Quadratic Programming




Outline

<+ Linearly constrained minimization
Q Linear equality constraints
2 Linear Inequality constraints

<« Quadratic objective function
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SideBar: Matrix Spaces

<« Four fundamental subspaces of a matrix
2 Column space, col(A)
2 Row space, row(A)
2 Null space Ax=0, null(A)
0 Left Null space xTA=0, Inull(A)
0 Rank =dim(col(A))=dim(row(A))
2 Dim(col(A))+Dim(Inull(A)) = # column
acol(A) ad Inull(A) are orthogonal
0 Dim(row(A))+Dim(null(A)) =# row
arow(A) and null(A) are orthogonal
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Linear Equality Constraints

< min, F(x)
as.t. AX=Db

<+ Assume constraints are consistent and
linearly independent

<+ T contraints remove t
degrees of freedom
solution X
+ = -
Row space  Null space s P
sji:%j;##
p=2x+] 1
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Graphical Interpretation

’ X —

0 A'x, . aparticular solution (AX=b)
0 ZX,.a homogeneous solution (AX=0)
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Feasible Search Directions

<+ Feasible points x,, X, have Ax, = AX, =D

< Feasible step p satisfies Ap = A(x, —x,) =0
« If Z Is a basis for null(A), feasible directions
p are such that p = Zp,

<+ |.e., direction of change (p) should be In the
null space of A

2 Ap=0

O AX,=A(X,+p) = AX,;=b
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Optimality Conditions

« Taylor series expansion along feasible direction
0 F(x+eZp,) = F(x) + €p,'Z'g(x) + V2€°p,'Z'G(x + €©Zp )Zp,

<+ @ Is the gradient [f,f,,..., £ ]T

+ €p,'Z'g(x) = feasible direction * gradient = change

= Projected gradient p,'Z"g(x) = 0 for all p, at constrained

stationary points
+ Therefore, Z'g(x) = 0 is first-order optimality condition
< This implies that Bi.8 L2 e

3 g0 € null2) =P
2 g(x) must in row(A)
2 so g(x) = A"\ at local minimum

<« Gradient direction Is orthogonal to the feasible direction
« Change Is zero or local landscape is flat (extreme or saddle
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Optimality Conditions

< FIrst-order condition necessary but not
sufficient; only guarantees critical point

<« Second order condition: projected Hessian G
IS positive semi-definite

<+ Positive semi-definite G guarantees weak
minimum
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Summary

<+ Necessary conditions for constrained
minumum:

QAX=Db
2Z'g(x)=0
0 Z'G(x)Z positive semi-definite
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Algorithm

+ Step 1: If conditions satisfied, terminate
<+ Step 2. Compute feasible search direction
<+ Step 3: Compute step length

% Step 4. Update estimate of minimum

<« Search direction computed by Newton's

Method:

0 F(x +€Zp,)) = F(x) + ep,'ZTg(x) + V2€*p Z'G(x + €©Zp )Zp,
0 F(x + €Zp,)'=0 (derivative with respect to p,)

a Z'g+ Z'GZp, =0

0 solve Z'GZp, = -Z'g for p, and set p = Zp,

o Cf. g+ H(f) p = 0 (for 1D case), This says that 1D condition is
true along the direction p
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Linear Inequality Constraints

. 0
2 min, F(x) s S L
g allx <|b

as.t. AX <=Db . ;
aj. b,

0 Each row a™x <= b is a half plane

« Active constraint: a'x = b

< |Inactive
< |f set of

constraint: a'x < b
active constraints at solution was

known, could convert to equality constraints
«» Active Set Methods: maintain current active

constral
< KKT co

constral

nts, use equality constraint methods
ndition applies here — those Inactive

Nts have lambda of zero
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Active constraint Constant cost curves

Constrained
Minimum cost !

Unconstrained
iimum cost

Inactive constraint

Active constraint
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Feasible Search Directions

< Recall that, before a new search
aa'x = b (active) or a'x < b (inactive, don’t care)

< Feasible search must not invalid these

constraints

< Concentrate on the active set

< Binding perturbation: a'p = 0; constraint
remains active (a' (x+tp) = a'x =b)

<+ Non-binding perturbation: a'p <0 ; constraint
becomes inactive (a' (x+tp) =a'x +ta'p = b+
ta'p <b)
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Optimality Conditions

<+ FIrst and second order conditions from linear
equality case apply for binding perturbations

<+ Added condition: g(x)"p <= 0 for all non-binding
perturbations p satisfying Ap <=0
2 g(x)"p = 0 means gradient * direction = change

o If g(x)"p >0, then some constraints will be violated
(because we start with Ax=Db)

- Since g(x) = ATA, g(x)"p <= 0 implies AAp <=0
» This holds only if all A> 0

0 Because, If A, <0, choose p such that ()"p = 1, (3)'p =
0, then:

0 g(X)'p= 7Lj(aj)-rp n 7‘] <0

4
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Summary

<+ Necessary conditions for constrained
minimum:

JAX=Db

0Z'g(x)=0

0 Z'G(X)Z positive semi-definite
AL =>0,1=1,..1
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Algorithm

<« Step 1. If conditions satisfied, terminate

<« Step 2: Decide if a constraint should be
deleted fro

< Ste
< Ste
< Ste

0 3: Co
0 4: Co

m working set; If so, go to step 6
mpute feasible search direction

mpute step length

0 5: Add a constraint to working set If
necessary, go to step 7

« Step 6: Delete a constraint from the working
set and update Z

<« Step 7. Update estimate of minimum
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Computing Search Direction

«» Newton's method computes feasible step with
respect to currently active constraints

< Need to check if a'p < 0 for any inactive
constraints

+ Find intersection x + ap to closest constraint

+ Line search between x and x + ap determines
optimal step ep
« If €= a, new constraint added to working set
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Quadratic Programming

<« Simplifications possible when using
quadratic objective function

< Hessian becomes constant matrix

< Newton's method becomes exact rather than
approximate
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Quadratic Programming

< Newton method finds minimum in 1 iteration

<+ Line search not needed; either take full step,
or shorten to nearest constraint

< Constant Hesslan need not be evaluated at
each Iteration
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Quadratic Programming

<« Speclal factorization updates can be applied

«» Example: Cholesky factor of G iIs updated by
a single column when a constraint deleted

< Decomposition need only be done once at the
beginning of execution
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