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“Pattern Recognition ™
What iIs a Pattern?

Crystal Patterns:

The crystal structures are represented by 3D graph, and they can be described by
deterministic grammars or formal languages.
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Constellation Patterns:

Each constellation could be represented by a planar graph, which maintains a certain
regular shape with slight deformation during a season.
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English Pattern:
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The  little boy who saw a dog was  afraid

English sentences are patterns governed by English grammar and some stochastic
process of the semantics.
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Biology Patterns: — Root of plant and Human Stomach
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Like English sentences, biclogy organs present regularities in their shape — governed
by the genetic codes as well as non-deterministic appearance — influenced by the
stochastic environment.
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< DNA patterns <« Protein Patterns
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Speech Signal:
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EGK signal for diagnosing heart diseases:
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Texture Patterns
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Textures are the richest pattern created in nature, perceptually each class of tex-

ture has some common features-regularities, and it also contains non-deterministic

characteristics.
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Faces
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Other Patterns

<« Insurance, credit card applications

2 applicants are characterized by a pattern
> # of accidents, make of car, year of model

> Income, # of dependents, credit worthiness,
mortgage amount

« Dating services

a Age, hobbies, income, etc. establish your
“desirability”
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Other Patterns

< Web documents

0 Key words based description (e.g., documents
containing War, Bagdad, Hussen are different
from those containing football, NFL, AFL,
draft, quarterbacks)

< Intrusion detection
0 Usage and connection patterns

< Cancer detection

2 Image features for tumors, patient age,
treatment option, etc.
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Other Patterns

«» Housing market
2 Location, size, year, school district
<« University ranking

2 Student population, student-faculty ratio,
scholarship opportunities, location, faculty research
grants, etc.

< 100 many

aE.g.,
http://www.ics.uci.edu/~mlearn/MLSummary.html
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What Is a pattern?

<« A pattern 1s a set of objects, processes or
events which consist of both deterministic
and stochastic components

<« A pattern iIs a record of certain dynamic
processes Influenced both by deterministic
and stochastic factors
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What Is a Pattern? (cont.)

Constellation patterns,
texture patterns, EKG
patterns, etc.

Completely regular,
deterministic

(e.g., crystal structure)
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Completely
random

(e.g., white noise)
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What iIs Pattern Recognition?

+ Classifies “patterns” into “classes”
<« Patterns (x)

0 have “measurements”, “traits”, or “features”
« Classes ( @)
0 likelihood (a prior probabilityP( ;)
0 class-conditional density  p(X| @;)
« Classifier (f(x) -> @)
< An example
0 four coin classes: penny, nickel, dime, and quarter
0 measurements: weight, color, size, etc.

0 Assign a coin to a class based on its size, weight, etc.

We use P to denote probability mass function (discrete) and

p to denote probability density function (continuous)

PR, ANN, L ML
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An Example

SENsOT

decision
feature
extractor )
action

Object/pattern

Such systemn works in limited situations at a very fast speed.

Many visual inspection systems are like this:
Circuit board, fruit, OCR, etc.
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Another Example
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Features

<« The Intrinsic traits or characteristics that tell
one pattern (object) apart from another

<+ Features extraction and representation allows
2 Focus on relevant, distinguishing parts of a pattern
0 Data reduction and abstraction

PR, ANN, L ML
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Detection vs. Description

<« Detection: something
nappened

< Heard noise

< Saw something
Interesting

< Non-flat signals

<« Description: what has

happened?

<« Gun shot, talking,

laughing, crying, etc.

< LInes, corners,

textures

« Mouse, cat, dog, bike,

etc.

PR, ANN, L ML
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Feature Selection

< More an art than a science
< Effectiveness criteria:

pppulation

— S|ze

Size alone i1s not effective
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perimeter

— compactness

Perimeter is not effective
Discrimination is accomplished by compactness alone

-
elongatedness lﬂ
-
l\

N
N
N

N
N
N
N
N
~
N
<
N
N

> compactness

The two feature values are correlated, only one of them
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An example of fish classification

Salmon Vs. Sea Bass — histogram of fish length

salmon sea bass

-
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Salmon Vs. Sea Bass — histogram of fish lightness
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Salmon Vs. Sea Bass — Using two dimensional feature x = (11, £9)
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Too complicated
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g setlmon
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Importance of Features

< Cannot be over-stated

+ We usually don’t know which to select,
what they represent, and how to tune them
(face, gait recognition, tumor detection, etc.)

< Classification and regression schemes are

mostly trying to make the best of whatever
features are available

PR, ANN, L ML
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Features

<« One 1s usually not descriptive (no silver
bullet)

«» Many (shotgun approach) can actually hurt

«» Many problems:
0 Relevance
0 Dimensionality
0 Co-dpendency
0 Time and space varying characteristics.
0 Accuracy
a Uncertainty and error
a0 Missing values

PR, ANN, L ML
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Feature Selection (cont.)

«» Q: How to decide If a feature is effective?

< A: Through a training phase

0 Training on typical samples and typical features
to discover
> Whether features are effective
> Whether there are any redundancy
> The typical cluster shape (e.g., Gaussian)
» Decision boundaries between samples
» Cluster centers of particular samples
> Etc.

PR, ANN, L ML
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;i

gi(x) =
gi(x) =
gi(x) =

Classifiers

P(a@;)
P(a@;|X)

([ %)

If g;(x)>g;(x) forall j=I

If no measurements are made
minimize misclassification rate

minimize assoclated risk

PR, ANN, L ML
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Traditional Pattern Recognition

< Parametric methods

0 Based on class sample exhibiting a certain
parametric distribution (e.g. Gaussian)

2 Learn the parameters through training

«» Density methods
2 Does not enforce a parametric form
2 Learn the density function directly

<« Decision boundary methods
2 Learn the separation in the feature space

PR, ANN, L ML
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Parametric Methods

|. population I1. population
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Density Methods

FIGURE 4.3. Examples of two-dimensional circularly symmetric normal Parzen win-
dows for three different values of h. Note that because the §(x) are normalized, different
vertical scales must be used to show their structure.
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Feature space

2 d dimensional (d the number of features)
0 populated with features from training samples

PR, ANN, L ML
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Decision
Boundary
Methods

e Decision surfaces

e Cluster centers
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Figure 14-1. Scattergram mi’m five differ-
ent common types of white cells. The letters ¢ different classes,
with the centroids underlined. The dashed lines show linear boundaries that
best separate the classes. Several samples are misclassified. (Plotted from data
in “Automated Leukocyte Recognition” by LT. Young, Ph.D. thesis, MIT, Cam-

bridge, Massachusetts, 1969.)
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Figure 14-2. Scattergram of brightness of the
sured through two different fillers. gt 54 (e by underlining,
and the dashed lines are the linear boundaries that best separate the classes. It
is clear that reliable classification using just these two features is not possible.
(Plotted from data in “Automated Leukocyte Recognition” by LT. Young, Ph.D.
thesis, MIT, Cambridge, Massachusetts, 1969.)
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“Modern” vs “Traditional”
Pattern Recognition

<+ Hand-crafted features

< Simple and low-level
concatenation of
numbers or traits

<« Syntactic

<« Feature detection and
description are
separate tasks from
classifier design

<« Automatically learned
features

< Hierarchical and
complex

< Semantic

< Feature detection and
description are not
jointly optimized with
classifiers

PR, ANN, L ML
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Keypoint descriptor

Image gradients
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Modern Features

dLayerl
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dLayer2

Modern Features

PR, ANN, L ML
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Modern Features
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Modern Features
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dLayer5

Modern Features

PR, ANN, L ML
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“Modern” vs “Traditional’”
Pattern Recognition

Predictions

Class Scores

—”
Training

PR, ANN, T ML 44



Mathematical Foundation

< Does not matter what methods or

techniques you use, the underlying
mathematical principle is quite simple

<« Bayesian theory Is the foundation

PR, ANN, L ML
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Review: Bayes Rule

<« Forward (synthesis) route:

a0 From class to sample in a class
» Grammar rules to sentences
» Markov chain (or HMM) to pronunciation
> Texture rules (primitive + repetition) to textures

<+ Backward (analysis) route:

2 From sample to class ID
> A sentence parsed by a grammar
> A utterance 1s “congratulations” (not “constitution™)
> Brickwall vs. plaid shirt
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Review: Bayes Rule

<« Backward Is always harder
0 Because the interpretation is not unique
0 Presence of x has multiple possibilities

e

PR, ANN, L ML
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The simplest example

«» Two classes: pennies and dimes
<« NO measurements
« Classification:

2 based on the a prior probabilities

< Error rate:
@, If P(@,)>P(@,)
@, If P(a@,) <P(@,)
@, Or @, otherwise

min(P(a@,), P(@,))

PR, ANN, L ML
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A slightly more complicated example

<« Two classes: pennies and dimes
< A measurement X Is made (e.g. weight)

<« Classification
0 based on the a posterior probabilities with

Bayes rule
@, If P(a@y|X)> P(@,|X)
@, If P(a@,|X) < P(@,|X)

@, Or @, oOtherwise
p(a|x) = P @) _ P(X|@)P(a)
p(x) p(x)

PR, ANN, L ML 49



probability

> weight
x P(a@,) x P(a@,)
probability
P(a@,)
> weight
= p(X) = p(x) 7
probability ! !
p(a[x) P(@,|X)
> welight
PR, ANN, L ML 50




Why Both?

pix|m) & Pl@)?

2 In the day time, some animal runs in front of
you on the bike path, you know exactly what it
IS (p(X|w) Is sufficient)

a In the night time, some animal runs in front of
you on the bike path, you can hardly distinguish
the shape (p(x|w) is low for all cases, but you

know It Is probably a squirrel, not a lion
because of p(w))

PR, ANN, L ML
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Essence

<« Turn a backward (analysis) problem into
several forward (synthesis) problem

<« Or analysis-by-synthesis

< Whichever model has a highly likelihood of
synthesizing the outcome wins

«» The formula i1s not mathematically provable

PR, ANN, L ML
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Error rate

<« Determined by
2 The likelihood of a class
2 The likelihood of measuring X in a class

Min(P (| Xx), P(@,|x)) or

p<1x>m‘“< p(X| @) P(,), p(X|@,)P(,))

PR, ANN, L ML
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Error Rate (cont.)

<+ Bayes Decision Rule minimizes the average
error rate:

error :j p(error | X) p(x)dx

perror [x) = > p(a@; | X) =1—p(@, | X)

wi iw(x)

where

*

@, =argmax p(o; |X)

PR, ANN, L ML
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Various types of errors

T tp
Condition Precision =3 =+
(as determined by "Gold standard") Recall = tp
tp+ fn
Condition positive | Condition negative
Test . Precision =
. False positive .
outcome True positive 2 True positive
. (Type | error) —
Test | positive 2 Test outcome positive
outcome Test _ Negative predictive value =
False negative i :
outcome True negative 2 True negative
_ (Type 1l error) _
negative 2 Test outcome negative
Sensitivity = Specificity =
2 True positive 2 True negative Accuracy

2 Condition positive | Z Condition negative
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Key quantities as fractions

- -
+ ™ P
Sensitivity — TP/ (TP+FN)
Specificity — TN/ (FP+TN)
Positive Predictive Value — TP/ (TP+FP)
Negative Predictive Value — TN/ (FN+TN)
Accuracy — (TP+TN) / (TP+FP+FN+TN)

PR, ANN, L ML
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Precision vs. Recall

<+ A very common measure used in PR and
MI community

<« One goes up and the other HAS to go down

« A range of options (Receiver operating
characteristic curves) T 7

< Area under the curve I=4
as a goodness measure

— NetChop C-term 3.0
— TAP + ProteaSMM-i
ProteaSMM-i




Various ways to measure error rates

<« Tralning error

« Testerror

< Empirical error

< Some under your control (training and test)
«» Some not (empirical error)

< How: n-fold validation

< Why: Overfitting and underfitting problems

PR, ANN, L ML

58



An even more complicated example

« Two classes: pennies or dimes
< A measurement x Is made

<+ Risk associated with making a wrong decision

<+ Based on the a posterior probabilities with
Bayesian risk

R(an|X) = 41 P(@y] ) + 41, P(@,| x)
R(a,|X) = 451 P(@|X) + A5, P(@| X)
A;j-thelossof action ¢; instate @;

R(«;| x):theconditional risk of action «; with x

PR, ANN, L ML
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Mis-classification
Math

Mis-interpretation
Human factor

PR, ANN, L ML
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Incorrect decisions
Incur domain-specific cost
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An even more complicated example

R(used as pennies | X) =

r(pennies used as pennies) *

p(x|pennies)P(pennies)

P(pennies | X) |+

r(dimes used as pennies) *|P(dimes | X)

R(used as dimes | X) =

p(x|dimes)P(dimes)

r(pennies used as dimes) * P(pennies | X) +

r(dimes used as dimes) * P(dimes | X)

PR, ANN, L ML



A more credible example

R(call FD[smoke) =
r(call,fire)*P(fire|smoke) +
r(call, no firej’iP(no fire|smoke)
R(no call FD|smoke)= g Pl
r(no call, no fire)*P(no fire[smoke) +

r(no call, fire)*P(fire[smoke)

False negative

<+ The risk assoclated with false negative Is
much higher than that of false positive

PR, ANN, L ML 63



A

R(attack
r(attac

more credible example

battle field intelligence) =
K,<50%)*P(<50%]intelligence) +

r(attac

K,>50%)*P(>50%]intelligence)

R(no attack|batfle field intelligence)=

False positive

r(no attack, >50%)*P(>50%|intelligence) +

r(no attack, <50%)’[‘P(<50%|intelIigence)

False negative

PR, ANN, L ML
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Baysian Risk
<« Determined by
2 likelihood of a class
2 likelihood of measuring x in a class
2 the risk of making a wrong action

« Classification
2 Baysian risk should be minimized

min(R(¢, | X), R(«, | X))or

min(4,,P(@, | X) + 4,,P(@, | X), 4,,P(@, | X) + 1,,P(@, | X)) or
R(a | ) <R(a, | X) = @

(A = 41)P(@, | X) > (4, = 4,,)P(@, | X)

PR, ANN, L ML
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Bayesian Risk (cont.)

<« Again, decisions depend on
Q likelihood of a class
Q likelihood of observation of x in a class
0 Modified by some positive risk factors
< Why?

0 Because in the real world, it might not be the
misclassification rate that is important, it is the
action you assume

(A, — A4 ) P(@, | X) > (4, — 4,,)P(@, | X)

PR, ANN, L ML
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Other generalizations

< Multiple classes n

a n classes i;1P(Wi) =d.
< Multiple measurements

0 X Is a vector instead of a scalar
< Non-numeric measurements
< Actions vs. decisions

« Correlated vs. independent events
0 speech signals and images

« Training allowed or not
« Time-varying behaviors

PR, ANN, L ML
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Difficulties

< What features to use

< How many features (the curse of
dimensionality)

<+ The a prior probability g
+ The class-conditional density P(X|@;)
+ The a posterior probability  P(w; | x)

PR, ANN, L ML
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Typical Approaches

<« Supervised (with tagged samples Xx):
0 parameters of a probability function (e.g.  Gaussian

) P(X|@;) = N(z4,%;) .
0 density functions (w/o assuming any parametric forms)

0 decision boundaries (classes are indeed separable)
< Unsupervised (w/o tagged samples X):

O minimum distance

Q hierarchical clustering
« Reinforced (with hints)

0 Right or wrong, but not correct answer
0 Learning with a critic (not a teacher as in supervised)

PR, ANN, L ML 69
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Applications

« DNA sequence

<+ Lle detectors

< Handwritten digits recognition

<« Classification based on smell

< Web document classification and search engine
« Defect detection

« Texture classification

« Image database retrieval

<« Face recognition

< elc.

PR, ANN, L ML
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Other formulations

<« We talked about 1/3 of the scenarios — that
of classification (discrete)
<« Regression — continuous
0 Extrapolation and interpolation
<« Clustering
a Similarity
2 Abnormality detection
0 Concept drift (discovery), etc.

PR, ANN, L ML
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Classification vs. Regression

<« Classification <« Regression

<« Large vs. small hints <« Large means large,
on category small means small

« Absolute values does <« Absolute values matter
not matter as much « Fitting orders matter

(can actually hurt)

< Normalization Is often
necessary

« Fitting order stays low

PR, ANN, L ML
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Recent Development

« Data can be “massaged” Surprisingly,
massaging the data and use simple
classifiers is better than massaging the
classifiers and use simple data (for simple
problems & small data sets)

<« Hard-to-visualize concept

2 Transform data into higher dimensional space

(e.g., Infinite dimensional) has a tendency to
separate data and increase error margin

<« Concept of SVM and later kernel methods
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More Recent Development

< Think about fitting linear data with a model
Q Linear, quadratic, cubic, etc.

« Higher the order, better the fit

0 n data points can be perfectly fit by an (n-1) order
polynomial

< However

0 Overfitting is likely
0 No ability to extrapolate

« “Massage” the classifiers (using deep networks)

0 Feature detection and description
0 Classification
0 Jointly optimization

PR, ANN, L ML
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