT

www.support-vector.net

Other Kernel-based algorithms

! Note: other algorithms can use 
kernels, not just LLMs (e.g. 
clustering; PCA; etc). Dual 
representation often possible (in 
optimization problems, by 
Representer’s theorem).
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The Generalization Problem
! The curse of dimensionality: easy to overfit

in high dimensional spaces
(=regularities could be found in the training set that 
are accidental, that is that would not be found again 
in a test set)

! The SVM problem is ill posed (finding one 
hyperplane that separates the data: many 
such hyperplanes exist)

! Need principled way to choose the best 
possible hyperplane

NEW 
TOPIC
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The Generalization Problem

! Many methods exist to choose a good 
hyperplane (inductive principles)

! Bayes, statistical learning theory / 
pac, MDL, …

! Each can be used, we will focus on a 
simple case motivated by statistical 
learning theory (will give the basic 
SVM)

www.support-vector.net

Statistical (Computational) 
Learning Theory

! Generalization bounds on the risk of 
overfitting (in a p.a.c. setting: 
assumption of I.I.d. data; etc)

! Standard bounds from VC theory give 
upper and lower bound proportional 
to VC dimension

! VC dimension of LLMs proportional to 
dimension of space (can be huge)  
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Assumptions and Definitions
! distribution D over input space X
! train and test points drawn randomly 

(I.I.d.) from D 
! training error of h:  fraction of points in S 

misclassifed by h
! test error of h: probability under D to 

misclassify a point x 
! VC dimension: size of largest subset of X 

shattered by H (every dichotomy 
implemented)

www.support-vector.net

VC  Bounds 





=

m
VCO~ε

VC = (number of dimensions of X) +1

Typically VC >> m, so not useful

Does not tell us which hyperplane to choose
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Margin Based Bounds

f
xfy

m
RO

ii
i

)(min

)/(~ 2

=









=

γ

γε

Note: also compression bounds exist; and online bounds.
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Margin Based Bounds
! (The worst case bound still holds, but if 

lucky (margin is large)) the other bound 
can be applied and better generalization 
can be achieved:

! Best hyperplane: the maximal margin one
! Margin is large is kernel chosen well
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m
RO

2)/(~ γε

IMPORTANT
CONCEPT
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Maximal Margin Classifier

! Minimize the risk of overfitting by 
choosing the maximal margin 
hyperplane in feature space

! Third feature of SVMs: maximize the 
margin

! SVMs control capacity by increasing 
the margin, not by reducing the 
number of degrees of freedom 
(dimension free capacity control).

www.support-vector.net

Two kinds of margin

! Functional and geometric margin:
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Two kinds of margin

www.support-vector.net

Max Margin = Minimal Norm

Distance between
The two convex hulls w x b
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The primal problem

!Minimize:

subject to:

IMPORTANT
STEP

[ ] 1,

,

≥+bxwy

ww

ii
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Optimization Theory

!The problem of finding the maximal margin 
hyperplane: constrained optimization 
(quadratic programming)

!Use Lagrange theory (or Kuhn-Tucker 
Theory)

!Lagrangian:

Lagrange 
Multipliers: 

( )[ ]
0

1,,
2
1

≥

−+−∑
i

iii bxwyww

α

α
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From Primal to Dual

Differentiate and substitute:
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∂

L
b
L
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From Primal to Dual
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The Dual Problem
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Dual

∑

∑ ∑
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Notice:
quadratic function
linear equality constraint coming from optimizing b
Positive quadrant
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Convexity

! This is a Quadratic 
Optimization problem: 
convex, no local 
minima (second effect 
of Mercer’s conditions)

! Solvable in polynomial 
time …

! (convexity is another 
fundamental  property 
of SVMs)

IMPORTANT
CONCEPT
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PROPERTIES
OF THE

SOLUTION
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Kuhn-Tucker 
Theorem
! Hyperplane is linear 

combination of training 
vectors

! KKT conditions:
! Sparseness: only the 

points nearest to the 
hyperplane (margin = 1) 
have positive weight

! They are called support 
vectors

w y xi i i=∑α

[ ] ibxwy iii ∀=−+ ,01,α

PROPERTIES
OF THE

SOLUTION
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KKT Conditions 
Imply Sparseness
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Sparseness: 
another fundamental property of SVMs

[ ] ibxwy iii ∀=−+ ,01,α

PROPERTIES
OF THE

SOLUTION
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Properties of SVMs
Summary

"Duality
"Kernels
"Margin
"Convexity
"Sparseness

PROPERTIES
OF THE

SOLUTION
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Soft Margin Classifier

!Problem:  non-separable data (in 
feature space)

!We could always separate it with a 
‘finer’ kernel, but that is not a good 
idea

!Better to have an algorithm that 
tolerates mislabeled points

New 
Topic
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Dealing with noise                   

( )2

2
1

γ
ξ

ε ∑ 2+
≤

R
m

In the case of non-separable data 
in feature space, the margin distribution 
can be optimized

[ ] iii bxwy ξ−≥+ 1,
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The Soft-Margin Classifier

[ ] iii bxwy ξ−≥+ 1,
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i
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Slack Variables                    
( )2

2

1
γ

ξ
ε ∑ 2+

≤
R

m

[ ] iii bxwy ξ−≥+ 1,
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Soft Margin-Dual Lagrangian

!Box constraints

!Diagonal
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Soft Margin

!Second problem equivalent to 
replacing 
K with K+λI (λ=1/2C). 

!Both formulations aim at reducing role 
of outliers, preventing (or 
discouraging) points from having too 
large a α

!Remember that in kernel perceptron, 
outliers would have unbounded α

www.support-vector.net
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Regression

! Now we see how the same ideas can 
be applied to regression

! Later also to PCA, clustering, etc.

New 
Topic

www.support-vector.net

Kernel Ridge Regression
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Optimization problem

( )∑ ∑ −−++= iiiii xwywL ξαξλ , minimize 22

2

2
1

:Optimality Imposing

i
i

ii xw

αξ

α
λ

=
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We can now substitute them back in, 
and obtain a DUAL problem 
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The Dual

∑ ∑ ∑−−= 2
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In matrix notation:
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The Solution
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Ridge Regression

!So we can kernelize Ridge Regression
!More complex loss functions can be 

used than  the square loss
!One problem: all alphas are positive. 

No more sparseness.
!Vapnik proposed the epsilon-

insensitive loss, to obtain sparse 
solutions 
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SVM Regression

!Using the following 
loss:

L
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Insensitive Loss

•

•

•

•

•
•

•

•
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•
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•
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•
•

•

•

•

y

x

x

•

e

x

L

yi-<w,xi>+b

e

0

x

If the points are close enough to the
Function, they ‘pay no loss’.
If they are out of the insensitive region
They pay in proportion (linear or quadratic)

This gives sparsity back:
points in the insensitive region
will have zero alpha …
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SVM Regression
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Parzen Windows

One can re-derive Parzen Windows from 
simple considerations…

Given two classes of points, find their 
centers of mass, and label new points 
according to the nearest center of 
mass

New 
Topic
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Parzen Windows

!Center of mass of a 
class is:

!Decision function 
will be:
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Example:
from 
Schoelkopf’s
book
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Other algorithms

!K nearest neighbor 
…

!K means clustering 
…

! Just use this:

),(2),(),(

)(),(2)(),()(),()()( 2

2

zxKzzKxxK

zxzzxxzx

−+=

=−+=− φφφφφφφφ

New 
Topic
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Novelty Detection

!Estimating the 
support of the 
distribution

•

•

•

•

•

•

•

•

•

•

•

New 
Topic
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Kernel PCA

!Standard PCA 
(primal, dual):

Cvv

xx
m

C

x

T
i

i
i

i

=

=

=

∑
∑

λ

1
0

Goal:
extract the principal components of a data vector.
Project it onto eigenvectors of dataset …

Assume data are centered

Define covariance

Define eigenvectors of covariance

New 
Topic
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Kernel PCA
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All solutions with
Nonzero λ
lie in the span of
X1,…,Xm
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Kernel PCA
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We know that eigenvectors can be expressed
As lin comb of images of training vectors
We will characterize them by the corresponding
α vectors

Eigenvectors (with nonzero λ) 
can be written in dual form.
The eigenvectors equation
can be rewritten as follows:

)(),(, jiji xxK φφ=
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Kernel PCA
! In order to find the dual 

coordinates α of the 
eigenvectors in feature 
space, we solve this 
problem:
where α is a column
vector of m entries
(m = sample size)

! We also want to 
normalize the 
eigenvectors…

αλα Km =
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Kernel PCA - solution

!Normalize the 
eigenvectors:
require that

!How to deal with a 
new point x:
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These are the principal components, or features of X in feature space
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Summary of Kernel PCA

!K
!Center K
!Find eigenvectors of K
!Normalize alpha coefficients
!Extract PCs of new points by:

∑=
i

ii
nn xxxv )(),()(, φφαφ
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Discussion …

Like normal PCA, also kernel PCA has 
the property that the most information 
(variance) is contained in the first 
principal components (projections on 
eigenvectors)

Etc,. Etc 
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Spectral Methods 

! Semisupervised learning:
given a partially labeled set, complete 
the labeling (TRANSDUCTION)

! Many possibilities:
use the labels to learn a kernel, 
then use the kernel to label the data

New 
Topic

www.support-vector.net

Kernel Alignment

! Notion of similarity between kernels:
Alignment (= similarity between 
Gram matrices)

A K K K K
K K K K

( , ) ,
, ,

1 2 1 2
1 1 2 2

=

IMPORTANT
CONCEPT
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Kernel Alignment

A K K K K
K K K K

( , ) ,
, ,

1 2 1 2
1 1 2 2

=

Where we use the Frobenius inner product:

∑=
ji

jiKjiKKK
,

2121 ),(),(,

It is a similarity measure between kernel matrices.
That is: it depends on the sample.
A more general version can naturally be defined, using the
input distribution. We could call the general one ‘alignment’, 
and the one defined here ‘empirical alignment’.
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Kernel Alignment Properties

!Ranges between
-1 and 1 

[0,1] for positive 
definite matrices

!Sharply 
concentrated 
around expected 
value E[A]
(expectation is wrt random choice of sample):
can reliably 
estimate it from one 
sample

paper)check  pls ,simplicityfor (omit 
sample...  theoffunction  some is  where

)()][)(( )/( 2

f
eSfAESAP mεε −<>−

Used McDiarmid theorem to prove concentration
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Kernel Selection
or Combination

!Choose K1 from a set so to optimize:

! If set is convex, this leads to a convex 
optimization problem

!We will see one way to obtain convex 
family of kernels

!Before we will need another remark …

A K YY K YY
K K YY YY

( , ' ) , '
, ' , '

1
1

1 1
=
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Interesting Analogy

'∑=
i

iii yyK λ

∑=
i

iii vvK 'λ Eigendecomposition
of kernel matrix K

Thresholding the eigenvectors of K we can obtain many different 
labelings of the sample, and then we can consider the set of their convex
combinations
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Fixed K, choose best Y

!Choosing the labels:
a clustering problem

!Optimizing over all possible labelings
is a complex task

!We will relax the constraints, and 
approximate it with a convex problem 

www.support-vector.net

The ideal kernel

1…1-1-1

……………

11-1-1

-1…-111

-1…-111

YY’=
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Spectral Machines 

! Can (approximately) maximize the 
alignment of a set of labels to a given 
kernel

! By solving this problem:

! Approximated by principal 
eigenvector (thresholded) (see 
courant-fischer theorem)

y yKy
yy

yi

=

∈ − +

arg max
'

{ , }1 1
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Courant-Fischer theorem

! A: symmetric and positive definite,
! Principal Eigenvalue / Eigenvector 

characterized by:

λ = max
'v

vAv
vv
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Optimizing Kernel Alignment

! Approximately find alignment set of 
labels by thresholding the first 
eigenvector of the kernel matrix

! More sophisticated methods exist 
(see website): using the Laplacian; or 
using SDP …

www.support-vector.net

Using the alignment 
for Kernel Adaptation

! We can decompose 
the kernel matrix 
in eigen-
components, then 
re-weight the 
coefficients so to 
optimize the 
alignment with the 
(available) labels

∑=
i

iii vvK 'λ

It becomes a QP problem:
Learning the kernel can be
convex !
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Recap: on Kernel-Based Algorithms

! We have seen: 
$ Perceptron
$ SVMs (hard and soft margin)
$ Ridge Regression
$ Novelty detection
$ Kernel PCA
$ Spectral Clustering

! Also exist:
$ Fisher discriminant
$ ICA
$ Several Clustering algorithms
$ …

www.support-vector.net

Kernel Methods Recap

! They all work by:
$ Mapping the data into a space
$ Using algebra, optimization, statistics to 

extract patterns
$ Most of them: convex optimization 

problems
$ Designed to deal with high dimensional, 

noisy data
$ Computationally efficient; 

generalization-wise very effective
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Modularity
!Any kernel-based learning algorithm 

composed of two modules:
$ A general purpose learning machine
$ A problem specific kernel function

!Any K-B algorithm can be fitted with any 
kernel

!Kernels themselves can be constructed in a 
modular way

!Great for software engineering (and for 
analysis)

IMPORTANT
CONCEPT

www.support-vector.net
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BIOINFO APPLICATIONS

! In this last part we will review 
applications of Kernel Methods to 
bioinformatics problems

! Mostly Support Vector Machines, but 
also transduction methods, and 
others.

! Gene expression data; mass 
spectroscopy data; QSAR data; 
protein fold prediction;…

NEW 
TOPIC !

www.support-vector.net

Diversity of Bioinformatics Data

! Gene Expression
! Protein sequences
! Phylogenetic Information
! Promoters
! Mass Spec
! QSAR
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About bioinformatics problems
!Types of data:

sequences (DNA; or proteins)
gene expression data
SNP; proteomics; etc. etc

!Types of tasks:
diagnosis; gene function prediction
protein fold prediction; drugs design; …

!Types of problems:
high dimensional; noisy; very small or very 
large datasets; heterogeneous data; …

www.support-vector.net

Gene Expression Data

!Measure expression level of thousands 
of genes simultaneously, in a cell or 
tissue sample
(genes make proteins by producing RNA; a gene is 
expressed when its RNA is present…)

!Very high dimensionality; noise
!Can either characterize tissues or 

genes (transposing matrix)
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Gene Function Prediction
!Predict functional roles for yeast genes 

based on their expression profiles
!Given set of 2467 genes, observed their 

expression under 79 conditions (from Eisen
et al.)

!Assigned genes to 5 functional classes (from 
MIPS yeast genome database).
TCA cycle; respiration; cytoplasmic ribosomes; proteasome; 
histones.

!SVM: learn to predict class based on 
expression profile.

www.support-vector.net

Gene Function Prediction

!SVMs compared with 5 other algorithms, 
performed best (parzen windows; fisher 
discriminant; decision trees; etc).

!Also used to assign to their functional class 
‘new’ genes. 

!Often mistakes have biological interpretation 
…. See paper (and website).

! Brown, Grundy, Lin, Cristianini, Sugnet, Furey, Ares, Haussler, 
“Knowledge Based Analysis of Miroarray Gene Expression Data Using 
Support Vector Machines”, PNAS

! www.cse.ucsc.edu/research/compbio
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Gene Function Prediction

!Notice: not all functional classes can 
be expected to be predicted on the 
basis of expression profiles

!The 5 classes were chosen using 
biological knowledge: expected to 
show correlation.

!Also: chosen for control a class not 
expected to have correlation: helix-
turn-helix.

www.support-vector.net

Heterogeneous Information

! Diverse sources can be combined. An 
example.

! Phylogenetic Data obtained from comparison 
of a given gene with other genomes

! Simplest Phylogenetic Profile: a bit string in 
which each bit indicates whether the gene of 
interest has a close homolog in the 
corresponding genome

! More detailed: negative log of the lowest E 
value reported by BLAST in a search against a 
complete genome

! Merged with Expression data to improve 
performance in Function Identification
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Heterogeneous Data

! Similar pattern of occurrence across species could 
indicate 1) functional link (they might need each other 
to function, so they occur together). Could also simply 
indicate 2) sequence similarity

! Used 24 genomes from the Sanger Centre website
! Again: only some functional classes can benefit from 

this type of data.
! Generalization improves, but mostly for effect 2): a way 

to summarize sequence similarity information

! Pavlidis, Weston, Cai, Grundy, “Gene Functional Classification 
from Heterogeneous Data”, International Conference on 
Computational Molecular Biology, 2001
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Cancer Detection
!Task: automatic classification of tissue 

samples
!Case study: ovarian cancer
!Dataset of 97808 cDNAs for each tissue ! 

(each of which may or may not correspond to a gene)

! Just 31 tissues of 3 types: ovarian cancer; 
normal ovarian tissue; other normal tissues. 
(15 positive and 16 negatives)

! Furey, Cristianini, Duffy, Bednarski, Schummer, Haussler, “Support 
Vector Machine Classification and Validation of Cancer Tissue 
Samples Using Microarray Expression Data” Bioinformatics
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Ovarian Cancer 

!Main goal: decide whether a given 
sample is cancerous or not

!Secondary goal: locate genes 
potentially responsible for 
classification

!Problem: overfitting due to curse of 
dimensionality

www.support-vector.net

Results

! Cross validation experiments (l.o.o.).
! Located a consistently misclassified point. The sample 

was considered cancerous by the SVM (and dubious by 
humans that originally labelled it as OK). Re-labelled.

! The only non -ovarian tissue is also misclassified 
consistently. Removed.

! After its removal: perfect generalization
! Attempt to locate most correlated genes provides  less 

interesting results (used Fisher score for ranking, 
independence assumption).

! Only 5 of the top 10 are actually genes, only 3 cancer 
related.                 



61

www.support-vector.net

Protein Homology

!Special kernels can be designed for 
comparing protein sequences, based on 
HMMs

!The generative model used as ‘feature 
extractor’ for designing a kernel (‘Fisher 
kernel’).

!Successfully used to detect remote protein 
homology

! Jaakkola, Diekhans, Haussler “Using the Fisher Kernel 
Method to Detect Remote Protein Homologies”, AAAI press

www.support-vector.net

Promoters

!Similar technology used to classify 
genes based on the patterns in their 
regulatory region

!Task: identify co-regulated genes 
based on promoter sequences

! Pavlidis, Furey, Liberto, Haussler, Grundy, “Promoter Region-
Based Classification of Genes”, Pacific Symposium on 
Biocomputing, 2001
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Promoters
! Simple way to represent promoters: presence of 

motifs that function as binding sites of TFs
! Small size and other problems make approach  very 

noisy
! More abstract features: exploit presence of multiple 

copies and combinations of motifs; spacing between 
two motifs; sequence flanking the motifs; presence of 
more general – less conserved – patterns. 

! Features of the promoter region not only the TFBSs
motifs themselves. 
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Fisher Kernels
! Capture information about presence and 

relative position of motifs
! 1) build a motif-based HMM from a collection 

of TFBS motifs 
! 2) extract Fisher kernel and use in in SVM
! 3) discriminate between a given set of 

promoters from co-regulated genes and a 
second set of negative example promoters 

! Result: predicted coregulation of unannotated
genes. Predictions validated with expression 
profiles or other annotation sources.
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String Matching Kernels
!Different approach, very promising: dynamic 

programming method to detect similarity 
between strings

!So far: used in text categorization. Being 
tested on protein data.

!LATER MORE ON THIS
!Other work, with different kernels: detection 

of translation initiation sites.
! Lodhi, Cristianini, Watkins, Shawe-Taylor “String 

Matching Kernels for Text Categorization” NIPS 2000
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More on Bioinformatics

!Different types of data, 
very noisy and from different sources

!Problem:
How to combine them ?

!One possible answer:
kernel combination …
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Transcription Initiation Site

!Parts of DNA are junk, others encode 
for proteins. They are transcribed into 
RNA and then translated into proteins

!The transcription starts at ATG; but not 
all ATGs are transcription initiation sites 
…

!Problem: predict if a given ATG is a TIS 
based on its neighbors ….

www.support-vector.net

SVMs

!Encoding: window of 200 nucleotides 
each side around the candidate ATG

!Each nucleotide encoded with a 5 bits 
word (00001, 00010, 00100, 01000, 
10000) (for A,C,G,T, and N –
unknown).

!Comparisons of these 1000-dim 
bitstrings should reveal which ones 
contain actual TIS
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Naïve Approach

!Linear kernels:
<x,z>

!Polynomial kernels:
<x,z>d

www.support-vector.net

Special Kernels

!Poly kernels consider all possible k-
ples, even very distant ones

!We assume that only short range 
correlations matter

!We need a kernel that discards long 
range correlations
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‘locality improved’ kernels

! First consider a window of length 2l+1
around each position. We will compare two 
sequences ‘locally’, by moving this window along 
them …
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Notice: these are all kernel-preserving operations on basic kernels
Hence the result is still a valid kernel. Weights chosen to penalize 
long range correlations.
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TIS detection 
with Locality Improved kernels

!Performed better than polynomial 
kernels

!Better than best neural network
(state of the art on that benchmark)

Engineering support vector machine kernels that recognize 
translation initiation sites, A. Zien, G. Ratsch, S. Mika, B. 
Scholkopf, T. Lengauer, and K.-R. Muller, BioInformatics, 
16(9):799-807, 2000.
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Protein Fold

!Problem is: given sequence of 
aminoacids forming a protein, predict 
which overall shape the molecule will 
assume

!Problem: defining the right set of 
features, the right kernel

!Work in progress 
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KDD 2001 Cup: 
Thrombin Binding

Weston, et al, Oct. 
2001:

SVM, with 
transduction,+ 
feature selection.

82% prediction 
accuracy.

Entrants: 114.    
(~10% used SVMs)

The winner: 68%
prediction 
accuracy.

Data:

1909 known molecules, 42 actively 
binding to thrombin.

636 new compounds, unknown 
binding.

Each compound: 139,351 binary 
features of 3D structure.

(Data provided by DuPont
Pharmaceuticals.)
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See more on the web… 

! www.support-vector.net/bioinformatics.html

! (a non exhaustive list also attached to your handouts, 
just to give an idea of the diversity of applications)

www.support-vector.net

Conclusions:

! Much more than just a replacement 
for neural networks

! General and rich class of pattern 
recognition methods

! Very effective for wide range of 
bioinformatics problems
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Links, References, 
Further Reading:

Book on SVMs: www.support-vector.net
This tutorial: www.support-vector.net/tutorial.html
References: 
www.support-vector.net/bioinformatics.html
Kernel machines website: www.kernel-machines.org
More slides:  www.cs.berkeley.edu/~nello


