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Nonparametric Techniques

 w/o assuming any particular distribution

 the underlying function may not be known (e.g. 

multi-modal densities)

 too many parameters 

 Estimating density distribution directly 

 Transform into a lower-dimensional space 

where parametric techniques may apply 

(more on this later on dimension reduction)
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Example

 Estimate the population growth, annual 

rainfall, etc. in the US

 p(x,y)dxdy is the probability of rain fall in 

[x,x+dx,y,y+dy]
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Example (cont.)

 A simple parametric model for p(x,y) 

probably does not exist

 In stead

 partition the area into a lattice

At each (x,y), count the amount of rain r(x,y)

Do that for a whole year

Normalize S r (x,y) = 1
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Density estimation
probability

value (x)
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 From equation

 From observation

 Hence
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Comparison

 In Reality:

 The number of 

training samples is 

limited

 if V is too small, k 

becomes erratic

 What does 0 mean?

 if V is too large,          

is not representative 

 In theory:

 If n becomes infinitely 

large, k/n approaches 

the probability, p(x) = 

(k/n)/V is then only a 

space average

 Hence, V must be 

allowed to go to zero 

as n goes to infinity
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In Theory

 Theoretically, we can use a sequence of 

samples with increasing size for estimation

 Then 
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Two different approaches

 Constrain the region size

 Shrink the region to maintain good locality 

(Parzen Windows)

 Constrain the sample size

 Enlarge the number of samples to maintain 

good resolution (Kn-nearest-neighbors)                                              
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Parzen Windows
Use a windowing function, e.g.

A sequence of n regions can be defined
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Parzen Window (cont.)

 As n increases

 The window becomes narrower (by hn)

 The window becomes taller (by 1/Vn)

 Sampling with smaller aperture but 

higher focus

 The same 100 dollars collected from 100 

people and from 1 person is different 

(per person)
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x

)(xpn Small n: large aperture, smoothed, fuzzy estimate

Large n: small aperture, sharp, erratic estimate
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1n

16n

256n

n
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2D Sampling

 Five samples

 Windowing func:
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# of samples

Window

size
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Does it work?

 “Work” in the sense that you if you are able 
to shrink down the window size as much as 
you want (certainly, you must 
simultaneously increase the number of 
samples available), then the limit of the 
profile should be the correct probability

 This implies (treating pn as a random 
variable)

 E(pn (x))=p(x)

Var(pn(x)) -> 0 
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Convergence of Mean
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 Will pn (x) goes to p(x)?

 If n goes to infinity

 xi will cover all possible x (summation to integration)

with p(x) distribution (weighted by p(x) )

Sample v appears with

probability p(v)
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Convergence of Variance

 Will pn(x) always end up at p(x) for certain?

 nVn must approach infinity, even Vn when goes to zero
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kn-nearest-neighbor

 Parzen window size hard to estimate

 Constrain the number of data items instead 

of the size of the window

 enlarge window around x to 

enclose that many samples, then 
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kn-nearest-neighbor

 Intuitively, as n increases

 kn should increase  (for good representation)

Vn should decrease (for good localization)

 The following conditions guarantee 

convergence
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Sharp spikes around data points:

Kn=1, the probability estimate is infinity at data point

(region size is zero to capture 1 sample)
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An Example

 Estimating

 n tagged samples 

 a volume V around x captures   k samples,               

of them are 
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Comparison

 Parametric

 simple and analytical

may not fit well real-world densities

 Non-parametric

 flexible and fit all densities

 need to remember all samples
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One Final Note

 Here we talk about Parzen window and kn-

nearest-neighbor rule as a way to estimate a

single probability density

 This rule is equally useful at labeling a 

sample against multiple probable classes 

(densities)

 More on that in linear discriminant function
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More Realistic Scenarios

 Drake’s Equation

Rate of start formation, fraction of stars having 

planets, average # of planets per star that 

support life, fraction of such stars actually 

develop life, fractions of such stars actually 

develop civilization, such civilization have 

communication, length of time such civilization 

actually release signals

PR , ANN, & ML
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More Realistic Scenarios

 Chance of a person develops cancer 

(ancestry, birth place, how raised, living 

habits, education history, work history, 

exercise habit, income, debt, food intake, 

etc.)

 Chance of  a person contributes to political 

campaign (…)

PR , ANN, & ML
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Curse of Dimensionality

 Not possible to estimate distributions in 

such high-dimensional space 

 # of samples needed are generally infinitely 

large 

PR , ANN, & ML
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Practical Usage

 X = rand(3,3)

 Sampling based on certain distribution 

(default is uniform)

 Need to evaluate certain expectation

 Technology advances by alien contact

 Life expectancy (for cancer case)

 Amount of money for political campaigns

PR , ANN, & ML
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General Idea

 Finite number samples: sample 

mean/variance to estimate population 

mean/variance

 z(l) , l = 1, …, L

 Samples may not be independent

 Some distribution (uniform) is easier to sample 

than others

 f(z) is small in regions where p(z) is large and 

vice versa 

PR , ANN, & ML
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From One to Another

PR , ANN, & ML

z: uniform

y: any known distribution

Sample z uniformly ==

Sample y based on p(y)



34

Multi-Dimensional 

 Much more difficult

 Do not know the form 

 Cannot get enough samples to populate the 

landscape

 How to generate IID samples? 

PR , ANN, & ML
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Rejection Sampling

 A real distribution p(z)

 A proposal distribution q(z)

 Procedure

Generate zo from q(z)

Generate uo from [0, kq(zo)] uniformly 

Reject sample if 

Otherwise, accept 

PR , ANN, & ML
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Importance Sampling

 A real distribution p(z)

 A proposal distribution q(z)

 Procedure

Generate zo from q(z), nothing rejected

 p(z(l))/q(z(l))): importance weight to account for 

sampling from wrong distribution

PR , ANN, & ML
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MCMC

 Imagine

A very high-dimensional space

 Samples occupy low-dimensional manifold in 

such a high-dimensional space 

Choose a random start point 

Wander about in the space, seeking out places 

with sample 

With right “seek” strategy, samples generated 

along the walk have the right population 

characteristics
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MCMC
 Successive sampling points are NOT 

independent, but form a Markov chain

 Z* is generated at each step, accepted if  

probability > preset threshold

 Can be shown that the distribution of z(t)

tends to p(z) as t -> infinity 

 So distribution of steps z’s after some 

initial steps can be used to approximate p(z)

 For Metropolis algorithm, q has to be 

symmetrical q(a|b)=q(b|a)
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Meropolis - Hastings
 f(x): proportional to p(x) – target distribution

 Given:

 xo: first sample

Q(x’|x): Markov process to generate next sample 

(x’) given current sample (x), Q must be 

symmetrical (e.g., Gaussian)

 Iteration:

X’ picking from Q(x’|x)

 r=f(x’)/f(x) >=1 accept, otherwise accept with prob 

r. If rejected, x’=x
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Intuition



PR , ANN, & ML
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Gibbs Sampling

 Special case of MCMC Metropolis-

Hastings

 From x (i) to x (i+1) by component-wide 

sampling, j-th variable in x (i+1) depends on

 1 to j-1 in (i+1)-th iterations

 j+1 to n in (i)-th iteration 

PR , ANN, & ML
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Slice Sampling

 Random walk under the probability curve

 Start from an xo with f(x)>0

 Randomly select height y, 0<y<=f(x)

 Randomly select x’ lie within the slice, repeat
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xxo

f(xo)

y

slice


