Independent Component Analysis
Mixture Data

- Data that are mingled from multiple sources
 - May not know how many sources
 - May not know the mixing mechanism

- Good Representation
 - Uncorrelated, information-bearing components
 - PCA and Fisher’s linear discriminant
 - De-mixing or separation
 - ICA (Independent component analysis)

- How do they differ?
PCA vs. ICA

- Independent events vs. Uncorrelated events

Knowing X_1 doesn't tell anything about X_2

Knowing X_1 does tell something about X_2

Fig. 1.4 A sample of independent components s_1 and s_2 with uniform distributions. Horizontal axis: s_1; vertical axis: s_2.

Fig. 1.5 Uncorrelated mixtures x_1 and x_2. Horizontal axis: x_1; vertical axis: x_2.
Uncorrelated vs. Independence

- Uncorrelated
 - Global property
 - Not valid under nonlinear transform
 - PCA requires uncorrelation

- Independence
 - Local property
 - Valid for nonlinear transform
 - ICA assumes independence

\[
\text{uncorrelated} : E((x_1 - Ex_1)(x_2 - Ex_2)) = 0
\]

\[
\text{independence} : E(g_1(x_1), g_2(x_2), \ldots, g_n(x_n)) = E(g_1(x_1)) \cdots E(g_n(x_n)) \quad \forall g
\]
Uncorrelated vs. Independence

- Independence is stronger, requiring every possible function of x_1 to be uncorrelated with x_2
- $E((y_1 - E(y_1))(y_2 - E(y_2))) = 0 \rightarrow \text{uncorrelated}$
- $y_2 = y_1^2 \rightarrow \text{not independent}$
Uncorrelated vs. Independence

- Discrete variables X_1 and X_2
- $(0,1), (0,-1),(1,0),(-1,0)$ all with $\frac{1}{4}$ probability
- X_1 and X_2 are uncorrelated
- $E(x_1^2x_2^2)=0!=1/4=E(x_1^2)E(x_2^2)$
ICA Limitation

- Any symmetrical distribution of x_1 and x_2 around origin (centered at E_{x1} and E_{x2}) is uncorrelated
- Corollary: ICA does not apply to Gaussian variables
 - Because any orthogonal transform (rotation and reflection) of Gaussian doesn’t change anything
Blind Source Separation

\[Y = MX \]

\[Z = DY \]
Blind Source Separation

- Brain imaging
 - Different parts of brain emit signals that are mixed up in the sensors outside the head

- Teleconferencing
 - Different speakers talk at the same time that are mixed up in the microphones

- Geology
 - Oil exploration with underground detonation and shock waves being registered at multiple sensors
Approaches

- **Nonlinear de-correlation**
 - The de-correlated components are uncorrelated and the transformed de-correlated components are uncorrelated
 - Minimum mutual information model
 - Maximum non-Gaussianity

- **Maximum non-Gaussianity**
 - Central limit theorem states more Gaussianity with successive mixture
 - Go above covariance matrix (kurtosis, a higher-order cumulant)
Mathematic Formulation

\[x_j = a_{j1}s_1 + a_{j2}s_2 + \ldots + a_{jn}s_n, \text{ for all } j \]

\[x = As \]

\[s = Wx \]

- **s_i**: sources, **x_j**: mixtures
- **A**: mixture matrix
- **W**: de-mixing matrix
- Implication
 - Cannot determine the variance of sources
 - Cannot determine the ordering of source
A Simple Formulation

- Central Limit Theorem states that sum of independent random variables tends to Gaussian
- Non-Gaussianity is desired for each independent component
A Simple Formulation

- Gaussian variables have zero Kurtosis
 \[kurt(x) = E(x^4) - 3(E(x^2))^2 = E(x^4) - 3 \text{ if } E(x^2) = 1 \]

- Supergaussian: spiky pdf with heavy tails (e.g., Laplace distribution)
 \[p(x) = \frac{1}{\sqrt{2}} e^{-\sqrt{2}|x|} \]

- Subgaussian: flat pdf (e.g., uniform)

- Maximize magnitude of the Kurtosis
Math Framework:
2 variables 2 observations

For independent variables:

\[\text{kurt}(x_1 + x_2) = \text{kurt}(x_1) + \text{kurt}(x_2) \]

\[\text{kurt}(ax_1) = a^4 \text{kurt}(x_1) \]

\[y = w^T x = w^T As = z^T s = z_1 s_1 + z_2 s_2 \]

\[\text{kurt}(y) = \text{kurt}(z_1 s_1) + \text{kurt}(z_2 s_2) = z_1^4 \text{kurt}(s_1) + z_2^4 \text{kurt}(s_2) \]

\[E\{y^2\} = z_1^2 + z_2^2 = 1 \]

- All variables, s and y, are of unit variance
- Z is constrained to the unit circle
- Maximum kurtosis at two directions that lie in
 - \(z_1=1 \) (-1), \(z_2=0 \) or
 - \(z_2=1 \) (-1), \(z_1=0 \)
- Through gradient search in \(w \)
- Drawback: noise sensitivity
Information

- Recall some important concepts
 - Random variable \((x)\): \(0 \leq p_k = p(x = x_k) \leq 1\)
 - Probability distribution on a random variable
 - Amount of information, surprise, uncertainty

 \[
 I(x = x_k) = \log\left(\frac{1}{p_k}\right) = -\log p_k
 \]
 - Entropy (weighted, average)

 \[
 H(x) = E(I(x_k)) = \sum_k p_k I(x_k) = -\sum_k p_k \log p_k
 \]
Entropy Basics

\[H(X,Y) = - \sum_{x \in X} \sum_{y \in Y} \Pr(x,y) \log_2(\Pr(x,y)) \]

\[H[X|Y] = - \sum_{x \in X} \sum_{y \in Y} \Pr(x,y) \log_2 \Pr(x|y) \]

\[H[X,Y] = H[X] + H[Y|X] \]

\[H[X,Y] = H[Y] + H[X|Y] \]

\[I(X;Y) = \sum_{y \in Y} \sum_{x \in X} p(x,y) \log \frac{p(x,y)}{p(x)p(y)} \]

\[I(X;Y) = H(X) - H(X|Y) \]
\[= H(Y) - H(Y|X) \]
\[= H(X) + H(Y) - H(X,Y) \]
Mutual Information

\[I(X; Y) = \sum_{y \in Y} \sum_{x \in X} p(x, y) \log \frac{p(x, y)}{p(x) p(y)} \]

\[I(X; Y) = H(X) - H(X|Y) \]
\[= H(Y) - H(Y|X) \]
\[= H(X) + H(Y) - H(X, Y) \]

\[I(X; Y) = D_{KL}(p(x, y) \| p(x)p(y)) \]

\[I(X; Y) = \sum_{y} p(y) \sum_{x} p(x|y) \log_{2} \frac{p(x|y)}{p(x)} \]
\[= \sum_{y} p(y) D_{KL}(p(x|y) \| p(x)) \]
\[= E_{Y}\{D_{KL}(p(x|y) \| p(x))\}. \]
Kullback-Leibler divergence

\[D_{p\|q}(x) = \sum_{k} p_k \log \frac{p_k}{q_k} = -\sum_{k} p_k \log q_k + \sum_{k} p_k \log p_k = H(p, q) - H(p) \]

- Information divergence, relative entropy
- Measure of difference between two distributions, but it is not a metric \(D_{p\|q}(x) \neq D_{q\|p}(x) \)
- \(D_{p\|q} \) is positive and is zero if and only if \(p \) and \(q \) have the same distribution
- Can be a useful measurement of independence, if
 - \(p \) is joint probability
 - \(q \) is marginal probability
- Then \(D_{p\|q} \) is zero if and only if random variables are independent
- \(p = p(x,y) \) and \(q = p(x)p(y) \), the same as saying that \(x \) and \(y \) are independent
Intuition

- Independence implies product of marginal probabilities equals total probability

\[
p(g_1(x_1), g_2(x_2), \ldots, g_n(x_n)) = p(g_1(x_1)) \cdots p(g_n(x_n))
\]

\[
p(x_1, x_2, \ldots, x_n) = p(x_1) \cdots p(x_n)
\]

- The Kullback-Leibler divergence should be minimized

\[
D_{p_g(y) \| p_g(\bar{y})} = \sum_k p_g(y) = k \log \frac{p_g(y) = k}{\prod_i p_g(y_i) = k_i}
\]

\[
D_{p_y \| p_{\bar{y}}} = \sum_k p_y = k \log \frac{p_y = k}{\prod_i p_{y_i} = k_i}
\]
Math Details

- A should minimize the mutual information between the new signal $H(Y_i)$ and the original signal $H(X)$

\[
I(X) = \sum_i H(X_i) - H(X)
\]

\[
Y = AX
\]

\[
I(Y) = \sum_i H(Y_i) - H(X) - \log(\det A)
\]

\[
= \sum_i H(Y_i) - H(X)
\]
Information Theoretic Approach

- Gaussian variable has the largest entropy among all variables of equal variance
- Negentropy (non-Gaussianity) J is to be maximized (X_{gauss} and X have the same variance)
 - $J(X) = H(X_{gauss}) - H(X)$
- Difficulty: computing H requires pdf
- Estimation:
 \[J(x) \approx \frac{1}{12} E(x^3)^2 + \frac{1}{48} kurt(x)^2 \]
 \[J(y) \approx [E\{G(y)\} - E\{G(v)\}]^2 \]
 \[G_1(u) = \frac{1}{a_1} \log \cosh a_1 u, \quad G_2(u) = -\exp(-u^2/2) \]
 \[\quad 1 \leq a_1 \leq 2 \]
Maximum Entropy Approach

\[p(x(t)) = \prod_{i=1}^{d} p(x_i(t)) \]

\[s(t) = Ax(t) \]

\[y(t) = Ws(t) \]

\[p_y(y(t)) = \frac{p_s(s(t))}{|J|} \]