Unsupervised Clustering




Unsupervised Clustering

<« Training samples are not labeled

< May not know
2 how many classes
2 a prior probability
0 state-conditional probability P(X|@;)
< Automatic discovery of structures

2 Intuitively, objects In the same class stick
together and form clusters

P(a;)
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Unsupervised Clustering (cont)

< Locating groups (clusters) having similar

measurements

Given N={X{,X,,..., X, Hunlabelled)
partition in to C clusters N;,%,,...,8¢

PR, ANN, L ML



Similarity Measure

<« Need a similarity measurement s(Xx,X’)

2 (e.g., distance between x and X’ )
Minkowski Metric

d(x,y) =C_ K~V 999, q=1

Mahalanobi s Distance

d(X,y)=XX—Y)Z " (X—Y)
Normalized inner product

d(x,y) ==
<l
Commonality (for binary features)
Xy
d (X, — =
(X,¥) 3

PR, ANN, L ML



Similarity Measure (cont.)

< How to set the threshold?

0 Too large all samples assigned into a single class
2 Too small each sample in its own class

«» How to properly weight each feature?

2 How do brightness of a fish and length of a fish
relate?

0 How to scale (or normalize) different measures?

PR, ANN, L ML



Axis Scaling
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Axis Scaling (cont.)
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% 1. Secaling the samples changes the apparent clustering.

[S]

|8

How do you compare the brightness of fish in one dimension with the length of the
fish in another dimension?
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Threshold
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Criteria for Clustering

<« A criterion function for clustering

=Y Tlx-m [ m =Y

i:]. XENi | XENi

PR, ANN, L ML



Criteria for Clustering (cont.)

<« Within and Between group variance

O minimize and maximize the trace and
determinant of the appropriate scatter matrix

Q trace: square of the scattering radius
0 determinant: square of the scattering volume

Sy :ZC:Z(X_mi)(X_mi)t m; = ZX

XeNi n I XENi

S, :chni(mi -m)(m.—m)" m =£ZX

PR, ANN, L ML 11



Pathology: when class sizes differ

< Relaxed constraint

0 Allow the large class to
grow into smaller class

Jo. = large

J. = small

<« Stringent constraint

0 Disallow large class and
c split it

12



K-Means Algorithm
(fixed # of clusters)

<« Arbitrarily pick N cluster centers, assign
samples to nearest center

«» Compute sample mean of each cluster

<« Reassign samples to clusters with the
nearest mean (for all samples)

<« Repeat If there are changes, otherwise stop

PR, ANN, L ML 13
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K-Means

<« In some sense, It is a simplified version of
the case Il of learning parametric form

p(X, |Wi’éi)|5(wi)

IS(Wi |Xk"§) -
> p(x [w;,60,)P(w))
j=1

+ In stead of multiple membership, give the
sample to whichever class whose mean Is
closest to it

|5(w X é)_ 1 class with closest class mean
4 257w otherwise

PR, ANN, L ML 17



Fuzzy K-Means

<« In Matlab, you can find k-mean (it is called
c-mean) under fuzzy logic toolbox
« It Implements fuzzy k-mean

2 Where membership function is not 1 or 0, but
can be fractional

PR, ANN, L ML
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lterative K-means

0 lterative refinement of clusters to minimize

J= ZC:ZIX—m.F i =— Zx

=1 XeN; | XeN;

0 Each step: move a sample from one to another

X from N;to N,

X_m * n A
m=m, — L ) =) ———|%x-m, [
n -1 n -1
)A(_mj * j 2
mx=m,+ Jj :JJ+ |x—mj|
nj+1 nj+1
N S -
—[&-m, [’>——|&-m, |
n—1 1

PR, ANN, L ML 19



1. Select an initial partition of the n samples into
clusters and compute J, my,..., m,

2. Select the next candidate sample R
3. If the current cluster is larger than 1, then

j S 2 -
—m. = |
Inj_1| s |
il n.
’ |)A(—mj|2 ] =1
nj+1
4. Transfer

RN If p < p; forall |

5. Update  J,M; My
6. If J has not changed in n attempts, stop, otherwise
go back to 2.

PR, ANN, L ML
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Hierarchical Clustering

< K-means assume a “flat” data
description

<« Hierarchical descriptions are more
frequently

PR, ANN, L ML
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Hierarchical clustering (cont.)

< Samples In the same cluster will remain so

at a higher level
level

1 AR\

PR, ANN, L ML 22



Hierarchical clustering Options

<+ Bottom-up: agglomerate
+» Top-down: divisive

1LetC =nand X ={x;....X, }

2.1f € < c, stop

3.Find the nearest pairof distinct clusters, ;and¥ ;
4.Merge N; and N;delete X ;,and decrement C byl
5.Go to 2.

PR, ANN, L ML
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Hierarchical clustering Procedure

<« At a certain step, we have c classes

|Ni |= n;, M, :nizx

i XENi

Merge two clusters 1 and j

N, =N UN,

1 1

PR, ANN, L ML
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Hierarchical clustering Procedure (cont.)
<« Then certain criteria function will increase

AE;; = le_mij |2_Z|X_mi | — Z|X_mj °

XeN;; xXeN; XeN
2 2 2
= N;m; +n;m; —(n. +nj)mij

nn

lm; —m; |
N +n,

I*,J* chosen in such a way

nn;
, 7 >=arg min |m; —m; |°=arg mi d(;,N;)
LN+, i

Until no such pair exist that cause an increase in the criteria
function less than certain preset threshold

PR, ANN, L ML
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Criteria Function

<+ In fact, the criteria function can be chosen
In many different ways, resulting in
different clustering behaviors

Nearest — neighbor (elongated classes)
(R, N;)=_min (x,y)

mln XEN;,YEN

Furthest — neighbor (compact classes)
max (N1, N ;) = max (X,Y)

XEN;,YEN

PR, ANN, L ML
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In Reality

< WIth n objects, the distance matrix isn x n

<+ For large databases, It Is computationally
expensive to compute and store the matrix

<+ Solution: storing only k nearest clusters in
the distance matrix: complexity is k x n

PR, ANN, L ML
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Divisive Clustering

< Less often used

< Have to
usually @

ne careful that criterion function
ecreases monotonically (the

samples

necome purer each time)

<« Natural grouping is the one where a large

drop In Impurity occurs

Impurity L—'

PR, ANN, L ML 31
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ISODATA Algorithm

< Iterative self-organizing data analysis
technique

<+ A tried-and-true clustering algorithm
< Dynamically update # of clusters

«» Can go both top-down (split) and bottom-up
(merge) directions

PR, ANN, L ML
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Q =z -

Z U

max

Notation:

threshold on number of samples in a cluster
approximat e (desired) number of clusters
maximum spread for splitting

maximum distance for merging

maximum number of clusters that can be merged

PR, ANN, L ML
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Algorithm

« 1. Cluster the existing data into Nc clusters but
eliminate any data and classes with fewer than T
members, decrease Nc. Exit when classification of
samples has not changed

: : N
« 2. If iteration odd and N STDOF N, <2N,

0 Split clusters whose samples are sufficiently disjoint,
Increase Nc

0 If any clusters have been split, go to 1

« 3. Merge any pair of clusters whose samples are
sufficiently close

« 4. Gotostep 1

PR, ANN, L ML
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Parameter T
|

Classify samples according
to nearest mean

!

no .
exit

>
[]

<Change In classificatior

Discard samples in clusters
< T samples, decrease Nc

Recompute sample
mean of each cluster

|

PR, ANN, L ML

Step 1
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Step 2

22 Compute for each cluster

> ly® —

k y( )ew

o; = max

i N

STy @,

k yDew,

Compute globally

=<
=—Z N, d,
N =

PR, ANN, L ML

”k,l
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Split clust Cluster centers are displaced in
plt cluster opposite direction along the axis of

largest variance

Nc= Nc+1

PR, ANN, L ML
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Step 3

<« Compute for each pairs of clusters
dij = n; — ol |

Sort distance from smallest to largest less than Dm

PR, ANN, L ML
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vd; < D,
#of merge < N .

|

Neither cluster |
nor | merged?

Mergeiandj| &

Nc= Nc-1

PR, ANN, L ML

Nno
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Spectral Clustering

« Graph theoretical approach

<« (Advanced) linear algebra is really
Important

« A field by itself

< Cover the basics here

PR, ANN, L ML
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Graph notations

<« Undirected graph G = (V, E)
aV={v,, ..., v,} are nodes (samples)
0 E ={e;;| 0<=1,j<n} are edges, with weights
(similarity) w;;
0 W: adjacency matrix with entries w;; .
0 D: degree matrix (diagonal) with entries '~ ; o

0 A subset of vertices, \bar{A}. complement
V\A

al,=(f,...f)T, fi=lifiin A and O otherwise

PR, ANN, L ML 41



More graph notations

< Slze of subset A in V
0 Based on # of vertices |A| := the number of vertices in A
0 Based on its connections vol(4) =" d..

+ Connected component A )

2 Any two vertices in A can be joined by a path
where all intermediate points lie in A

2 No connection between A and \bar{A}
+ Partition with A,, ..., A, If

A;NA; =10

PR, ANN, L ML 42



Similarity Definitions

0 RBF (fully connected or thresholded):
» E.g, Gaussian kernel gives Wi ; exp(—||zi — x4||?/(202))
2 e-neighborhood graph:

» Connect all points whose pairwise distances less
than ¢

0 K-nearest neighbor:

> V; and v; are neighbors If either one is a kNN of the
other

0 Mutual k-nearest neighbor:
> V; and v; are neighbors if both are a KNN of the other




Graph Laplacian: L=D - W

Proposition 1 (Properties of L) The matriz L satisfies the follouing properties:

1. For every vector f € R™ we have

n

1
FLf=5 Y wilfi= fi)*
i,j=1
2. L 1s symmetric and positive semi-definite.

3. The smallest eigenvalue of L 1s 0, the corresponding eigenvector is the constant one vector 1.

4. L has n non-negative, real-valued eigenvalues 0 = Ay < Ay < ... < \,,.

Proof.
Part (1): By the definition of d;,

FLE=fDf='WF=Y dif? =Y fifjus
i=1

ij=1
1 mn L T 1 T
=3 Zdz’ff —2 Z fifjwij +Z d; f? | = 2 Z wii(fi — f3)*.
i=1 ij=1 =1 ij=1

Part (2): The symmetry of L follows directly from the symmetry of W and D. The positive semi-
definiteness is a direct consequence of Part (1), which shows that f'Lf > 0 for all f € R™.

Part (3): Obvious.

Part (4) 12 a direct coneealience of Parte (1) - (2) m



One connected component

Proposition 2 (Number of connected components and the spectrum of L) Let G be an undi-
rected graph with non-negative weights. Then the multiplicity k of the eigenvalue 0 of L equals the
number of connected components Aq,.... A, in the graph. The eigenspace of eigenvalue 0 is spanned
by the indicator vectors 1a,, ..., 14, of those components.

Proof. We start with the case k& = 1, that is the graph is connected. Assume that f is an eigenvector
with eigenvalue 0. Then we know that

T
0=f'Lf=">Y wy(fi—f;)>
i,j=1
As the weights w;; are non-negative, this sum can only vanish if all terms w;;( f; — f;)? vanish. Thus,
if two vertices v; and v; are connected (i.e., w;; > 0), then f; needs to equal f;. With this argument
we can see that f needs to be constant for all vertices which can be connected by a path in the graph.
Moreover, as all vertices of a connected component in an undirected graph can be connected by a
path, f needs to be constant on the whole connected component. In a graph consisting of only one
connected component we thus only have the constant one vector 1 as eigenvector with eigenvalue 0,
which obviously is the indicator vector of the connected component.




Multiple connected components

Proposition 2 (Number of connected components and the spectrum of L) Let G be an undi-
rected graph with non-negative weights. Then the multiplicity k of the eigenvalue 0 of L equals the
number of connected components Aq,.... A, in the graph. The eigenspace of eigenvalue 0 is spanned
by the indicator vectors 1a,, ..., 14, of those components.

Now consider the case of & connected components. Without loss of generality we assume that the
vertices are ordered according to the connected components they belong to. In this case, the adjacency
matrix W has a block diagonal form, and the same is true for the matrix L:

Ly
Lo

Ly,

Note that each of the blocks L; is a proper graph Laplacian on its own, namely the Laplacian corre-
sponding to the subgraph of the i-th connected component. As it is the case for all block diagonal
matrices, we know that the spectrum of L is given by the union of the spectra of L;. and the corre-
sponding eigenvectors of L are the eigenvectors of L;. filled with 0 at the positions of the other blocks.
As each L; is a graph Laplacian of a connected graph, we know that every L, has eigenvalue 0 with
multiplicity 1, and the corresponding eigenvector is the constant one vector on the i-th connected
component. Thus, the matrix L has as many eigenvalues 0 as there are connected components, and

the corresponding eigenvectors are the indicator vectors of the connected components. O
T "

PR, ANN, L ML 46



Normalized Laplacian

Ls}rm = D_IKELD—le . D—l;'EI__{_;D_lfg
Lw:=D'L=1-D"'W.

Proposition 3 (Properties of L.y, and L,y) The normalized Laplacians satisfy the following prop-
erties:

1. For every [ € R™ we have

2
1 ; j
J_.(-;'Lsymf = E Z 'wij (\;d_ - \'/fd_) .

i.j=1

2. X is an eigenvalue of L., with eigenvector u if and only if A is an eigenvalue of L, with
eigenvector w = DV/24.

3. A s an eigenvalue of L, with eigenvector u if and only if A and u solve the generalized eigen-

problem Lu = ADu.

4. 0 1s an eigenvalue of L, with the constant one vector 1 as eigenvector. 0 is an eigenvalue of
Loy with eigenvector DY/2q,

5. Leym and L., are positive semi-definite and have n non-negative real-valued eigenvalues 0 =
A< <A,




Unnormalized Spectral Clustering

Unnormalized spectral clustering

Input: Similarity matrix S € R™™", number Lk of clusters to construct.

e Construct a similarity graph by one of the ways described in Section 2. Let W
be i1ts weighted adjacency matrix.

Compute the unnormalized Laplacian L.

Compute the first k eigenvectors wy,...,ui of L.

Let U € R"** be the matrix containing the vectors wuy,...,u}; as columns.

For +=1.....n, let y; € R* be the vector corresponding to the i:-th row of U.
Cluster the points (yé)izll_ﬂﬂ in R* with the k-means algorithm into clusters
Ci,...,Cg.

Output: Clusters Ap....,Ap with A; = {j|y; € C;}.

PR, ANN, L ML 48



Normalized Spectral Clustering

Normalized spectral clustering according to Shi and Malik (2000)

Input: Similarity matrix S € R™*"™, number k of clusters to construct.
e Construct a similarity graph by one of the ways described in Section 2. Let W

be its weighted adjacency matrix.

e Compute the unnormalized Laplacian L.
e Compute the first k generalized eigenvectors uq,.... uy, of the generalized eigenprob-

£ 4

lem Lu = ADu.

o Let [/ = R™** be the matrix containing the vectors wuj,...,uj; as columns.
e For 1 =1,....,n, let y; € R* be the vector corresponding to the i-th row of U.

Cluster the points (yz-)g-zll___,ﬂ in R* with the k-means algorithm into clusters
Ch,...,.C%.

Output: Clusters Aj..... A with A; = {j|y; € C;}.

PR, ANN, L ML 49
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Toy Example

< Random sample of 200 points drawn from 4
Gaussians

< Similarity based on  s(zi.z) = exp(~|a; — ;?/(20%) with & = 1.
« Graph

a Fully connected or

2 10 nearest neighbors

PR, ANN, L ML 51



Min-Cut Formulation

<« |f the edge weight represents degree of similarity,
optimal bi-partitioning of a graph is to minimize
the cut (so called min-cut problem)

<+ Intuition: Cut the connection between dis-similar
samples, hence, edge weight (similarity) should
be small

Feature
space

N\ cut(A,B)= > w(u,v)

|
|
|

<1

N N ueA,veB

|
]
|
|

52




Problem with Min-cut

<« Tends to cut out small regions
0 Sum weight (green + red + blue) = constant

2 Min-cut minimizes sum of weights of blue
edges, with no regard to green and red (half of
the picture)

53



Remedy

<« Distribute the total weight such that
0 Sum of weights of the blue edges are
minimized
0 Max between group variance

o Sum of weights of the red (green) edges are
maximized

2 Min within group variance

54



Normalized Cut

<« Penalize cutting out small, isolated clusters

cut(A, B) + cut(A,B) blue i blue
asso(A,V) asso(B,V) total—-red total—green

cut(A,B)= > w(u,v) (blue)

Ncut(A, B) =

ueA,veB

asso(A,V) = Zw(u,v) (green + blue = total - red)

ueA,veV

asso(B,V) = Zw(u,v) (red + blue = total - green)

ueA,vev

V :full vertex set

55



Normalized Cut (cont.)

<« Penalize cutting out small, isolated clusters
2 Small blue
2 Small red (or green)

NCUt(A, B) = SULAB) _ cut(AB) __ blue blue

= +
asso(A,V) asso(B,V) total—-red total—green




Intuition

< ASsoc reflects intra-class connection which
should be maximized

< Ncut represents inter-class connection which
should be minimized

asso(AV)= Y wu,v)= > wu,v)+ > w(u,v)s > w(u,v)Hcut(A B)

ueA,veV ueA,veA ueA,veB ueA,veA

2, W(u.Y) Cut(A.B) _,

ueAveA

asso(A,V) y asso(AV)

assoc(A, A)+ cut(A, B) 1 assoc(B,B)+ cut(A, B) 1
asso(A,V) asso(AV) asso(B,V) asso(B,V)
assoc(A, A)+assoc(B,B)+ cut(A, B) . cut(A, B) _5
asso(A,V) asso(B,V) asso(AV) asso(B,V)
Nassoc(A, B) + Ncut(A,B) =2

J ogreen red . blue - blue
“areen+blue  red +blue  areen+blue red +blue

57



Solution

«» How do you define similarity?
d(i, ) =D W, [V~ V(|

k
0 Multiple measurements (i.e., a feature vector)
can be used

«» How do you find the minimal normalized
cut?

0 Solution turns out to be a generalized eigen
value problem!

58



_ 1_
-1
B
X, = 1
Ex
L 1 ANx1

Cw(1l)  w(l2)

w(2,1) w(2,2)

'W(N,1) w(N,2)

w(L, N) |

w(2,N)

W(N,N) |

NxN

0
d; = Y w(i, ])
dN_NxN
2.4
k - X;>0
2.4
N =|V |
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cut(A, B) s cut(A, B)

Ncut(A,B) =
asso(A,V) asso(B,V)
D Wy XX D= Wy XX
T xi>0,xj<0 4 xi<0,xj>0
2.4, 2.4,
X; >0 X; <0
B (1+x)" (D-W)(1+Xx) ! (1-x)"(D-W)1-X)
k1" D1 (1-k)1'D1
1+x 1 x €A 1—x_0 X. € A
2 |0 xeB 2 |1 x eB

di =D WX, + D Wy X = D WX, =d; — > Wy X,

X;j<0 X, >0 X;j<0 X, >0

60



y'(D—-W)y

min, Ncut(x) = min, YDy

Yy =(1+X)—b(1l-Xx)

1

1
D?2(D—-W)D 2z=4Az z=D%y

< A symmetric semi-positive-definite matrix
0 Real, >=0 eigen values

2 Orthogonal eigen vectors
1
eigenvector:z, =D%1
eigenvalue : 0

61



<+ Hence, the second smallest eigen vector
contains the minimal cut solution (in
floating point format)

<« Even though computing all eigen
vectors/values are expensive O(n"*3),
computing a small number of those are not
that expensive (Lanczos method)

<+ Recursive applications of the procedure

62



Results







