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Unsupervised Clustering

 Training samples are not labeled

 May not know

 how many classes

 a prior probability 

 state-conditional probability

 Automatic discovery of structures 

 Intuitively, objects in the same class stick 

together and form clusters

P i( )

p x i( | )



3PR , ANN, & ML

 Locating groups (clusters) having similar 

measurements

Given x x x unlabelled

partition in to C clusters
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Unsupervised Clustering (cont)
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Similarity Measure

 Need a similarity measurement s(x,x’)

 (e.g., distance between x and x’ )
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Similarity Measure (cont.)

 How to set the threshold? 

 Too large all samples assigned into a single class

 Too small each sample in its own class

 How to properly weight each feature?

How do brightness of a fish and length of a fish 

relate?

How to scale (or normalize) different measures? 
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Axis Scaling
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Axis Scaling (cont.)
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Threshold
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Criteria for Clustering

 A criterion function for clustering
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 Within and Between group variance

minimize and maximize the trace and 

determinant of the appropriate scatter matrix

 trace: square of the scattering radius

 determinant: square of the scattering volume
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Pathology: when class sizes differ
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 Relaxed constraint
 Allow the large class to 

grow into smaller class

 Stringent constraint
 Disallow large class and 

split it
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K-Means Algorithm

(fixed # of clusters)

 Arbitrarily pick N cluster centers, assign 

samples to nearest center

 Compute sample mean of each cluster

 Reassign samples to clusters with the 

nearest mean (for all samples)

 Repeat if there are changes, otherwise stop
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K-Means

 In some sense, it is a simplified version of 

the case II of learning parametric form 
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Fuzzy K-Means

 In Matlab, you can find k-mean (it is called 

c-mean) under fuzzy logic toolbox

 It implements fuzzy k-mean 

Where membership function is not 1 or 0, but 

can be fractional
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Iterative K-means
 Iterative refinement of clusters to minimize

 Each step: move a sample from one to another
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1. Select an initial partition of the n samples into   
clusters and compute 

2. Select the next candidate sample

3. If the current cluster is larger than 1, then

4. Transfer 

5. Update 
6. If J has not changed in n attempts, stop,   otherwise 

go back to 2. 
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Hierarchical Clustering

K-means assume a “flat” data 

description

Hierarchical descriptions are more 

frequently
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Hierarchical clustering (cont.)

 Samples in the same cluster will remain so 

at a higher level
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 Bottom-up:  agglomerate

 Top-down:   divisive
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 At a certain step, we have c classes
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 Then certain criteria function will increase 
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 In fact, the criteria function can be chosen 

in many different ways, resulting in 

different clustering behaviors
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•Starting from every sample in a cluster

•Merge them according to some criteria function

•Until two clusters exist
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In Reality

 With n objects, the distance matrix is n x n

 For large databases, it is computationally 

expensive to compute and store the matrix

 Solution: storing only k nearest clusters in 

the distance matrix: complexity is k x n
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Divisive Clustering

 Less often used

 Have to be careful that criterion function 

usually decreases monotonically (the 

samples become purer each time)

 Natural grouping is the one where a large 

drop in impurity occurs

iteration

impurity
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ISODATA Algorithm

 Iterative self-organizing data analysis 

technique

 A tried-and-true clustering algorithm 

 Dynamically update # of clusters

 Can go both top-down (split) and bottom-up 

(merge) directions
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Notation:

merged be can that clusters ofnumber  maximum

mergingfor  distance maximum

splittingfor  spread maximum

clusters ofnumber  (desired) eapproximat

clustera  in samples ofnumber  on threshold

maxN

D

N

T

m

s
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Algorithm

 1. Cluster the existing data into Nc clusters but 
eliminate any data and classes with fewer than T 
members, decrease Nc. Exit when classification of 
samples has not changed

 2. If iteration odd and 

 Split clusters whose samples are sufficiently disjoint, 
increase Nc

 If any clusters have been split, go to 1

 3. Merge any pair of clusters whose samples are 
sufficiently close

 4. Go to step 1 
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c NNor
N

N 2
2
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Step 1

Classify samples according 

to nearest mean

Discard samples in clusters 

< T samples, decrease Nc

Recompute sample 

mean of each cluster

Change in classification?

Parameter T

yes

no
exit
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 Compute for each cluster
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 Compute for each pairs of clusters

|| jiijd μμ 

Sort distance from smallest to largest less than Dm

Step 3
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Spectral Clustering

 Graph theoretical approach 

 (Advanced) linear algebra is really 

important

 A field by itself 

 Cover the basics here 

PR , ANN, & ML
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Graph notations

 Undirected graph G = (V, E)

V = {v1, …, vn} are nodes (samples)

 E  = {ei,j| 0<=i,j<n} are edges, with weights 

(similarity) wi,j

W: adjacency matrix with entries wi,j

D: degree matrix (diagonal) with entries

A: subset of vertices, \bar{A}: complement 

V\A 

 1A = (f1, … fn)
T, fi=1 if i in A and 0 otherwise

PR , ANN, & ML
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More graph notations

 Size of subset A in V

Based on # of vertices

Based on its connections

 Connected component A

Any two vertices in A can be joined by a path 

where all intermediate points lie in A

No connection between A and \bar{A}

 Partition with A1, …, Ak, if 

PR , ANN, & ML
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Similarity Definitions

RBF (fully connected or thresholded): 

 E.g, Gaussian kernel gives wi,j

 e-neighborhood graph: 

Connect all points whose pairwise distances less 

than e

K-nearest neighbor:

 vi and vj are neighbors if either one is a kNN of the 

other 

Mutual k-nearest neighbor:

 vi and vj are neighbors if both are a kNN of the other 

PR , ANN, & ML
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Graph Laplacian: L = D - W
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One connected component
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Multiple connected components

PR , ANN, & ML



47

Normalized Laplacian

PR , ANN, & ML
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Unnormalized Spectral Clustering

PR , ANN, & ML
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Normalized Spectral Clustering

PR , ANN, & ML
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Toy Example

 Random sample of 200 points drawn from 4 

Gaussians 

 Similarity based on

 Graph

 Fully connected or

 10 nearest neighbors 

PR , ANN, & ML
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Min-Cut Formulation

 If the edge weight represents degree of similarity, 

optimal bi-partitioning of a graph is to minimize 

the cut (so called min-cut problem) 

 Intuition: Cut the connection between dis-similar 

samples, hence,  edge weight (similarity) should 

be small
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Problem with Min-cut

 Tends to cut out small regions

 Sum weight (green + red + blue) = constant

Min-cut minimizes sum of weights of blue 

edges, with no regard to green and red (half of 

the picture)
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Remedy
 Distribute the total weight such that 

 Sum of weights of the blue edges are 

minimized

Max between group variance

 Sum of weights of the red (green) edges are 

maximized

Min within group variance
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Normalized Cut

 Penalize cutting out small, isolated clusters 

set vertex full :
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Normalized Cut (cont.)

 Penalize cutting out small, isolated clusters 

 Small blue

 Small red (or green)
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Intuition
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 Assoc reflects intra-class connection which 

should be maximized

 Ncut represents inter-class connection which 

should be minimized
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Solution

 How do you define similarity? 

Multiple measurements (i.e., a feature vector) 

can be used

 How do you find the minimal normalized 

cut? 

 Solution turns out to be a generalized eigen

value problem!
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 Hence, the second smallest eigen vector 

contains the minimal cut solution (in 

floating point format)

 Even though computing all eigen 

vectors/values are expensive O(n^3), 

computing a small number of those are not 

that expensive (Lanczos method)

 Recursive applications of the procedure
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Results
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