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Linear Discriminant Functions
 So far, concentrate on density functions

with a known parametric form

 shape of the function directly

 Here, learn the discriminant functions

 surface separating different clusters

what type of surfaces?

 linear (easiest!) functions (hyperplanes)
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Case I: same prior, same deviation

 Decision boundary is planar

 In the middle of the two cluster
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Case 1.A

 The partition plane is perpendicular to the line 

connecting two means 

 Scalar case

 Covariance matrices are the same and are diagonal with 

the same variance in all features
IΣ

2
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 Even with multiple classes, if they all have the 

same prior and the same deviation, then

 the decision boundaries form a Vonoroi diagram, 

or Bayes rule is a minimum Euclidean distance 

classifier

Case I.A: same prior, same deviation



7PR , ANN, & ML

Case 1.B

 The partition plane is not perpendicular to 
the line connecting two means 

 Same (but general) covariance matrices
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Case II: different prior, same deviation

 Decision boundary is still planar

 At
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feature
Class 1Class 2

Class 1 misclassified as Class 2

Class 2 misclassified as Class 1

T
Population 

(likelihood)

Graphical Interpretation in 1D
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Case III & IV: same or different prior, 

different deviation

 Decision boundary is no longer planar
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Lessons
 The decision boundaries in general are NOT linear or planar 

 Even with a single feature and a Gaussian distribution the 

boundary can be complicated

 That said, 

 planar boundaries can be used to approximate curved, disjoint 

boundaries  (a lot more on this later), “massage” the classifier

 Features can also be “massaged” 

 They are mathematically more tractable  
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Two-category case
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Decision surface (Hyperplane)
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Decision surface (Hyperplane)

||||

2211

ww

xw xwxw 




x1

x2

),( 21 xx

( , )w w1 2

g  0

g  0

g  0

||

0

w

w

||||

)(

w

wxw

w

x og 


02211021 ),( wxwxwxxg  wxw



18PR , ANN, & ML

Training Procedure

 Two-category case

Use n tagged samples                       to 

determine the discriminant function
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 Each training sample constrains w

to lie on a half plane (if             ) 
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Training Procedure (cont.)
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Training Procedure (cont.)
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 Each training sample 

constrains w to lie on a pie (if                         

,                     with margin)00 w
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Using Gradient Descent 

 A search mechanism

 Start at an arbitrarily chosen starting point

 Move in a direction (gradient) to minimize 

the cost function 

 Basic calculus, to be expected of every 

engineer after 5 minute thought 
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 Cost function (in terms of augmented feature vector [x,1])

 penalized for all samples misclassified

 Gradient direction

 Update
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Graphical Interpretation
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Graphical Interpretation (cont)

 Weight is the signed sum of samples
 The more difficult a sample is to be classified, the more 

its weight

 During classification, we have

 Only inner product of “troublesome” training samples 
and test samples are needed (a:weight, y: class)

 These two concepts are very important, they 
appear again and again later in

 Perceptron

 SVM 

 Kernel methods
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Feature (x)
Class BClass A

T
P(wi|x)

How Good can a 2-Category Classifier be?

Class B misclassified as Class A

Class A misclassified as Class B

)|()|( xx BA wPwP 

 As good as that by Bayesian rule
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feature
Class BClass A

feature
Class BClass A

< +

< +

less Class A misclassified 

< more Class B misclassified

less Class B misclassified 

< more Class A misclassified
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Implementation Details

 Difficulty: features can be correlated

Un-correlate features using SVD 

Add “regularization”

Numerically, the system is still quadratic so GD 

still works

PR , ANN, & ML
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Solving AX = B

 Row interpretation

 Each row is a line 

 Intersection of 

multiple lines 

 Or

 Each row is a plane 

 Multiple planes define 

a feasible region

 Column interpretation

 Each column is a 

vector

 Combination of these 

vectors to approximate 

B  

PR , ANN, & ML
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Non-iterative Method
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 Xw: classify training set X by learned parameter w

 X is a n (sample size) by d (dimension of data) matrix 

 w combines the columns of Xnxd to best approximate ynx1

 Combine features (FICA, income, etc.) to decisions (loan)

 y^hatnx1 is a combination of  columns of Xnxd

 What is y^hat? How close is y^hat to y (GT)?

yXXXXyXXXXHyXwy
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Graphical Interpretation
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 H projects y onto the space spanned by columns of X

 Simplify the decisions to fit the features
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Ugly Math
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Problem #1

 n=d, exact solution 

 n>d, least square, (most likely scenarios) 

 When n < d, there are not enough 

constraints to determine coefficients w

uniquely 

n

d

X=

W
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Problem #2 

 If different attributes are highly correlated 
(income and FICA)

 The columns become dependent 

 Coefficients are then poorly determined 
with high variance

 E.g., large positive coefficient on one can be 
canceled by a similarly large negative 
coefficient on its correlated cousin 

 Size constraint is helpful

Caveat: constraint is problem dependent 
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Ridge Regression (regularization)
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Ugly Math
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How to Decipher This

 Red: best estimate (y hat) is composed of 
columns of U (“basis” features, recall U and X
have the same column space)

 Green: how these basis columns are weighed

 Blue: projection of target (y) onto these 
columns

 Together: representing y in a body-fitted 
coordinate system (ui)

yuuy
T

i

i

i

i

i
λ

  2

2







40

Sidebar
 Recall that 

 Trace (sum of the diagonals) of a matrix is the 

same as the sum of the eigenvalues 

 Proof: every matrix has a standard Jordan form 

(an upper triangular matrix) where the 

eigenvalues appear on the diagonal (trace=sum 

of eigenvalues)

 Jordan form results from a similarity transform 

(PAP-1) which does not change eigenvalues
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Physical Interpretation

 Singular values of X represents the spread 
of data along different body-fitting
dimensions (orthonormal columns)

 To estimate y(=<x,wridge>) regularization 
minimizes the contribution from less 
spread-out dimensions

Less spread-out dimensions usually have much 
larger variance (high dimension eigen modes) 
harder to estimate gradients reliably

Trace X(XTX+I)-1XT is called effective 
degrees of freedom
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More Details

 Trace X(XTX+I)-1XT is called effective 

degrees of freedom

Controls how many eigen modes are actually 

used or active

 Different methods are possible

 Shrinking smoother: contributions are scaled 

 Projection smoother: contributions are used (1) 

or not used (0)
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Dual Formulation (iterative)

 Weight vector can be expressed as a sum of 

the n training feature vectors
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Dual Formulation (cont.)
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In More Details
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Observations

 Primary

 XTX is d by d 

 Training: Slow for 

high feature dimension

 Use: fast O(d)

 Dual

 Only inner products 

are involved

 XXT is n by n

 Training: Fast for high 

feature dimension

 Use: Slow O(nd)

 N inner product to 

evaluate, each requires 

d multiplications
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Graphical Interpretation
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One Extreme – Perfect Uncorrelated
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General Case
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Physical Meaning of SVD

 Assume that n > d

 X is of rank d at most

 U are the body (data)-fitted axes

 UT is a projection from n to d space

 S is the importance of the dimensions
 V is the representation of the X in the d space

dd
T

dddn V  ΣUX
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Interpretation

 In the new, uncorrelated space, there are only d 
training vectors and d decisions 

 Red: dx1 uncorrelated decision vector 

 Green: weighting of the significance of the 
components in the uncorrelated decision vector

 Blue: transformed (uncorrelated) training samples

 Still the same interpretation: similarity 
measurement in a new space by 

 Gram matrix

 Inner product of training samples and new sample
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First Important Concept

 The computation involves only inner product

 For training samples in computing the Gram 

matrix

 For new sample in computing regression or 

classification results

 Similarity is measured in terms of angle, 

instead of distance
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Second Important Concept

 Using angle or distance for similarity 
measurement doesn’t make problems easier or 
harder

 If you cannot separate data, it doesn’t matter what 
similarity measures you use

 “Massage” data

 Transform data (into higher – even infinite -
dimensional space)

 Data become “more likely” to be linearly separable 
(caveat: choice of the kernel function is important)

 Cannot perform inner product efficiently 

 Kernel trick – do not have to 
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In reality

 Calculating inverse of X^t X is very 

expensive

 The solution is by iteration 

 Furthermore, features are often not used 

directly, but certain “nonlinear 

transformation” of features are used 

 Furthermore, such “nonlinear 

transformation” is not calculated explicitly 

by Kernel trick

PR , ANN, & ML
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Math Detail

PR , ANN, & ML

Nonlinear transform

* * *

***
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Math Detail (cont)

PR , ANN, & ML
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Math Details (cont.)

PR , ANN, & ML

= 0
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Math Details

 This represents a Gauss-Siedal iterative 

solution to the problem 

PR , ANN, & ML
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Multi-category case

1

3

2

1

3

2

1

2

 1

 2

1

1

2

2

3

3

c-1 two-category

1 against all for all wi

c(c-1)/2 two-category

Both w1 and w2

w1 or w2 or w3
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Multi-category Case (cont.)
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Multi-category case

 Theoretical (Kesler’s) construction

 Assume linear separability
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Graphical Interpretation 
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Kesler Construction

 Training

 “faked” 2-class 

 One big w=[w1 … wc]

 Every training sample 

is duplicated (1 against 

c-1)  to generate c-1 

positive samples

 Standard 2-class 

iterative gradient 

descent training

 Classification

 Break down w into c 

components w1 … wc

 Evaluate a sample 

against all wi (x.wi)

 Take the largest one as 

result
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Linear Machine

x
max decision

g1

g2

gn

)(1 xg

)(2 xg

)(xng

ijallforgg

cig

jii

i

t

ii





)()(

,...,1)( 0

xx

wxwx





65PR , ANN, & ML

Multiple-categories

Kesler construction does not detect boundies

 Find cluster center
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In Reality

 Linear Machine works if

 samples in a class tight, compact clusters

 class statistics are single mode (one single 

peak)

 then, a class can be represented by a typical 

sample (class mean)

 a case of nearest centroid classifier 

 otherwise ...
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Linear Machine Example – Text Classification

 Use standard TF/IDF weighted vectors to 
represent text documents (normalized by 
maximum term frequency).

 For each category, compute a prototype
vector by summing the vectors of the 
training documents in the category.

 Assign test documents to the category with 
the closest prototype vector based on cosine 
similarity

PR , ANN, & ML
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Term Frequency

 Term frequency(term, document): tf(t,d)

 t: term, d: document

Raw frequency (f(t,d)): # of occurrences

Boolean frequency: 1 or 0

 Log-scaled frequency: log (f(t,d)+1)

Augmented: adjusted for document length (/ by 

max raw freq of any term w in document d)

PR , ANN, & ML
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Inverse Document Frequency

 N: total number of documents in corpus



 number of documents where t appears

 Penalize common terms in corpus

PR , ANN, & ML
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TF/IDF

 This is usually a very long vector, with n 

“keywords”

 Each document is described by such a long 

vector, recording occurrence of all 

keywords

 Again, the scheme is naïve Bayesian, 

correlation among terms (bi-grams, tri-

grams, etc.) is ignored

PR , ANN, & ML
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Text Categorization, Rocchio 

(Training)

 Assume the set of categories is {c1, c2,…cn}

 For i from 1 to n let pi = <0, 0,…,0>  (init. prototype vectors)

 For each training example <x, c(x)>  D

 Let d be the frequency normalized TF/IDF term vector for doc x

 Let i =  j: (cj = c(x))

 (sum all the document vectors in ci to get pi)

 Let pi = pi + d     
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Rocchio Text Categorization

(Test)

 Given test document x

 Let d be the TF/IDF weighted term vector for x

 Let m = –2      (init. maximum cosSim)

 For i from 1 to n:

 (compute similarity to prototype vector)

 Let s = cosSim(d, pi)

 if s > m

 let m = s

 let r = ci  (update most similar class prototype)

 Return class r
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Illustration of Rocchio Text 

Categorization



75
75

Rocchio Properties 

 Does not guarantee a consistent hypothesis.

 Forms a simple generalization of the 
examples in each class (a prototype).

 Prototype vector does not need to be 
averaged or otherwise normalized for length 
since cosine similarity is insensitive to 
vector length.

 Classification is based on similarity to class 
prototypes.
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Other More Practical Classifiers

 Applicable for multiple classes

 Applicable for high feature dimensions

 Applicable for classes with multiple modes 

(peaks)
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Two phases

 Phase I (training): collect “tagged” (typical) 
samples from all classes, measure and record their 
features in the feature space (some statistics might 
be computed as well)

 Phase II (classification): given an unknown 
sample, classify that based on “similarity” or 
“ownership” in the feature space



78PR , ANN, & ML

Nearest Centroid Classifier

 Need to record class centroids

 A single centroid -> linear machine model

 Multiple centroids possible (e.g. perform 

EM on mixture of Gaussian), but how do 

you find them if d>3?
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Nearest Neighbor Classifier

 Do not need to record class centroids

 No analysis necessary

 Multiple modes/classes ok

 Need to remember all training data

 Computation efforts (distance checking)

 How about outliers? 

 How about overfitting? 
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Geometric Interpretation

 Nearest neighbor classifier performs 

Voronoi partition of the feature space

 In that sense, it is similar to assuming that 

different class distributions have the same 

prior and variance 
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K-Nearest Neighbor (k-NN)
 Nearest neighbor can be susceptible to noise and 

outliers

 How about use more than 1? I.e. assign a sample to 

the class which has the most representatives among k 

nearest neighbors of the sample

 Intuitively appealing and followed from Parsen 

Windows & k-NN density estimation

 A compromise between nearest neighbor (too much 

data and erratic behaviors) and nearest centroid 

(global density fit)
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k-NN classifier 
 Parsen window variant

 From density estimation to classifier (the same principle)

 n labeled training samples

 Given a query sample x, find k nearest samples from the 
training set

 Collect k total samples (for all classes), whichever class has 
the largest representation in the k samples wins
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k-NN Classifier (pool variant)

 We need at least k samples to maintain good resolution

 Assume the number of samples collected reflects the prior 

probability

 Collect the same # of samples (say, k), whichever class 

needs a smaller neighborhood to do that wins
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3 Nearest Neighbor Illustration
(Euclidian Distance)
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K Nearest Neighbor for Text

Training:

For each each training example <x, c(x)>  D

Compute the corresponding TF-IDF vector, dx, for document x

Test instance y:

Compute TF-IDF vector d for document y

For each <x, c(x)>  D

Let sx = cosSim(d, dx)

Sort examples, x, in D by decreasing value of sx

Let N be the first k examples in D.     (get most similar neighbors)

Return the majority class of examples in N
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Illustration of 3 Nearest Neighbor 

for Text
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Rocchio Anomoly   

 Prototype models have problems with 

polymorphic (disjunctive) categories.
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3 Nearest Neighbor Comparison

 Nearest Neighbor tends to handle 

polymorphic categories better. 
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How Good Are the kNN?

 How good can it be? 

Again, the best case scenario is the one dictated 

by Bayes rule: assign x to the class that most 

likely produces it based on a posteriori

probability
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However,knn’s are not bad either

 Surprisingly, 1nn (nearest) is not more than 

twice as bad as Bayesian and knn 

approaches Bayesian for large k 
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Interested in the Proof?
 As promised, we don’t do proof

 Instead, we rely on intuition

 x: sample, x’: nearest neighbor to x

 q: sample’s class, q’: x’ class 

 Q: what is q’ ?

 A: 

 With a large number of samples, it is reasonable to assume that x’ 
is close to x

 If  P(wm|x) ~ 1/c Bayes 
and 1nn likely produce 
different results, but both 
error rates are 1-1/c

 If P(wm|x) ~1 Bayes and 

1nn likely produce the 

same results

)'|()'|(maxarg xx mi
i

wPwP 
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Proof Sketch

 We are looking for scenarios where x and x’ 
(its nearest neighbor) belong to different 
classes q and q’ 

 In fact, we have to look at cases where the 
number of training samples are very very 
large

Because x’ depends on the samples used in 
training and proof can not be based on the 
particular training set used

 x’ depends on n (samples used), we will write 
as xn’ instead 
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Proof Sketch (cont.)

 Error is when x and xn’ are in different classes 

 Average error cannot depend on xn’ (which 

depends on the particular training sample set)
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Proof Sketch (cont.)

 Combine them together, we have
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Proof Sketch (cont.)

 Then over all possible x’s
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Proof Sketch (cont.)

 Otherwise
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Proof Sketch (cont.)
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Other Variations

 Distance weighted: vote is weighed by how 

close a training sample is to the test sample

 Dimension weighted: distance is calculated 

by weighing features unequally

Weights can be learned by cross-validation
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Adaptive Nearest Neighbors

 Important for high-dimensional feature 

space where neighbors are far apart

 Idea: find local regions and compute feature 

dimensions 

Where class labels change a lot – narrower 

focus

Where class labels doesn’t change a lot – wider 

focus

PR , ANN, & ML
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Adaptive Nearest Neighbors (cont.)

 Two classes and two features 

 Uniform distribution but label changes only in x 

 Extent  y to capture more features

PR , ANN, & ML
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Adaptive Nearest Neighbors (cont.)
 The same idea as in dimension reduction

 Use knn to find some neighboring points first

 Then recompute the distance measurements 

 W-1/2W-1/2 “spheres” the data (within class var)

 Lengthen the dimension with small eigen values in 

B* (between class var)

PR , ANN, & ML
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Local Weighted Regression

 knn is a local approximation method 
without explicitly building the local decision 
surface

 Approximation by explicitly building such a 
surface is possible

 Difference from parametric techniques

Local samples are used 

Weighted by distance

Multiple local approximations (instead of one 
global one)
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Example

 Assume that locally the decision surface is a 

linear function of the n attributes an
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Learning Rule

 Starting from an arbitrary set of weights

 If f (true) and f^hat (estimated) are the same, 

no change

 Otherwise, change wi

rate learning :)),(())(ˆ)((
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Learning Rule (cont.)

 We will see later that this rule is the 

perceptron learning rule used in perceptron 

learning in ANN

 The locally weighted approximation is very 

similar to the radial basis function learning 

in ANN


