Parameter Estimation
Notational Convention

- Probabilities
 - Mass (discrete) function: capital letters
 - Density (continuous) function: small letters

- Vector vs. scalar
 - Scalar: plain
 - Vector: bold
 - 2D: small
 - Higher dimension: capital

- Notes in a continuous state of fluctuation until a topic is finished (many updates)
Parameter Estimation

- Optimal classifier maximizes
 - *a prior* probability
 - class-conditional density

\[
p(\omega_i \mid x) = \frac{p(x \mid \omega_i)P(\omega_i)}{p(x)}
\]

- Assumption
 - no correlation
 - time independent statistics
Popular Approaches

- **Parametric**: assume a certain parametric form for $p(x|w_i)$ and estimate the parameters
- **Nonparametric**: does not assume a parametric form for $p(x|w_i)$ and estimate the density profile directly
- **Boundary**: estimate the separation hyperplane (hypersurface) between $p(x|w_i)$ and $p(x|w_j)$
a prior probability

- Given the numbers of occurrence:
 - if number of samples are large enough
 - the selection process is not biased
 - **Caveat**: sampling may be biased

\[
\left(n_1, \omega_1\right), \left(n_2, \omega_2\right), \ldots, \left(n_k, \omega_k\right) \\
\sum_{i=1}^{k} n_i = M \\
P(\omega_i) = \frac{n_i}{M} \quad i = 1, \ldots, k
\]
Class conditional density

- More complicated (not a single number, but a distribution)
 - assume a certain form
 - estimate the parameters

- What form should we assume?
 - Many, but in this course
 - We use almost exclusively Gaussian
Gaussian Distribution

- Gaussian (or Normal) Scalar case

\[p(x | \omega_i) = N(\mu_i, \sigma_i) = \frac{1}{\sqrt{2\pi}\sigma_i} e^{-\frac{1}{2} \frac{(x-u_i)^2}{\sigma_i^2}} \]

- Vector case

\[p(x | \omega_i) = N(\mu_i, \Sigma_i) = \frac{1}{\sqrt{2\pi|\Sigma_i|}} e^{-\frac{1}{2} [(x-\bar{u}_i)^T \Sigma_i^{-1} (x-\bar{u}_i)]} \]

- Unknowns

- class mean and variance
The equation for the population distribution is given by:

\[
\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
\]
Why Gaussian (Normal)?

- Central limit theorem predicts normal distribution from IID experiments
- In reality
 - There are only two numbers in the scalar case (mean and variance) to estimate, (or \(d + d(d+1)/2 \) in \(d \)-dimensions)
 - Nice mathematical properties (e.g., Fourier transform of a Gaussian is a Gaussian. Products and summation of Gaussian remain Gaussian, Any linear transform of a Gaussian is a Gaussian)
In particular, a whitening transform can diagonalize the covariance matrix.
Parameter Estimation

- Maximum likelihood estimator
 - Parameters have *fixed but unknown* values
- Bayesian estimator
 - Parameters as *random variables* with known *prior* distributions
 - Bayesian estimator allows us to change the *prior* distribution by incorporating measurements to sharpen the profile
Graphically

- MLE
- Bayesian

likelihood

parameters
Maximum Likelihood Estimator

- Given
 - n labeled samples (observations)
 \[X = \{x_1, x_2, \ldots, x_n\} \]
 - an assumed distribution of \(e \) parameters
 \[\theta = \{\theta_1, \theta_2, \ldots, \theta_e\} \]
 - samples are drawn independently from

- Find
 \[p(X_j \mid \omega) = p(X_j \mid \theta, \omega) \]

- parameter that best explains the observations
MLE Formulation

Maximize

\[p(X | \theta) = \prod_{j=1}^{n} p(x_j | \theta) \]

Log likelihood

\[l(\theta) = \log p(X | \theta) = \sum_{j=1}^{n} \log p(x_j | \theta) \]

Or

\[\nabla_{\theta} p(X | \theta) = 0 \]

\[\nabla_{\theta} l(\theta) = \sum_{j=1}^{n} \nabla_{\theta} \log p(x_j | \theta) = 0 \]
An Example

\[p(x_j \mid \theta) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2} \frac{(x_j - u)^2}{\sigma^2}} \]

\[\log p(x_j \mid \theta) = -\frac{1}{2} \log \sigma^2 - \frac{1}{2} \frac{(x_j - u)^2}{\sigma^2} \]

\[\theta_1 = u \quad \theta_2 = \sigma^2 \]

\[\log p(x_j \mid \theta) = -\frac{1}{2} \log \theta_2 - \frac{1}{2} \frac{(x_j - \theta_1)^2}{\theta_2} \]

\[\nabla_{\theta} \log p(x_j \mid \theta) = \begin{bmatrix} \frac{(x_j - \theta_1)}{\theta_2} \\ 2\theta_2 - \frac{1}{2} \frac{(x_j - \theta_1)^2}{\theta_2^2} \end{bmatrix} \]
An Example (cont.)

\[\sum_{j=1}^{n} \frac{(x_j - \theta_1)}{\theta_2} = 0 \]

\[\sum_{j=1}^{n} - \frac{1}{\theta_2} + \sum_{j=1}^{n} \frac{(x_j - \theta_1)^2}{\theta_2^2} = 0 \]

\[\hat{\mu} = \theta_1 = \frac{1}{n} \sum_{j=1}^{n} x_j \]

\[\hat{\sigma}^2 = \theta_2 = \frac{1}{n} \sum_{j=1}^{n} (x_j - \hat{\mu})^2 \]

- Class mean as sample mean
- Class variance as sample variance

\[g_i(x) = p(\omega_i \mid x) = \frac{1}{p(x)} N(\hat{\mu}_i, \hat{\sigma}_i) p(\omega_i) = \alpha \frac{1}{\sqrt{2\pi} \hat{\sigma}_i} e^{-\frac{1}{2} \left(\frac{(x-\hat{\mu}_i)^2}{\hat{\sigma}_i^2}\right)} p(\omega_i) \]
\[
\prod_{j=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-u_1)^2}{2\sigma^2}} > \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-u_2)^2}{2\sigma^2}}
\]
\[
\prod_{j=1}^{n} \frac{1}{\sqrt{2\pi\sigma_1}} e^{-\frac{1}{2} \frac{(x-\hat{u})^2}{\sigma_1^2}} > \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi\sigma_2}} e^{-\frac{1}{2} \frac{(x-\hat{u})^2}{\sigma_2^2}}
\]

- If \(\sigma \) too narrow, many sampling points will be outside 2 \(\sigma \) width with low likelihood of occurrence.
- If \(\sigma \) too wide, \(\frac{1}{\sigma} \) becomes too small and reduces the likelihood of occurrence.
A Quick Word on MAP

- MAP (Maximum \textit{a posteriori}) estimator
- Similar to MLE with one additional twist
 - Maximize the (log) likelihood, \(l(.) \) \textit{and}
 - \(p(.) \), prior probability of parameter values (if you know it), e.g., the mean is more likely to be \(\mu_0 \) with a normal distribution
- MLE has a uniform prior, MAP not necessarily
- The added term is a case of “regularization”
Bayesian Estimator

- Note that MLE is a *batch* estimator
 - All data have to be kept
 - Difficult to update estimation
 - Difficult to incorporate other evidence
 - Insist on a single measurement

- Bayesian estimator
 - Allow the freedom that parameters in themselves can be random variables
 - Allow multiple evidence
 - Allow iterative update
Bayesian Estimator

- Based on Bayes rule
 \[P(\omega_i \mid x) = \frac{P(x, \omega_i)}{P(x)} = \frac{p(x \mid \omega_i)P(\omega_i)}{\sum_j p(x \mid \omega_j)P(\omega_j)} \]

- With \(X \) at our disposal
 \[P(\omega_i \mid x, X) = \frac{P(x, \omega_i, X)}{P(x, X)} = \frac{p(x \mid \omega_i, X)P(\omega_i \mid X)}{\sum_j p(x \mid \omega_j, X)P(\omega_j \mid X)} \]
Bayes Rule Formulation

- Assume

 - \(X \) comes from only one class
 - \(p(\omega_i) \) is independent of \(X \)

\[
p(\omega_i \mid x, X) = \frac{P(x, \omega_i, X_i)}{P(x, X)} = \frac{p(x \mid \omega_i, X_i)P(\omega_i)}{\sum_{j} p(x \mid \omega_j, X_j)P(\omega_j)}
\]
How can X be used?

- The distribution is known (e.g., normal), the parameters are unknown.
- For estimating class parameters \(p(\theta | X) \)
- class parameters then constrain \(x \) \(p(x | \theta) \)
- put it all together

\[
p(x | X) = \int p(x | \theta) p(\theta | X) d\theta
\]
Bayes Rule Formulation (cont.)

\[p(x \mid X) = \int p(x \mid \theta)p(\theta \mid X)d\theta \]

- Ideally

\[
p(\theta \mid X) = \begin{cases}
1 & \text{some } \hat{\theta} \\
0 & \text{otherwise}
\end{cases} \quad \text{This is MLE!}
\]

\[p(x \mid X) = \int p(x \mid \theta)p(\theta \mid X)d\theta = p(x \mid \hat{\theta}) \]

Otherwise, all possible \(\theta \)'s are used
Graphic Interpretation

\[\theta = \{\theta_1, \theta_2, \ldots, \theta_e\} \]

\[X = \{x_1, x_2, \ldots, x_n\} \]

\[\theta' = \{\theta_1', \theta_2', \ldots, \theta_e'\} \]

\[\theta'' = \{\theta_1'', \theta_2'', \ldots, \theta_e''\} \]

\[p(x | \theta)P(\varnothing) \]
An example

- Estimating mean of a normal distribution
- Variance is known
- Using n samples
- First step

\[p(x \mid X) = \int p(x \mid u)p(u \mid X)du \]

\[p(\mu \mid X) = \frac{p(X \mid \mu)p(u)}{p(X)} \]

Current evidence

\[p(X \mid \mu) = \prod_{k=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2} \left(\frac{x_k - \mu}{\sigma}\right)^2} \]

Previous and other evidence

\[p(u) = N(\mu_o, \sigma_o) = \frac{1}{\sqrt{2\pi}\sigma_o} e^{-\frac{1}{2} \left(\frac{\mu - \mu_o}{\sigma_o}\right)^2} \]
Then

\[p(\mu | X) = \alpha \prod_{k=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2} \frac{(x_k - \mu)^2}{\sigma^2}} \frac{1}{\sqrt{2\pi}\sigma_o} e^{-\frac{1}{2} \frac{(\mu - \mu_o)^2}{\sigma_o^2}} = \alpha' e^{-\frac{1}{2} \left\{ \left(\frac{n}{\sigma^2} + \frac{1}{\sigma_o^2} \right) \mu^2 - 2 \left(\frac{n}{\sigma^2} \sum_{k=1}^{n} x_k + \frac{\mu_o}{\sigma_o^2} \right) \mu \right\}} \]

\[
\mu_n = \frac{n \sigma_o^2}{n \sigma_o^2 + \sigma^2} m_n + \frac{\sigma^2}{n \sigma_o^2 + \sigma^2} \mu_o
\]

\[
\sigma_n^2 = \frac{\sigma^2 \sigma_o^2}{n \sigma_o^2 + \sigma^2}
\]

if \(\sigma^2 = \sigma_o^2 \Rightarrow \sigma_n^2 = \frac{\sigma^2}{n + 1} \)

\[
m_n = \frac{1}{n} \sum_{k=1}^{n} x_k
\]
X helps in

- Defining the mean
- Reducing the uncertainty in mean
- Trust new data if
 - Class variance is small \(\sigma^2 \downarrow \)
 - Number of sample is large \(n \uparrow \)
 - Prior is uncertain \(\sigma_o^2 \uparrow \)

\[m_n \]
\[\sigma^2 \downarrow \]
\[n \uparrow \]
\[\sigma^2 \uparrow \]
\[\sigma_o^2 \uparrow \]

\[\sigma^2 \uparrow \]
\[n \downarrow \]
\[\sigma_o^2 \downarrow \]
\[\mu_o \]
An example (cont.)

- **Second step**

\[p(x \mid \mu) = \frac{1}{\sqrt{2\pi \sigma}} e^{-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}} \]

- **Third step**

\[g(x) = p(x \mid X) = \int p(x \mid \mu) p(u \mid X) \, d\mu \]

\[= \int \left\{ \frac{1}{\sqrt{2\pi \sigma}} e^{-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}} \cdot \frac{1}{\sqrt{2\pi \sigma_n}} e^{-\frac{1}{2} \frac{(u-\mu_n)^2}{\sigma_n^2}} \right\} \, d\mu \]

\[= N(\mu_n, \sigma^2 + \sigma_n^2) f(\sigma, \sigma_n) \]

where

\[f(\sigma, \sigma_n) = \int \exp\left\{ -\frac{1}{2} \frac{\sigma^2 + \sigma_n^2}{\sigma^2 \sigma_n^2} (u - \frac{\sigma^2 \mu_n + \sigma_n^2 x}{\sigma^2 + \sigma_n^2}) \right\} \, d\mu \]
Graphical Interpretation: MLE

\[p(X | \mu) = \prod_{k=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_k - \mu)^2}{2\sigma^2}} \]

\[p(\mu) \]

\[\hat{\mu} \]
Graphical Interpretation: Bayesian

\[p(X | \mu) = \prod_{k=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x_k - \mu)^2} \]

\[p(u | X) = p(X | u) p(u) \]

\[= \prod_{k=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x_k - \mu)^2} p(u) \]
Results of Iterative Process

- Start with a prior distribution
- Incorporate current batch of data
- Generate a new prior
- Goodness of new prior = goodness of old prior * goodness of interpretation

Usually
- Prior distribution sharpen (Bayesian learning)
- Uncertainty drops
MLE vs. Bayes

- Faster (differentiation)
- Single model
- Known model $p(x|\theta)$
- Less information

- Slow (integration)
- Multiple weighted
- Unknown model fine
- More information (nonuniform prior)
Does it really make a difference?

- Yes, Bayesian classifier and MAP will in general give different results when used to classify new samples
- Because MAP (MLE) keeps only one hypothesis while Bayesian keeps multiple, weighted hypotheses
Example

- MLE

\[p(\mathbf{x}' | \mathbf{X}) = \arg \max_{\mathbf{x}} p(\mathbf{x} | \theta') , \]

where \(\theta' = \arg \max_{\theta} P(\theta | \mathbf{X}) \)

\[p(\theta_1 | \mathbf{X}) = .4, P(\cdot | \theta_1) = 0, P(- | \theta_1) = 1 \]

\[p(\theta_2 | \mathbf{X}) = .3, P(\cdot | \theta_2) = 1, P(- | \theta_2) = 0 \]

\[p(\theta_3 | \mathbf{X}) = .3, P(\cdot | \theta_3) = 1, P(- | \theta_3) = 0 \]

\[p(\mathbf{x} | \mathbf{X}) = - \]

Only one hypothesis (\(\theta_1 \)) is kept

- Bayesian

\[p(\mathbf{x}' | \mathbf{X}) = \arg \max_{\mathbf{x}} \int p(\mathbf{x} | \theta) p(\theta | \mathbf{X}) d\theta \]

\[p(\mathbf{x} | \mathbf{X}) = + \]

\[p(\cdot | \mathbf{X}) = .4 \times 0 + .3 \times 1 + .3 \times 1 = .6 \]

\[p(- | \mathbf{X}) = .4 \times 1 + .3 \times 0 + .3 \times 0 = .4 \]
Gibbs Sampler

- Bayesian classifier is optimal, but can be very expensive – especially when a large number of hypotheses are kept and evaluated.
- Gibbs – randomly pick one hypothesis according to the current posterior distribution $p(\theta | x)$.
- Can be shown (later) to be related knn classifier and the expected error is at most twice as bad as Bayesian.
An Example: Naïve Bayesian

- Features are a conjunction of attributes
- Bayes theorem states that \textit{a posteriori} probability should be maximized
- Naïve Bayesian classifier assumes independence of attributes

\[
c = \arg \max_{c_j} P(c_j \mid a_1, a_2, \ldots, a_n) \\
= \arg \max_{c_j} \frac{P(a_1, a_2, \ldots, a_n \mid c_j)P(c_j)}{P(a_1, a_2, \ldots, a_n)} \\
= \arg \max_{c_j} P(c_j) \prod_i P(a_i \mid c_j)
\]
Example

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>Play tennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D3</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D4</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D5</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D6</td>
<td>Rain</td>
<td>Cold</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D7</td>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D8</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D9</td>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D10</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D11</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D12</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D13</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D14</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>
Example (cont)

- <Outlook=sunny, Temperature=cool, Humidity=high, Wind=strong>

- PlayTennis=yes? Or no?

\[c_{NB} = \arg \max_{c_j \in \{yes, no\}} P(c_j)P(\text{Outlook} = \text{sunny} \mid c_j)P(\text{Temperature} = \text{cool} \mid c_j) \]

\[P(\text{Humidity} = \text{high} \mid c_j)P(\text{Wind} = \text{strong} \mid c_j) \]

\[P(\text{playTennis} = \text{yes}) = \frac{9}{14} = .64 \]

\[P(\text{playTennis} = \text{no}) = \frac{5}{14} = .36 \]

\[P(\text{Wind} = \text{strong} \mid \text{yes}) = \frac{3}{9} = .33 \]

\[P(\text{Wind} = \text{strong} \mid \text{no}) = \frac{3}{5} = .6 \]

\[P(\text{yes})P(\text{sunny} \mid \text{yes})P(\text{cool} \mid \text{yes}) \]

\[P(\text{high} \mid \text{yes})P(\text{strong} \mid \text{yes}) = 0.0053 \]

\[P(\text{no})P(\text{sunny} \mid \text{no})P(\text{cool} \mid \text{no}) \]

\[P(\text{high} \mid \text{no})P(\text{strong} \mid \text{no}) = 0.0206 \]
Caveat

- Guarding against zero probability $P(a_i|c_j)$
 - Especially for small sample sizes and large set of attribute values
 - Use m-estimate instead
 - If attribute a_i can take k values, then $p=1/k$

$$p(a_i \mid c_j) = \frac{n_{a_i} + mp}{n_{c_j} + m}$$

n_{a_i}: # of samples in c_j with attribute a_i
n_{c_j}: # of samples in c_j
m: equivalent sample size (add m more samples)
p: prior estimate
More Examples

- Web page classification/Newsgroup classification
- Like/dislike for web pages
- Science/sports/entertainment categories for web pages/newsgroups
More Examples (cont.)

- Select common occurring words as features (at least k times in documents)
- Eliminate stop words (the, it, etc.) and punctuations
- Word stemming (like, liked etc.)
- $P(\text{word}_k | \text{class}_j)$ is independent of word position in the document
- Achieve 89% accuracy for classifying documents for 20 newsgroups