Linear Discriminant Functions




Linear Discriminant Functions
<+ S0 far, concentrate on density functions

2 with a known parametric form

2 shape of the function directly
<« Here, learn the discriminant functions
2 surface separating different clusters

a what type of surfaces?

2 linear (easiest!) functions (hyperplanes)

PR, ANN, L ML
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Case |: same prior, same deviation

<« Decision boundary is planar
<« In the middle of the two cluster

P(a@, | x) = P(@, | x)
P(@,) p(X|@,) = P(@,) p(X|@,)

1[x=%, 1[X=X,|
1 11T 1 $

2 0_2 s 2 02
(272_)1/2 o

| X=X, H X=X, |
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Case 1.A

<« The partition plane is perpendicular to the line
connecting two means

0 Scalar case

0 Covariance matrices are the same and are diagonal with
T =0’

the same variance in all features

PR, ANN, L ML



Case |.A: same prior, same deviation

< Even with multiple classes, if they all have the
same prior and the same deviation, then
0 the decision boundaries form a VVonoroi diagram,

or Bayes rule is a minimum Euclidean distance
classifier

PR, ANN, L ML



Case 1.B

<« The partition plane iIs not perpendicular to
the line connecting two means

2 Same (but general) covariance matrices




Case Il: different prior, same deviation

<« Decision boundary is still planar

N/

< At 2
‘ 1_ _. o°(logP,-logP
—(X1+X2)+ ( g 2_ g 1)
2 |X1_X2| >
c“(logP, —log R,)
1x=%4|? 1 X=X, |2 | X, =X, |
1 _E 2 | 1 _2 =
il (272')1/2(7 2 (27Z_)1/20_
1|x=% 1|x=%, [
log P, — = - =logP,—= 2
Ih 2 G "2 I
1

()_(1 _)—(2))( ~ E(Xl —22)(X1 +X2)+02(|Og Pz - Iog Pl)
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Graphical Interpretation in 1D

Population
(likelihood

> feature

Class 2 Class 1

u Class 1 misclassified as Class 2
u Class 2 misclassified as Class 1

10



1 probability

BE< B +0H

More class 1 misclassification

> feature

Class 2 Class 1

probability

BE< B + 08

More class 2 misclassification

> feature

3/7/2003 11



Case Il & IV: same or different prior,
different deviation

<« Decision boundary is no longer planar

T [oee=en] 2 1|x—X,|?
1 AT 5 1 2 o
2 1/2 o 2 1/2
(27) O, (27) O,
I X=6 65 1|x-X, |
—nlogo, —— ——=-nlogo, —— >
2 o, 2 o,

PR, ANN, L ML 12
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. essons

<« The decision boundaries in general are NOT linear or planar

<« Even with a single feature and a Gaussian distribution the
boundary can be complicated

< That said,

0o planar boundaries can be used to approximate curved, disjoint
boundaries (a lot more on this later), “massage” the classifier

0 Features can also be “massaged”

<« They are mathematically more tractable

*

A
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Two-category case

g(X) =wW'X+w,

@, g(x)>0
@, g(xX)<O
" weightvector

w, thresholdweight

PR, ANN, L ML

15



Decision surface (Hyperplane)

g(X,X,) =W-X+W, =WX +W,X, +W, |w|=1

Xt

g>0 (W, Wy) N

/ %S

g :O\ / N

g<0 // ‘W-Xlexl-I-WZXZI\\\

N
/
/ ‘g(x):w-x+w0
/

\ > X

PR, ANN, L ML 16




Decision surface (Hyperplane)

g(X, X,) =W-X+W, =W,X, +W,X, +W,

g(X) w-Xx+w,

(Wl |w]

PR, ANN, L ML

>X1

17



Training Procedure

< Two-category case
0 Use n tagged samples {x,,X,,.,X.} to
determine the discriminant function
wx. +w >0 X e,
t
WX, +W, <0 X, e,

WX +w,x1>0 X e,
W (=X)+W, x(-1)>0 X, e,

W W) )P0 X e,

(W W) [+(x; >0 X, ea,

m Augmented feature vectors:s




Training Procedure (cont.)

2 Each training sample constrains w
W5 to lie on a half plane (if w,=0)

PR, ANN, L ML 19



Training Procedure (cont.)

t t
WX —W, o WX W,
\ w W]
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Training Procedure (cont.)

<« Each training sample
constrains w to lie on a pie (if
w, =0  with margin)

|w ’

X, € @,

PR, ANN, L ML 21



Using Gradient Descent

<« A search mechanism
<« Start at an arbitrarily chosen starting point

< Move In a direction (gradient) to minimize
the cost function

< Baslic calculus, to be expected of every
engineer after 5 minute thought ©

PR, ANN, L ML
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Using Gradient Descent

0 Cost function (in terms of augmented feature vector [X,1])
> penalized for all samples misclassified

c(w) = Z (—w'x) 3 ‘misclassif ied samples

0 Gradientxﬁi rection

vC(W):P(W) xw) ac(w)}

a, A, A,
:li_ixil _Zn‘,xiz _led:| Zn:(_xi)

0 Update ™ = =

w Tt =w* — pVe(w") = W—I—kaX

XE\S

PR, ANN, L ML 23



Graphical Interpretation

2

PR, ANN, L ML



Graphical Interpretation (cont)

«» Weight Is the signed sum of samples
0 The more difficult a sample is to be classified, the more
Its weight
<« During classification, we have
y:W'X:(Zaiyixi)°xzzaiyixi - X

0 Only inner product of “troublesome” training samples
and test samples are needed (a:weight, y: class)

< These two concepts are very important, they
appear again and again later in

0 Perceptron
o SVM
a Kernel methods

PR, ANN, L ML
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How Good can a 2-Category Classifier be?
P(W, [X) = P(wg | X)
T

P(w;[x)

: > Feature (X)
Class A ; Class B

Class B misclassified as Class A
Class A misclassified as Class B

« AS good as that by Bayesian rule



N < N +H§

less Class A misclassified
< more Class B misclassified

%

> feature
Class A Class B
N< N + B
less Class B misclassified
< more Class A misclassified
> feature

Class A Class B

PR, ANN, L ML 28



Implementation Detalls

<« Difficulty: features can be correlated
2 Un-correlate features using SVD

0 Add “regularization”

c(w)=> (-w'x)}+A> w'w I misclassified samples

xXeJ

2 Numerically, the system is still quadratic so GD
still works

PR, ANN, L ML 29



Solving AX=B

<« Row Interpretation < Column interpretation
<« Each row is a line « Each columnis a
+ Intersection of vector
multiple lines < Combination of these
s Or vectors to approximate
B

«» Each row is a plane

< Multiple planes define
a feasible region

PR, ANN, L ML 30



Non-iterative Method

v
1| positive
- 2
W =adrg min i W X W. : .
- T
W= argv\r/nm (y 4 XW) (y - XW) Valid only for regression problem
. Fix it later in logistic regression
d(y —Xw) (y-Xw) _, |
dw : ‘
= X' (y—Xw) =0 ;,éé?:’:’;‘”"’fk l
G
= X' Xw=X"y 2 l ¢ °
w=[w_ w,---, W], l
:W:(XTX)_lXTy [ 0 1 d]

X:[l’xl’.“’xd]-r’

Y=Y Youu ¥Val'

y=<X,(X"X)"'X"y >

X —

| "N _Inxd




Graphical Interpretation
- -

: d :
- |

FICA Income
«» XWw: classify training set X by learned parameter w
< X Is an (sample size) by d (dimension of data) matrix
< W combines the columns of X, to best approximate y,,,
0 Combine features (FICA, income, etc.) to decisions (loan)

a y™hat, ., 1s a combination of columns of X_ 4
0 What is y*hat? How close is y*hat to y (GT)?

32



Graphical Interpretation

v = -l - R S

d

< |

FICA Income Sl e~

«» H projects y onto the space spanned by columns of X
0 Simplify the decisions to fit the features

w =arg min(y — Xw)' (y = Xw) = arg min(y —Hy)' (y — Hy)
wW W

=argvrvnin(y—>7)T (y-9)

33



Ugly Math

w = (X"X) X"y X =UzV’

I <

=Xw=X(X"X)"X"y
uxzv'(vz'u'uzv')*vz'U'y
uxv'(vzzv')'vx'U'y

=uUxv (V22 VvH)vE'Uy

uu'’

y

UUT is the standard form of a projection operator
UT: inner product with the basis vector
U: expand on the basis vector

(X and U has the same column space)

-
GIT D\ r
/ o ;

34



Problem #1

<« n=d, exact solution
« n>d, least square, (most likely scenarios)

< When n < d, there are not enough
constraints to determine coefficients w
uniquely

d

< |

35



Problem #2

<« If different attributes are highly correlated
(income and FICA)

<+ The columns become dependent

<+ Coefficients are then poorly determined
with high variance

0 E.g., large positive coefficient on one can be
canceled by a similarly large negative
coefficient on its correlated cousin

0 Size constraint Is helpful
0 Caveat: constraint is problem dependent

36



Ridge Regression (regularization)

w" = arg min{Z(yi —W, — > X W) +/IZWJ?}
W i j j

ridge

W% =arg min(y — Xw)" (y — Xw) + Aw' w
W

d(y —Xw)" (y = Xw)+Aw'w
dw
= X" (y=XwW)+Aw =0

0

= X'y = X" XW + AW

— XTy = (XTX s lI)W (Fig. 2a)

= w" = (XTX+ A1) X"y
: ) 1 positive
— 9 —< X, (XTX + il)_ley > WZaI’gVU”IIn{Z(yi _Wo_zj:xijwj) } Yi :{0 negative

y=<X,(X"X)* X"y >

37



Ugly Math
w9 = (X" X+ A1) X"y X=UzV'
yzx w9 = X(XT X+ A1) Xy
VT (VETUTUZVT +ADVvETUy
UZ(\/‘T)‘l(VETZVT + AN (V)T E'U'y
=UX(VVE'ZV'VTT VIV )X Uy
= UZ(ZTZ+/1I)‘1ZTUTy

_Zu

i G‘|‘i
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How to Decipher This

y- Sl

<« Red: best estimate (y hat) is composed of
columns of U (“basis” features, recall U and X
have the same column space)

«» Green: how these basis columns are weighed

« Blue: projection of target (y) onto these
columns

« Together: representing y in a body-fitted
coordinate system (u;)

39



Sidebar

< Recall that

2 Trace (sum of the diagonals) of a matrix is the
same as the sum of the eigenvalues

a Proof: every matrix has a standard Jordan form
(an upper triangular matrix) where the
eigenvalues appear on the diagonal (trace=sum
of eigenvalues)

0 Jordan form results from a similarity transform
(PAP-1) which does not change eigenvalues
AX = AX
= PAX = APX
= PAP "'Px = APx

= Ay =1y

40



Physical Interpretation

+ Singular values of X represents the spread
of data along different body-fitting
dimensions (orthonormal columns)

<+ To estimate y(=<x,w"9%e>) regularization
minimizes the contribution from less
Spread-out dimensions
0 Less spread-out dimensions usually have much

larger variance (high dimension eigen modes)
harder to estimate gradients reliably

0 Trace X(XTX+A1XT" is called effective
degrees of freedom

41



More Detalls
y=Xw=Hy=X(X"X)"X'y=X(X"X)"X"y
2 Trace X(XTX+Al)1XT is called effective
degrees of freedom

2 Controls how many eigen modes are actually
used or active

df (1) =d, A =0,df (1) =0, 4 —>
<« Different methods are possible

0 Shrinking smoother: contributions are scaled

2 Projection smoother: contributions are used (1)
or not used (0)

42



Dual Formulation (iterative)

<« Welght vector can be expressed as a sum of
the n training feature vectors

Regular Ridge regression
e N/

W=(XTX)_1XTy Xy=X XW+ AW

N AT
_ 2 XTX(XTX)_ZXTy ZW—X y X' Xw

1
= Xden(lnxl W:ZXT (y_XW)
> Z alxl — Xdena nx1 erdge_arngin{z(yiWOZJ:Xijo)ZJri;W?}
| w9 :argvrvnin(y—XW)T (Y — Xw) + Aw"w
X = Zaixi = - X" (y —Xw) + Aw =0
W x; X7 =[X1 X, Xl] i = X'y = X"Xw+ Aw

I y = Xw =Hy = X(X" X)Xy = X(X" X)Xy 4



Dual Formulation (cont.)

1
anxl — Z(y_xnxdwdxl)
X'y = X" Xw + Aw

f 2 Ao =Yy — XwW
AW =Xy — X Xw
1 Aa=y—-XX'a
7
W=—X =W (XX +Ala=y
= Xdenﬂnxl o= (and XTdX” A /II)_lynxl ' 1 (G +ﬂ“|)_ly
:Zaixi w=X'a=a(G+ A1)y

900 =< W,x>:WTx:<zaixi,x>:zai<xi,x>

Ty

X,, X
=< X" (XX + A7y, x>=y" (XX" +A1)™ < . >

(X, X) 44



v, Y,

v, Y,

Yo b

Yo b

In More Detalls

Gram matrix
or T o = NS
- X, - \ .
PPy X, X, + Al
T
. | X v
\_ n _nxd—l | |_d><n )
KA XX, x, T
X! X XIX, + A X! X
e il 27%2 2°%n
T T T |
X X, X, X, X, X, + /1_

—nxd

nx1
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Observations

< Primary
» XTXisdbyd

<« Training: Slow for
high feature dimension

« Use: fast O(d)

g(X) =< del’ (XTX + /ll)_lx-rydxl >

<« Dual

< Only Inner products
are involved

» XXTisnbyn

<« Training: Fast for high
feature dimension

«» Use: Slow O(nd)

2 N inner product to
evaluate, each requires

d multiplications | (x,,x)
g(x) =y (XX + A1) "t <X2:' X)

(X,:X)

46



Graphical Interpretation

d n : : .

—> <

A
v

il

g(X) =W, X >= <Z“ixi ’ X> = > a;(x,x)=y" (XX" +4I)"

47



Oge Extreme — Perfect Uncorrllrelated

< > <—n—> <

000 =y (X 20 X |3y

(Xq:%)

<« Orthogonal projection — no generalization

48



General Case
P o =Y 1a(XXT +AD) T0a X (o X' X=U BV o

n xd
=Y 1 (UZU" + A) T UZV ' X'

=Y 10 (UE*+AN)U") T UZV ' XT
=Y 'snU(E* + A1) "UTUZV ' X'
=y saUE*+ A" ZV X"

= (U gy ) 'ma (25 +A)TEV X
= (U gy, )0 (2% + A0 2V VEU]
= (U g0y o) '0a (B2 + A1) E2UT

n

n

¢~ F ~ How to interpret this? Does this still make sense?




Physical Meaning of SVD

< Assume thatn > d

« X 1s of rank d at most

« U are the body (data)-fitted axes

« UT is a projection from n to d space

<+ 2 1S the Importance of the dimensions

X=U_.Z, .V

nxd

50



Interpretation

AT =2y
o e vl
i

<« In the new, uncorrelated space, there are only d
training vectors and d decisions

< Red: dx1 uncorrelated decision vector

« Green: weighting of the significance of the
components in the uncorrelated decision vector

<« Blue: transformed (uncorrelated) training samples

« Still the same Interpretation: similarity
measurement in a new space by
a Gram matrix
a Inner product of training samples and new sample

51



First Important Concept

<+ The computation involves only inner product

a For training samples in computing the Gram
matrix

0 For new sample in computing regression or
classification results

< Similarity Is measured in terms of angle,
Instead of distance

52



Second Important Concept

<« Using angle or distance for similarity
measurement doesn’t make problems easier or
harder

0 If you cannot separate data, it doesn’t matter what
similarity measures you use

« “Massage” data

0 Transform data (into higher — even infinite -
dimensional space)

0 Data become “more likely” to be linearly separable
(caveat: choice of the kernel function is important)

0 Cannot perform inner product efficiently
a Kernel trick — do not have to

53



In reality

<+ Calculating inverse of X"t X Is very
expensive

<« The solution is by iteration

< Furthermore, features are often not used
directly, but certain “nonlinear
transformation” of features are used

+ Furthermore, such “nonlinear
transformation” 1s not calculated explicitly
by Kernel trick

PR, ANN, L ML 54



Math Detall

X =[x%x%. x5 e R

yERd

l Nonlinear transform

P(X)=[@(3)), @(X))eres ()] € RPN

PR, ANN, L ML

o(y) € R”
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Math Detall (cont)

2

- hr * .
0 =min (o =2 0p(x)| + 40|,
i=1

O=min (k(y.7)~2k(.0) 0+0" K0+ e,

k() =(k(x, . ).k (x5, V) k(X 0))]

<

(k(xl-"xl) k(xlaxnr)

l\k(‘x_}f.ﬂ'xl) T k(x}_{ff""]i“f)}




Math Detalils (cont.)

J(O)=k(,y)=2k(,») 0+ 0" KO+ 4],

aJ(0)

Fys 226}{(1‘ X)) —2k(x;,y)+usgn(0,)

N
0,=k(x.3)= Y Ok(x).x)) ~Ssan(6)

j=1,j#i

0

0, = wg(xf.)—gsgn(@) wy(x) = k()= 30 k(x,.x,)

j=1.j#i

PR, ANN, L ML

57



Math Detalls

<« This represents a Gauss-Siedal iterative
solution to the problem

PR, ANN, L ML
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Multi-category case

ZUZD'Z

w1l or w2 0'3

W4\

c-1 two-category c(c-1)/2 two-category
1 against all for all w,

PR, ANN, L ML 59



Multi-category Case (cont.)

PR, ANN, L ML
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Multi-category case

+ Theoretical (Kesler’s) construction

« Assume linear separability
c classes w.;1=1,...,C
w; X, —w;X, >0for all j=11IfX, €,

W=w; . . wel o

X, = :XT e e O]T(ch)xl
X153 = :XT 0 —x' . . O]T(cxd)xl
S :XT 00 W =g ]T(c><d)x1

one weight w (c-d dimension) must classify
c —1samples X,,, X5,..., X;, (C-d dimension) correctly

PR, ANN, L ML



Graphlcal Interpretatlon

0,(x)=w. x+w

w;

g, (X)

_VVC_

decision

> G

g;(X)—g;(x)>0for all j=i

decision




Kesler Construction

< Training <« Classification
<+ “faked” 2-class <« Break down w Into c
= One big w=[w; ... w] components wy ... we

» Every training sample  + Evaluate a sample
is duplicated (1 against ~ against all w; (x.w;)
c-1) to generate c-1 <+ Take the largest one as
positive samples result

«» Standard 2-class
Iterative gradient
descent training

PR, ANN, L ML 63



Linear Machine

0 (%) :WitX+Wio =1 6
g;(x)> g, (x) for all j#i

w;

PR, ANN, L ML

decision
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Multiple-categories

0 Kesler construction does not detect boundies

2 Find cluster center

n:samples
d : features
c : classes

nxd

3
—_—
Wl W2
F=

PR, ANN, L ML

dxc

Nxc

65



0.8}
0.6¢
04;
0.2¢

-0.2t
-04}
-0.6}
-0.8}

Nn =40
=4
d =
2 2 1
1
1
22 1
1
2
33
3
3 3
4
2 a * b
0.5 0 0.5

06

04}

0.2¢

using the 1-th linear machine

0.6

using the 3-th linear machine

04

0.2;

39 5

10 20 30

using the 2-th linear machine

41

10 20 30

PR, ANN, L ML

10 20 30

using the 4-th linear machine

40

10 20 30

40
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In Reality

<+ Linear Machine works If
o samples in a class tight, compact clusters

0 class statistics are single mode (one single
peak)

2 then, a class can be represented by a typical
sample (class mean)

0 a case of nearest centroid classifier
0 otherwise ...

PR, ANN, L ML
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Linear Machine Example — Text Classification

<« Use standard TF/IDF weighted vectors to
represent text documents (normalized by
maximum term frequency).

<+ For each category, compute a prototype
vector by summing the vectors of the
training documents In the category.

« AssIgn test documents to the category with
the closest prototype vector based on cosine
similarity

PR, ANN, L ML 68



Term Frequency

<« Term frequency(term, document): tf(t,d)
at: term, d: document
0 Raw frequency (f(t,d)): # of occurrences
0 Boolean frequency: 1 or 0
0 Log-scaled frequency: log (f(t,d)+1)

2 Augmented: adjusted for document length (/ by
max raw freqg of any term w in document d)

0.5 x f(t, d)

tf{fd} =05+ 111ax{f(w- d} e d}

PR, ANN, L ML 69



Inverse Document Frequency

< N: total number of documents in corpus
* |{deD:ted)| l1+|{deD:ted}
0 number of documents where t appears

N

idf (¢, D) = log {deD:tcdl

« Penalize common terms In corpus

PR, ANN, L ML
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TF/IDF
thdf(t,d, D) = tf(t,d) x idf(t, D)
<+ This i1s usually a very long vector, with n

“keywords”

<+ Each document iIs described by such a long
vector, recording occurrence of all
keywords

<« Agaln, the scheme Is naive Bayesian,
correlation among terms (bi-grams, tri-
grams, etc.) Is ignored

PR, ANN, L ML
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Text Categorization, Rocchio
(Training)

% Assume the set of categories is {c,, C,,...C.}
% Forifrom 1ton letp,=<0,0,...,0> (init. prototype vectors)

*» For each training example <x, c(x)> € D

» Let d be the frequency normalized TF/IDF term vector for doc x
* Leti= J:(c;=c(x)

*  (sum all the document vectors in c; to get p;)

*  Letp;=p;+d

L)

4

L)

R/

L)

* &

L)

¢ @&

L)

(R

L)

L)

72
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Rocchio Text Categorization
(Test)

“ Given test document x

*» Let d be the TF/IDF weighted term vector for x
o Letm=-2 (init. maximum cosSim)

*» For i from 1 to n:

*»  (compute similarity to prototype vector)

% Lets=cosSim(d, p;)

 Ifs>m

X letm=s

X let r = ¢; (update most similar class prototype)

+»» Return class r

73
73



[llustration of Rocchio Text
Categorization

74
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Rocchio Properties

<« Does not guarantee a consistent hypothesis.

«» Forms a simple generalization of the
examples in each class (a prototype).

< Prototype vector does not need to be
averaged or otherwise normalized for length
since cosine similarity Is insensitive to
vector length.

<« Classification Is based on similarity to class
prototypes.

75
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Other More Practical Classifiers

\/ ‘N
0’0
’
0‘0 A
’
0‘0 A

0
0

0

nlica
nlica

nlica

(peaks)

ole for multiple classes
ole for high feature dimensions

nle for classes with multiple modes

PR, ANN, L ML
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Two phases

« Phase I (training): collect “tagged” (typical)
samples from all classes, measure and record their
features In the feature space (some statistics might
be computed as well)

« Phase Il (classification): given an unknown
sample, classify that based on “similarity” or
“ownership” in the feature space

PR, ANN, L ML 7



Nearest Centroid Classifier

xisinclass i, if
| X=X [<| X=X, |, J=1...,n

< Need to record class centroids

<+ A single centroid -> linear machine model

<« Multiple centroids possible (e.g. perform
EM on mixture of Gaussian), but how do
you find them If d>3?

PR, ANN, L ML
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Nearest Neighbor Classifier

xisinclass 1, if 3k

| X=X [KIX=%, |, j=L., 1 =1, m;
<« Do not need to record class centroids

<« No analysis necessary

« Multiple modes/classes ok

« Need to remember all training data

< Computation efforts (distance checking)
< How about outliers?

< How about overfitting?

PR, ANN, L ML
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Geometric Interpretation

< Nearest neighbor classifier performs
Voronol partition of the feature space

<« In that sense, It Is similar to assuming that
different class distributions have the same
prior and variance

PR, ANN, L ML
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K-Nearest Neighbor (k-NN)

<+ Nearest neighbor can be susceptible to noise and

outliers

«» How about use more than 1? l.e. assign a sample to

the class which has the most representatives among k
nearest neighbors of the sample

Intuitively appealing and followed from Parsen
Windows & k-NN density estimation

» A compromise between nearest neighbor (too much

data and erratic behaviors) and nearest centroid
(global density fit)

PR, ANN, L ML
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K-NN classifier

» Parsen window variant

<« From density estimation to classifier (the same principle)

» N labeled training samples
« Given a query sample x, find k nearest samples from the
training set

» Collect k total samples (for all classes), whichever class has
the largest representation in the k samples wins

k.- /n
X, i:I—
P, (X, @;) v
k./n  k/n
pn(xwi) ” 1 V .4 V _ki
pn(wlx)_zp(xw _iki/n_k/n_k
= M ] = V V
@, <k, >k,
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k-NN Classifier (pool variant)

« \We need at least k samples to maintain good resolution

« Assume the number of samples collected reflects the prior
probability

« Collect the same # of samples (say, k), whichever class
needs a smaller neighborhood to do that wins

k/n
X, @) =——
P, (X, @;) v
k/n
X, @, V,
D (@ |5) = Cpn( A C
k/n
PINCEDED W
j=1 s S
V2 Vl
X) = X)1&=
pn(wll ) V1+V2 pn(wzl ) V1+V2

o, <=V, >V,
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3 Nearest Neighbor Illustration
(Euclidian Distance)
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K Nearest Neighbor for Text

Training:
For each each training example <x, c(x)> € D
Compute the corresponding TF-IDF vector, d,, for document x

Test instance y:
Compute TF-IDF vector d for document y
For each <x, c(x)> € D
Lets, = cosSim(d, d,)
Sort examples, x, in D by decreasing value of s,

Let N be the first k examples in D.  (get most similar neighbors)
Return the majority class of examples in N
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[llustration of 3 Nearest Neighbor
for Text
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L (4

Rocchio Anomoly

Prototype models have problems with

nolymorphic (disjunctive) categories.
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3 Nearest Neighbor Comparison

<« Nearest Neighbor tends to handle
polymorphic categories better.
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How Good Are the KNN?

«» How good can it be?

2 Again, the best case scenario Is the one dictated
by Bayes rule: assign x to the class that most
likely produces it based on a posteriori
probability

P(W, | X) = max P(w, | X)

P (e|x)=1-P(w_ | X)
P* = [ P"(e| x) p(x)dx

J

Holy Grall

PR, ANN, L ML
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However, knn’s are not bad either

<« Surprisingly, 1nn (nearest) is not more than
twice as bad as Bayesian and knn
approaches Bayesian for large k

P P
C—-1 t , ‘
’——‘( "‘: 2 .-____/ L5
v/ 4
i/ y //.
i, S
.-" : ‘/Q
/ X
,//
/0
o7
///
. > P
o |
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Interested In the Proof?

< As promised, we don’t do proof

» Instead, we rely on intuition
0 X: sample, X’: nearest neighbor to X
0 0: sample’s class, 0°: X class

» Q:whatis 9’ ?

» Al argmax P(w; | x") = P(w,, | X")
» With a large number of samples, it is reasonable to assume that x’
Is close to x P(W, [ X) = P(W, | X)

« If P(w,|x) ~1 Bayes and + If P(wgy[x) ~ 1/c Bayes
1nn likely produce the and 1nn likely produce
same results different results, but both

error rates are 1-1/c
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Proof Sketch

<« We are looking for scenarios where x and x’
(its nearest neighbor) belong to different
classes 6 and 6’

+ In fact, we have to look at cases where the
number of training samples are very very
large

0 Because X’ depends on the samples used in

training and proof can not be based on the
particular training set used

a X’ depends on n (samples used), we will write
as X,” instead

PR, ANN, L ML
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Proof Sketch (cont.)

<« Error Is when x and x,,” are in different classes
P.(e]x,x,")=1-> P(0=@,,0,'=@; | XX,
=1

:1—2 P(@=a,|x)P(0,'=a,|X,")

- Because all the training samples and test samples are
drawn independently

< Average error cannot depend on x,,” (which
depends on the particular training sample set)

P.(e1%) = [ P(e]x,%,") p(x,'| X)dx,’
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Proof Sketch (cont.)

< Combine them together, we have

P (1) = [[1-YP(@, )P (@, |, )]p(x, | X)dx,

o When n is large, It Is reasonable to expect x

and x’ are close
rl1lm p(xnll X) — 5(an_x)

lim P, (&) = lim [[1- " P(@, | )P(@, |x,)]p(x, | x)dx,

= [1i- 3 P@, 0P (@, 1%, 6, ~X)dx,

; Correct if

=1-) P*(@, | X) =— "X Isinw,
5 *Nearest sample is also in w;
PR, ANY Sai e any class =




Proof Sketch (cont.)

<« Then over all possible x’s

P =1im P, (e) = [ 1im P, (e] x) p(x)dx

- 1= P (@, 1P ()

o A quick check, If P(w[x) ~
1—ZC:P2(@Ui |X)=1-P*(@,, |X) =2

w1-xt =1-[1-(@-x)[°
—1-(1-2(1— X)+ (1 - x)?)

(1 2(1— X))
=2(1-X) PR, ANN, & ML

1

(1-P(a, | X))

|

Holy Gralil
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Proof Sketch (cont.)

«» Otherwise
ZP (@, |X) =P (@, | X)+ ZP (@, | X)

i=1,1zm

o The second term is minimized if all of the
other classes are equally likely

P (e]x) E
P(@; | x) = c-1
1-P (e|x) i=m
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Proof Sketch (cont.)

P~ (e]x)
(c-1)

> P (@, %) =(1- P" (] 0)’ +

P™(elx)
c-1

> (1-P (e|x))* +

P™(e]x)
c-1

1—ZC:P2(zUi 1X) <1-(1-P"(e|x))’ -

P~ (e]x)

—< 2P*(e|x)—P*2(e|x)—
c-1

—< 2P" (e X) - —— P"?(e| X)
c-1

=< 2P (e | x) An even tighter bound :

P <P <P (2~ P)
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Other Variations

<+ Distance weighted: vote is weighed by how
close a training sample is to the test sample

< Dimension weighted: distance is calculated
by weighing features unequally

0 Weights can be learned by cross-validation

PR, ANN, L ML
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Adaptive Nearest Neighbors

<« Important for high-dimensional feature
space where neighbors are far apart

<« ldea: find local regions and compute feature
dimensions

2 Where class labels change a lot — narrower
focus

0 Where class labels doesn’t change a lot — wider
focus
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Adaptive Nearest Neighbors (cont.)

< Two classes and two features
< Uniform distribution but label changes only in x
<« Extent y to capture more features

5-Nearest Neighborhoods

£ \
T o | (0]
\
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Adaptive Nearest Neighbors (cont.)

<« The same Idea as in dimension reduction

<« Use knn to find some neighboring points first
< Then recompute the distance measurements

2 W-Y2AN-12“gpheres” the data (within class var)

<« Lengthen the dimension with small eigen values in
B* (between class var)

D(‘Tﬂxo) = (T - Q(TQ)TE(.CL‘ - ZL‘O),

*1/2[W*1/2BW*1/2 _)_GI}W—l/Q
~PBT + QW2
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Local Weighted Regression

« Kknn is a local approximation method
without explicitly building the local decision

surface

<« Approximation by explicitly building such a

surface

IS possible

« Difference from parametric techniques

a Local
0 Weig

0 Multi
globa

samples are used
nted by distance
nle local approximations (instead of one

one)

PR, ANN, L ML
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Example

«» Assume that locally the decision surface Is a
linear function of the n attributes a,,

f(X)=w, +wa +w,a, +---+w.a_

xeknn Xq

_dz(xq,x)

2
2(7q

« K IS a honincreasing function, e.g., k(d(x,,x)=e
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Learning Rule

<« Starting from an arbitrary set of weights

« If f (true) and f*hat (estimated) are the same,
no change
<« Otherwise, change w;

f(X)=w, +wa +w,a, +---+w.a,

AW. =71 Z(f(x)—fA(x))K(d(xq,x))ai n :learning rate

xeknn Xq
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Learning Rule (cont.)

<« We will see later that this rule is the

perceptron learning rule used in perceptron
learning in ANN

« The locally weighted approximation is very
similar to the radial basis function learning
in ANN

PR, ANN, L ML
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