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Topics Covered

� Background (Projective Geometry)

� Single View

� Double View

� Triple View

� N-view

� Robust parameter estimation



‘Projective’ Geometry

� Study relations between different 
classes of coordinate transformations

�Maintain Co-linearity (iff XXXX’’’’=HXHXHXHX)

� Not necessarily maintain

�Angle and length (Euclidean)

�Angle and relative length (similarity)

� Parallelism, line and plane at infinity 
(affine)

� Intersection and tangency (projective)



Class Diagram

� Note that perspective camera projection is notnotnotnot in 
the hierarchy

� Projective geometry does not, theoretically, have 
to involve cameras (e.g. Euclidean)

� But many concepts are very useful in camera 
calibration and image analysis

SimilarityEuclidean Affine Projective



Invariants
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Transformation Hierarchy

� Rectification

� What information 
(constraint) needed to be 
supplied to go up in the 
hierarchy

� Additional information 
limits the degrees of 
freedom

� Rectification is a 
mathematic process of 
limiting DOFs of H H H H 
(camera or not)

63Euclidean 

74Similarity

126Affine

158Projective

3D2D



Decomposition of projective 
transformations
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Decomposition of projective 
transformations
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Decomposition of affine 
transformations
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� Nonsingular matrix AAAA has a QRQRQRQR
decomposition

�QQQQ is orthogonal (rotation)

�RRRR is upper triangular



Important Relationship in 2D

� Point

� xxxxTllll=0

� llll = xxxx1 x xxxx2 (l.l.l.l.xxxx1 =l.l.l.l.xxxx2 
=0)

� xxxx’=HxHxHxHx

� Line

� llllTxxxx=0

� xxxx = llll1 x llll2 (x.x.x.x.llll1 =x.x.x.x.llll2 
=0)

� llll’=HHHH-Tllll (llllTHHHH-1HxHxHxHx=0)

� Point conic

� xxxxTCxCxCxCx====0

� (H(H(H(H----1111xxxx’’’’ ) ) ) ) TC(HC(HC(HC(H-1 xxxx’’’’)=      )=      )=      )=      
xxxx’’’’ TTTTHHHH----TCHCHCHCH-1xxxx’’’’ ====0

� CCCC’’’’=H=H=H=H----TCHCHCHCH-1

� Line conic

� llllTTTTCCCC*l=*l=*l=*l=0

� ((((HHHHTTTTllll’’’’ ) ) ) ) TC*(HC*(HC*(HC*(HT llll’’’’ )=      )=      )=      )=      
llll’’’’TTTTHCHHCHHCHHCHTllll’’’’ ====0

� C*C*C*C*’’’’=HC*H=HC*H=HC*H=HC*HT



Important Relationship in 2D (cont.)

� Point at infinity

� (rx,ry,1) r-> infinity

� (x,y,0)

� (x,y,0).(0,0,1) = 0

� Line at infinity

� (a b).(x y) = r, r-> 
infinity

� (0,0,1) 

� (0,0,1).(x,y,0) =0

� Degenerate point 
conic

� C=lmlmlmlmT+mlmlmlmlT, llllllllT

� Rank two, rank one

� Null space xxxx = l x ml x ml x ml x m

� Degenerate line 
conic

� C* = xyxyxyxyT + yxyxyxyxT,xxxxxxxxT

� Rank two, rank one

� Null space llll = x x yx x yx x yx x y

Absolute dual conic is degenerate line conics



Dual Relationship of Pole and Polar in 

2D for Point and Line Conic

� Point conic xxxxTTTTCxCxCxCx=0

� Tangent CCCCTTTTxxxx

� Pole not on the conic xxxx

� Polar line CxCxCxCx

� Point on polar line 
yyyyTTTTCxCxCxCx=0=0=0=0

� Point also on conic 

� Pole on tangent line 
(CCCCTTTTy)y)y)y)TTTTxxxx=0=0=0=0

� Line conic llllTTTTCCCC*l*l*l*l=0

� Tangent point C*C*C*C*TTTTllll

� Polar not tangent to conic llll

� Pole C*lC*lC*lC*l

� Line passing through pole 
mmmmTTTTCCCC*l=0*l=0*l=0*l=0

� Line tangent to conic 

� Polar passing through 
contact (C*C*C*C*TTTTm)m)m)m)TTTTllll=0=0=0=0

x

Cx

y

C*l

l

C*Tm

m



Measuring Line Direction

� Point conic 

� At line of infinity

� Line of infinity 
encodes direction

� Line conic

� In plane

Pole-polar relation is projective invariant



Dual Relationship in 2D

� Circular points

� On line of infinity 

� Dual conic

� Degenerate line conic

� mmmmTTTTCCCC*l=0, C*=IJ*l=0, C*=IJ*l=0, C*=IJ*l=0, C*=IJT+JI+JI+JI+JIT

� Measure line
orientation



Important Relationship in 3D

� Point

� PPPPTXXXX=0

� XXXX’’’’=HX=HX=HX=HX

� Plane

� XXXXTPPPP=0

� PPPP’’’’ = H= H= H= H----TTTTPPPP

� Point quadric

� XXXXTQX=QX=QX=QX=0

� (H(H(H(H----1111XXXX’’’’ ))))TQ(HQ(HQ(HQ(H----1 1 1 1 XXXX’’’’)=      )=      )=      )=      
XXXX’’’’ TTTTHHHH----TQHQHQHQH----1111XXXX’’’’ ====0

� QQQQ’’’’=H=H=H=H----TQHQHQHQH----1111

� Plane quadric

� PPPPTQ*P=Q*P=Q*P=Q*P=0

� (H(H(H(HTTTTPPPP’’’’ ) ) ) ) TQ*(HQ*(HQ*(HQ*(HTPPPP’’’’ )=      )=      )=      )=      
PPPP’’’’TTTTHQ*HHQ*HHQ*HHQ*HTPPPP’’’’ ====0

� Q*Q*Q*Q*’’’’=HQ*H=HQ*H=HQ*H=HQ*HT



Dual Relationship of Pole and Polar in 
3D for Point and Plane Quadric

� Point quadric XXXXTTTTQXQXQXQX=0

� Tangent plane QQQQTTTTXXXX

� Pole not on the 
quadric XXXX

� Polar plane QXQXQXQX

� Point on polar plane 
YYYYTTTTQX=0QX=0QX=0QX=0

� Point also on quadric 

� Pole on tangent plane   
(QQQQTTTTY)Y)Y)Y)TTTTX=0X=0X=0X=0

� Plane quadric PPPPTTTTQ*PQ*PQ*PQ*P=0

� Tangent point Q*Q*Q*Q*TTTTPPPP

� Polar plane not tangent to 
quadric PPPP

� Pole Q*PQ*PQ*PQ*P

� Plane passing through pole 
SSSSTTTTQ*P=0Q*P=0Q*P=0Q*P=0

� Plane tangent to quadric 

� Polar passing through 
contact (Q*Q*Q*Q*TTTTS)S)S)S)TTTTP=0P=0P=0P=0



Measuring Direction in 3D

� Line Direction

� Point conic in 
plane of infinity

� Line conic in space

� Plane direction

� Plane quadric in 
space



A Hard to Visualize (but 
extremely important!) Concept

� A plane contains a 
line at infinity 
(0,0,1)

� Line at infinity 
contains two 
circular points (or 
a degenerate 
conic)

� 3D space contains 
a plane at infinity 
(0,0,0,1)

� Plane at infinity 
contains an 
absolute conic

� Line at infinity lies on plane at infinity 

� Two circular points lie on the absolute 
conic
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Proof

� Line at infinity lies 
on plane at infinity

� (or point at infinity 
lies on plane at 
infinity)

� Circular points lie 
on absolute conic
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A Hard to Visualize Concept

3D plane

Line at infinity

� All circles 
intersect AC in 
two points 
(circular points)

� All spheres 
intersect plane 
at infinity in AC



Comparing 2D and 3D
for Line

� Dual conic

� Line conic

� In line of infinity

� Pole-and-polar 
relation

� Line orientation

� Absolute conic

� Point conic

� In plane of infinity

� Pole-and-polar 
relation

� Line orientation
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Dual Relationship in 3D

� Absolute conic 
(AC)

� On line of infinity 

� Backproject into 
ADQ

� Measure line
orientation

� Absolute dual 
quadric (ADQ)

� In space

� Project into 
ADC

� Measure plane
orientation
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Comparing 2D and 3D

� 2 points

� In line of inf

� Line conic

� Line orientation

� Point conic

� In plane of infinity

� Line orientation

� Image of absolute 
conic in image

� Dual quadric

� In space

� Plane orientation

� Image of absolute 
dual conic in 
image



Rectification 

� 2D

� HHHH fixes line of 
infinity if and only 
if HHHH is affine

� HHHH fixes circular 
points if and only 
if HHHH is similarity

� 3D

� HHHH fixes plan of 
infinity if and only 
if HHHH is affine

� HHHH fixes AC and 
DAQ if and only if 
HHHH is similarity



More Details (Repetition)

� Line in space

� Point in P.o.I

� Absolute conic in 
P.o.I

� Plane in space

� Line in P.o.I

� Absolute dual 
quadric in space
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Why We Even Care? (2D version)

� Because in 2D pole and polar relationship 
is projective invariant
� For point conic yyyyTTTTCxCxCxCx=0=0=0=0
� For line conic mmmmTTTTCCCC*l=0*l=0*l=0*l=0

� mmmm’’’’TTTTCCCC****’’’’llll’’’’=(H=(H=(H=(H----TTTTm)m)m)m)TTTTHCHCHCHC*H*H*H*HTTTT (H(H(H(H----TTTTllll)=)=)=)=mmmmTTTTCCCC*l*l*l*l

� This means that 
� known (orthogonal) directions in space
� Measured them in images  (no longer orthogonal, but 
still satisfy pole-polar relationship)

� Constraint on HHHH
� In regular Cartesian frame

� C* C* C* C* is the absolute dual conic

� In projective frame
� C*C*C*C*’’’’ is the image of absolute dual conic (iadc)



Angles In 2D Case

� I, JI, JI, JI, J are circular points

� Absolute dual conic is a degenerate 
conic (null space is line at infinity)
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Angles in 3D Case -Line

� Absolute (point) conic is a conic on the 
plane at infinity 
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Angles in 3D Case -Plane

� Absolute dual quadric is a degenerate 
quadric (null space is plane at infinity)
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Why We Even Care? (3D version)

� Because in 3D pole and polar relationship 
is again projective invariant
� For absolute conic lTTTT ΩΩΩΩ m=0 m=0 m=0 m=0 (for line)

� For absolute dual quadric SSSSTTTTQ*P=0 Q*P=0 Q*P=0 Q*P=0 (for plane)

� SSSS’’’’TTTTQQQQ’’’’*P*P*P*P’’’’=(=(=(=(HHHH----TTTTSSSS))))TTTTHQ*HHQ*HHQ*HHQ*HTTTT (H(H(H(H----TTTTP)P)P)P)= = = = SSSSTTTTQ*PQ*PQ*PQ*P

� This means that 
� known (orthogonal) directions in space

� Measured them in image of a3D scene

� Constraint on HHHH

� In regular Cartesian frame

� ΩΩΩΩ , Q* , Q* , Q* , Q* is the absolute conic and absolute dual quadric

� In projective frame

� ω, ω∗ ω, ω∗ ω, ω∗ ω, ω∗ are iac and iadc



Rectification

� Rectification is a mathematic process of 
limiting DOFs of H H H H (camera or not)

� If HHHH is to be decomposed further into 
camera matrix may not be considered 
(inner working of HHHH not recovered)

� Cameras can be treated as a projective 
device 

� Affine camera

� Induce affine transform

� Perspective (pinhole) camera

� Induce projective transform



Rectification Under Homography

� Same camera center � Different camera 
centers, but planar 
structure



Removing projective distortion #1
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Select four points in a plane with know coordinates

(linear in hij)

(2 constraints/point, 8DOF ⇒ 4 points needed)

Remark: No camera calibration necessary

Overkill, from projective to similarity are only 4 DOFs away



Removing Projective Distortion #2

� From projective to affine

� Locate and move line of infinity

� From affine to similarity

� Locate and move circular points



2D Rectification Hierarchy
� From perspective to 
affine

� HHHH preserves line of 
infinity if and only if
HHHH is affine

� From affine to similarity

� HHHH preserves absolute 
conic (or circular points) 
if and only if HHHH is 
similarity

0

0

1

0

0

'

'

0

0

0

1

0

)(

1

0

0

1

0

0

1
')(

32

333231

232221

131211

31

333231

232221

131211

=→

































=

















=→

































=

















⇒

=

















=


























−
==⇐ ∞−−

−

∞

−

∞

h

hhh

hhh

hhh

y

x

h

hhh

hhh

hhh

y

x

TT

T

T

A l
At

0A
lHl

0vAA

vvAv

AvAA

t

vA

v

tA

C

t

0R

0

tR
HCHC

==→









=

































⇒

=

















=


































==⇐

,1

0

1

1

)(

*

0

1

1

1
0

1

1

1
**')(

2

T

TTT

T

T

T

T

T

T

T

T

ss

vv

s

ss



Affine rectification
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Distance ratios
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Metric from affine
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Image Formation

� Specialization: camera is used as 
the projective device

� Need to understand projection 
relationship of point, line, plane, 
conic, quadric, etc.

� Need to dissect the camera matrix 

� Planar homography (discussed 
above) is a special case where 3D 
object is planar



Projective Relationship

� Point

� x=PXx=PXx=PXx=PX

� X=X=X=X=PPPP++++xxxx (PPPP+=PPPPT(PPPPPPPPT)-1, 
PPPPPPPP+=I)

� Line

� Backprojection

� π= PPPPTllll

� ((((xxxxTllll====0, (, (, (, (PX)PX)PX)PX)Tllll=0, =0, =0, =0, 
XXXXT ((((PPPPTllll)=0))=0))=0))=0)

[ ]

xKd

xK
x

0

K
xP

I
0

K
0K

IPP

1

11

1

0

−

−−

+

−

+

=









=








=

=







⇒

=

T

T

lKn

lK
l

0

K

lP

T

T

T

T

T

=









=








=

=

0

π



More Projective Relationships

Point Conics Line Conics

Point Quadrics Plane Quadrics

Projection? Projection?Back-projection Envelop

Dual

Dual



Point Quadrics and Conics

� Under the camera PPPP a conic CCCC back 
projects into a cone QQQQ= PPPPTTTTCP CP CP CP 

�Cone is a degenerate quadricCone is a degenerate quadricCone is a degenerate quadricCone is a degenerate quadric

�Camera center is the null spaceCamera center is the null spaceCamera center is the null spaceCamera center is the null space
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Plane Quadrics and Line Conics

� Under the camera matrix P the 
outline of the quadric Q is the conic 
given by CCCC*=PQ*PPQ*PPQ*PPQ*PT
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Camera Calibration (cont.)

� Why? Because we are interested in similaritysimilaritysimilaritysimilarity
reconstruction 
� xxxx =PXPXPXPX implies xxxx = (PHPHPHPH-1)(HXHXHXHX) 

� Even if we can perform reconstruction, the 
structure recovered is only up to HXHXHXHX (preserves 
co-linearity), which is not very useful

� How does calibration help?
� xxxx =KR[I|0]X!= KR[I|0]HKR[I|0]X!= KR[I|0]HKR[I|0]X!= KR[I|0]HKR[I|0]X!= KR[I|0]H-1H XH XH XH X

� If we know KKKK, you cannot fake R,R,R,R, except with 
another RRRR’’’’ (RHRHRHRH----1111 is not RRRR in general)

� Reconstruction is similar to the original scene
� Angle, relative length can be measured



Proof

� You can fool the camera (the same 
image and the same parameters) by

�Using PHPHPHPH----1111 as projection matrix (with 
the same KKKK)

�Using HXHXHXHX as the 3D scene

�The matrix structure dictates similarity
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Uncalibrated Camera

� The same trick won’t work if you 
don’t know KKKK

�M M M M has an RQ decomposition where

�R R R R is upper triangular

�QQQQ is orthogonal
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Camera Calibration (cont.)

� Camera calibration does not give 

�Absolute scale

�Absolute location

�You cannot tell if you are flying over 
New York City or flying over a model of 
New York City in Santa Barbara

�The best you can hope for with a single 
camera with no object of known scale





Camera Calibration

� There are two components

� Intrinsic parameters: independent of 
placement, dependent on camera used

� Extrinsic parameters: dependent on 
placement, independent of camera used

� Projective geometry constraint is on 
intrinsic parameters only

�Other constraints have to be brought 
in to determine placement



Dissecting Camera Matrix

� x=PX

�
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More Simplification

� In a camera-centered coordinate 
frame

�RRRR is identity

�CCCC is (0,0,0)

� PPPP= KRKRKRKR[IIII|-CCCC] =KKKK[IIII|0000]

� For affine camera, the camera 
center is at infinity and the focal 
length increase to infinity

� PPPP becomes an affine matrix



3D Rectification Hierarchy
� From perspective to 
affine

� HHHH preserves plane of 
infinity if and only if
HHHH is affine

� From affine to similarity

� HHHH preserves absolute 
conic (or absolute dual 
quadric) if and only if HHHH
is similarity
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More Details (Repetition)

� Line in space

� Point in P.o.I

� Absolute conic in 
P.o.I

� Plane in space

� Line in P.o.I

� Absolute dual 
quadric in space
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More Details (Repetition)
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Comparison

� 2D planar 
homography
� Plane to plane 
correspondence

� Move line of 
infinity

� Recover circular 
point

� Similarity 

� 3D planar 
homography

� Image plane and plane 
at infinity 
correspondence

� ?

� Recover absolute 
conic and dual 
absoluate conic

� Similarity 
(determining intrinsic 
parameters)



Stratified Reconstruction in 3D

� Not able to move plane of infinity –
it is everywhere

� Plane of infinity contains the three 
vanishing points



Stratified Reconstruction in 3D

� Parallel lines (of a single direction) 
on parallel planes have a single 
vanishing point (point at infinity)

� Different sets of parallel lines (of 
multiple directions) on parallel 
planes have vanishing points on a 
single vanishing line (line at infinity)

�Multiple sets of parallel planes (of 
multiple directions) have multiple 
vanishing lines (plane at infinity)



Measuring Directions Using camera

� For image points � For image lines
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An Important Homography Relation

� Images of plane at infinity and image 
plane form a planar homography
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Projection of AC and ADQ

� Image of absolute 
conic (iac)

� Image of absolute 
dual quadric (iadc)
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But How?  

� The pole-polar relation
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� Similar to planar homography case, 
where conic of circular points 
determines pole-polar relationship 
in a plane (special case)



General Procedure

�Measure 2D image points (x1, x2x1, x2x1, x2x1, x2)

� Relate that to 3D direction (d1, d2d1, d2d1, d2d1, d2)

� Impose constraints on θ (e.g., some 
directions are orthogonal)

� But how do we know two directions 
are perpendicular? 
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θ



Yet Another Dual Relation

� Vanishing point

� Images of lines

� Invariant measure 
using AC

� Vanishing line

� Images of planes

� Invariant measure 
using IAC

point vanishing
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Proof for Vanishing Points
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Proof for Vanishing Lines
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Vanishing lines



Vanishing Points and Vanishing Lines

� If you can locate vanishing points 
and lines in images, then you can 
know their 3D directions (in 
camera’s coordinate system)

� Using domain knowledge you can 
impose constraints on KKKK



A Hybrid Relation

� For a line and a plane in space

�We have a point (x) and a line (l) in 
image

� l=l=l=l=wxwxwxwx, x=w*l , x=w*l , x=w*l , x=w*l if they are orthogonal

� Proof left as an exercise



� compute H for each square 

� (corners � (0,0),(1,0),(0,1),(1,1))

� compute the imaged circular 
points H(1,±i,0)T

� fit a conic to 6 circular points

� compute KKKK from wwww through 
Cholesky factorization

Using Homography



Using Other Relationships

� Image plane

� Two vanishing 
points

� 1 vanishing point 
+ 1 vanishing line

� Plane

� 3D space

� Two orthogonal 
lines

� Orthogonal line 
and plane

� Plane


