Nonparametric Technigues




Nonparametric Techniques

<« W/0 assuming any particular distribution

2 the underlying function may not be known (e.g.
multi-modal densities)

0 t00 many parameters
<« EStimating density distribution directly

<« Transform into a lower-dimensional space
where parametric techniques may apply
(more on this later on dimension reduction)
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Example

<« Estimate the population growth, annual
rainfall, etc. in the US

« p(X,y)dxdy is the probability of rain fall in
[X,x+dX,y,y+dy]
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Example (cont.)

<+ A simple parametric model for p(x,y)
probably does not exist

< In stead
0 partition the area into a lattice
0 At each (x,y), count the amount of rain r(Xx,y)
0 Do that for a whole year
aNormalize 2 r (x,y) =1
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Density estimation
probability

p(x)
> value (X)
prob?bility .. P— ij p(X)dX
XI .—l ....... 5 Value (X)
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Density estimation

< From equation

P= j))((ii P(x)dx = p(x)(X; — X;)

< From observation
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Comparison

« In Reality: <« In theory:
<« The number of « If n becomes infinitely
training samples iIs large, k/n approaches
limited the probability, p(x) =
+ if V is too small, k (k/n)/V is then only a
becomes erratic Space average
a2 What does 0 mean? <+ Hence, V must be
+ if Vis too large, p(x) allowed to go to zero
is not representative as n goes to Infinity
K/n k/n
p(x) = =~
- (Xj=%) V
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In Theory

<+ Theoretically, we can use a sequence of
samples with increasing size for estimation

< Then

P, (X)— p(x) I
(1) I_im V,=0
(2) I_im kn = o0

(3) lim &zO

n—>o N
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Two different approaches

<« Constrain the region size

2 Shrink the region to maintain good locality
(Parzen Windows)

« Constrain the sample size

0 Enlarge the number of samples to maintain
good resolution (K -nearest-neighbors)
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Parzen Windows

“*Use a windowing function, e.g.
A sequence of n regions can be defined

1 X< 3 S
¢(x):{ PE 2 or —162

O otherwise 27T

n ﬁ
Ky = 2 (x-%) = 29
(9 =23 4=~ 5, (x-x)
pn |:1Vn h =1 \l/
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Parzen Window (cont.)

< AS N Increases

a The window becomes narrower (by h,) .

0 The window becomes taller (by 1/V,)

0 Sampling with smaller aperture but
higher focus

a The same 100 dollars collected from 100
people and from 1 person is different

(per person)

N — oo
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P, (X)

Small n: large aperture, smoothed, fuzzy estimate
Large n: small aperture, sharp, erratic estimate

FIGURE 4.3. Examples of two-dimensional circularly symmetric normal Parzen win-
dows for three different values of h. Note that because the §(x) are normalized, different
vertical scales must be used to show their structure.
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Example I: () as a Gaussian window of various width.




Sampling

<« Five samples =
< Windowing func:

FIGURE 4.3. Examples of two-dimensional circularly symmetric normal Parzen win-
dows for three different values of h. Note that because the §(x) are normalized, different
vertical scales must be used to show their structure.

|I.l =1 ||_ _i

Pix)

i “1“‘ Py
A
Ty ‘il '1# LA
e e
HALALL

"-i" ] MG

il

e
S
l‘ﬂ : ‘t.

o
=,

PR, ANN, L ML 14



a1

!
oy,

nisy b~

a ll)||
ansh

n=/

YLy

aro)
\

n=es .

FIGURE 4.6. Parzen-window estimates of a bivariate normal density using different window widths and
bers of samples. The vertical axes have been scaled to best show the structure in each graph. Note particuld
that the n = oo estimates are the same (and match the true distribution), regardless of windaw width.
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Does 1t work?

+ “Work” in the sense that you if you are able
to shrink down the window size as much as
you want (certainly, you must
simultaneously increase the number of
samples available), then the limit of the
profile should be the correct probability

<« This implies (treating p, as a random
variable)

a E(p, (x))=p(x)
a Var(p,(x)) ->0

PR, ANN, L ML
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Convergence of Mean

< WIll p,, (X) goes to p(x)?
a If n goes to Infinity

> X; Will cover all possible x (summation to integration)
> with p(x) distribution (weighted by p(x) )

ﬁn (X) T E[ pn (X)]

71X
= —Z [— (=150
hn Sample v appears with
. ]_ X v probability p(v)
= p(v)dv
Jo o =ip)

n n

= [ 8,(x=v) p(v)dv = p(x)
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Convergence of Variance

< WIll p.(x) always end up at p(x) for certain?
a nV, must approach infinity, even V., when goes to zero

oﬁ(x>=iE[ = ¢<X;Xi)—%m<x>]

nv

n

‘Z”EK vl nx‘ ﬂ——pn(x)

j ¢2( S )p(v)dv——ﬁz(x) -> 0 as n-> infinity
Y h, =~

1  X-V
Vn¢( n )p(v)dv

n

_ SUp($()P, ()

NV,  er ann <o 19




k -nearest-neighbor

< Parzen window size hard to estimate

< Constrain the number of data items instead
of the size of the window

% k,=~/n enlarge window around X to
enclose that many samples, then

k,/n
V

pn(x) >

n

PR, ANN, L ML
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k. -nearest-neighbor

<+ Intuitively, as n increases
a k. should increase (for good representation)
0V, should decrease (for good localization)
2 The following conditions guarantee

convergence
- < = —
n — oo
P <
as B == S

n —oco n

PR, ANN, L ML
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FIGURE 4.10. Eight points in one dimension and the k-nearest-neighbor density esti-
mates, for k = 3 and 5. Note especially that the discontinuities in the slopes in the
estimates generally lie away from the positions of the prototype points.

Sharp spikes around data points:
Kn=1, the probability estimate is infinity at data point
(region size iIs zero to capture 1 sample)
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FIGURE 4.15. The k-nearest-neighbor query starts at the test point x and grows a spher-
. ical region until it encloses k training samples, and it labels the test paint by a majority

vote of these samples. In this k = 5 case, the test point x would be labeled the category
of the black points.
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Examples of the kjp-Nearest-Neighbor Method
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An Example

«» EStimating  p(@;|x)
a n tagged samples

aavolume V around x captures k samples,
Ki of them are @

k. /n
X, @) =—
P, (X, ;) v
K, /n K, /n
— pn(x’wi) -4 V Sl V _ﬁ

k. /n k
;pn(xiwj) z Y; Y,
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Comparison

<« Parametric

a simple and analytical

o may not fit well real-world densities
< Non-parametric

a flexible and fit all densities

2 need to remember all samples

PR, ANN, L ML
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One Final Note

<+ Here we talk about Parzen window and K-
nearest-neighbor rule as a way to estimate a
single probability density

« This rule Is equally useful at labeling a

sample against multiple probable classes
(densities)

< More on that in linear discriminant function

PR, ANN, L ML 27



More Realistic Scenarios

+ Drake’s Equation

0 Rate of start formation, fraction of stars having
planets, average # of planets per star that
support life, fraction of such stars actually
develop life, fractions of such stars actually
develop civilization, such civilization have
communication, length of time such civilization
actually release signals

PR, ANN, L ML 28



More Realistic Scenarios

<+ Chance of a person develops cancer
(ancestry, birth place, how raised, living
habits, education history, work history,
exercise habit, income, debt, food intake,
etc.)

«» Chance of a person contributes to political
campaign (...)

PR, ANN, L ML 29



Curse of Dimensionality

« Not possible to estimate distributions in
such high-dimensional space

« # of samples needed are generally infinitely
large

PR, ANN, L ML
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Practical Usage

«» X =rand(3,3)

«» Sampling based on certain distribution
(default is uniform)

<« Need to evaluate certain expectation

<+ Technology advances by alien contact

< LIfe expectancy (for cancer case)

< Amount of money for political campaigns

E[f] = f‘f'(z)p(z)dz

31



General Idea

<« FInite number samples: sample
mean/variance to estimate population

mean/variance o
==Y f(zV).
az0,1=1,..., L =

i

| varlf] = TE[( - EI/))’]
0 Samples may not be independent

0 Some distribution (uniform) Is easier to sample
than others

2 f(z) 1s small in regions where p(z) is large and
Vice versa

PR, ANN, L ML 32



From One to Another

dz

p(y) = p(2)

dy

u
2 = hy) = / p(H) dj

(o d

y = h7(2)

. uniform

y: any known distribution
Sample z uniformly ==
Sample y based on p(y)

PR, ANN ()

p(y) = Aexp(—Ay)

h(y) = 1 — exp(—Ay)




Multi-Dimensional

< Much more difficult
< Do not know the form

« Cannot get enough samples to populate the
landscape

«» How to generate 11D samples?

PR, ANN, L ML
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Rejection Sampling

= Areal distribution p(z) v = )

<« A proposal distribution g(z)
<« Procedure
a Generate z, from q(z)
a Generate u, from [0, kq(z,)] uniformly
0 Reject sample If wo > 5(z0)
0 Otherwise, accept

placcept) = /{jﬁ(,‘,)fﬂ'q(;)}q(,‘.) dz
1 [~
= I/;.}(;)d:.

kf}(zﬂ)
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Importance Sampling

<« A real distribution p(z)
<« A proposal distribution g(z)
<« Procedure

a Generate z, from q(z), nothing rejected

2 p(zM/a(zM)): importance weight to account for
sampling from wrong distribution

E[f] = /f(z}p(z)dz

PR, ANN, L ML 36



MCMC

<+ Imagine
2 A very high-dimensional space

0 Samples occupy low-dimensional manifold in
such a high-dimensional space

0 Choose a random start point

2 Wander about in the space, seeking out places
with sample

0 With right “seek” strategy, samples generated
along the walk have the right population
characteristics

PR, ANN, L ML
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MCMC

<« Successive sampling points are NOT
Independent, but form a Markov chain ¢(z|z(™)

« Z* IS generated at each step, accepted If
probability > preset threshold  1¢.2) =i (1 'Mzﬂ)

' P(a™)
« Can be shown that the distribution of z(®
tends to p(z) as t -> Infinity

+ So distribution of steps z’s after some
Initial steps can be used to approximate p(z)

<« For Metropolis algorithm, g has to be
symmetrical g(alb)=g(bla)

PR, ANN, L ML 38



Meropolis - Hastings
<+ T(x): proportional to p(x) — target distribution
«» Glven:
a X, first sample

0 Q(x’|x): Markov process to generate next sample
(x’) given current sample (x), Q must be
symmetrical (e.g., Gaussian)

< |teration:
a X’ picking from Q(x’|x)

L)

ar=f(x’)/f(x) >=1 accept, otherwise accept with prob
r. If rejected, x’=x
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Intuition

« A random walk model
2 Move into more likely region with prob 1

0 Move into less likely region with prob
«likelithood

Q Stay in the high-density region of p(x)
+» Caveats:

0 Samples are correlated
» Discard 1nitial samples

» Take 1 out of n-th samples

Q Slow mixing for high-dimensional data (Gibbs

R Fots. R | ST AN
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Gibbs Sampling

<+ Speclal case of MCMC Metropolis-
Hastings

2 From x W to x (*1) by component-wide
sampling, j-th variable in x (*1) depends on
o 1to]-1in (i+1)-th iterations
aj+1tonin (1)-th iteration

) i+1 i+1 1 1
p (01D, 2t o 0)

?Ilij j_]- !$j+1’iti?$n

PR, ANN, L ML
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Slice Sampling

< Random walk under the probability curve

< Start from an x, with f(x)>0

«» Randomly select height y, O<y<=f(x)

« Randomly select x’ lie within the slice, repeat
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