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Radial Basis Function Networks
 A special types of ANN that have three 

layerslayers
 Input layer
Hidd lHidden layer
Output layer

i f i hidd l i Mapping from input to hidden layer is 
nonlinear

 Mapping from hidden to output layer is 
linear
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Comparison
Multi-layer perceptron
 Multiple hidden layers

RBF Networks
 Single hidden layer Multiple hidden layers

 Nonlinear mapping
 W: inner product

 Single hidden layer
 Nonlinear + linear 
 W: distance W: inner product

 Global mapping
 W l ifi

 W: distance 
 Local mapping
 W d t Warp classifiers

 Stochastic 
approximation

 Warp data
 Curve fitting

approximation
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Another View: Curve Fitting
 We try to estimate a mapping from patterns 

into classes f(patterns)->classes, f(X)->df(p ) , f( )
 Patterns are represented as feature vector X
 Classes are decisions d Classes are decisions d
 Training samples: f(Xi)->di, i=1,..., n
 Interpolation of the f based on samples

d

x2

d
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Yet Another View: Warping Data
 If the problem is not linearly separable, 

MLP will use multiple neurons to defineMLP will use multiple neurons to define 
complicated decision boundaries (warp 
classifiers)

 Another alternative is to warp data into 
higher dimensional space that they are 
much more likely to be linearly separable  
(single perceptron will do)

 This is very similar to the idea of Support 
Vector Machine 
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Example
 XOR  Warpped XOR
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More Example
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A Pure Interpolation Approach
 Given: (Xi, di), i=1, …, n
 Desired: f(Xi)= di( i) i

 Solution: f(X), with f(Xi)= di

 Radial basis function solution   iiwf )()( XXX 
 X,Xi) – general form
 is shift and rotation invariant 
 Shift invariant requires X-Xi


i

iiwf )()( XXX 

q i

 Rotation invariant requires || X-Xi ||

 Example
22)(  Multiquadrics

 Inserve Multiquadrics
 Gaussan
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Graphical Interpretation
 Each neuron responds based on the distance to the center 

of its receptive field
 The bottom level is a nonlinear mappingpp g
 The top level is a linear weighted sum

  iiwf )()( XXX 
i

w1 wn

)( 1XX  )( nXX )( 2XX 
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Other Alternatives: Global
 Lagrange polynomials
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Other Alternatives: Local
 Bezier Basis  B-spline basis
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B-Spline Interpolation
 A big subject in mathematics

U d i di i li Used in many disciplines
Approximation 
 Pattern recognition
Computer graphics

 As far as pattern recognition is concerned
Determine order of spline (DOFs)

Knot vectors (partition into intervals)
 Fitting in each interval
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Interpolation Solution
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 is symmetrical
 is invertable (if all X ’s are distinct)
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Practical Issue: Accuracy (cont.)
 The  function represents the Green’s 

function for a certain differential operatorfunction for a certain differential operator
 When it is shift and rotational invariant, we 

it (X X ) G(||X X ||) ican write (X, Xi) as G(||X-Xi||), again, 
Gaussian Kernel is a popular choice here
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Practical Issues
 Accuracy 

How about data are noisy?How about data are noisy? 
 Speed

How about there are many sample points?
 Training

What is the training procedure? 
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Practical Issue: Accuracy
 When data are noisy, pure interpolation 

represents a form of “overfitting”represents a form of overfitting
 Need a stabilizing (or smoothing, 

l i ti ) tregularization) term 
 The solution should achieve two things

Good fitting
 Smoothness

PR , ANN, & ML 16



Practical Issue: Accuracy (cont.)
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 The solution is rooted in the regularization theory, 
which is way beyond the scope of this course (readwhich is way beyond the scope of this course (read 
the papers on the class Web sites for more details)

 Try to minimize error as a weighted sum of two 
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Sidebar I
 It can be proven that MAP estimator (Baysian rule) 

gives the same results as regularized RBF solution
 Un-regularized (fitting) solution assumes the same 

prior
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Sidebar II
 Regularization is also similar to (or call) 

ridge regression in statisticsridge regression in statistics
 The problem here is to fit a model to data 

ith t fittiwithout overfitting 
 In linear case, we have
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Intuition
 When variables xi are highly correlated, 

their coefficients become poorly determinedtheir coefficients become poorly determined 
with high variance
E g widely large positive coefficient on oneE.g. widely large positive coefficient on one 

can be canceled by a similarly large negative 
coefficient on its correlated cousincoefficient on its correlated cousin 

 Size constraint is helpful
Caveat: constraint is problem dependentCaveat: constraint is problem dependent 

PR , ANN, & ML 20



Solution to Ridge Regression
 Similar to regularization 
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Ugly Math
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Physical Interpretation
 Singular values of X represents the spread 

of data along different body-fittingof data along different body fitting 
dimensions

 To estimate Y(=Xwridge) regularization To estimate Y( Xw ) regularization 
minimizes the contribution from less 
spread-out dimensions
Less spread-out dimensions usually have much 

larger variance (high dimension eigen modes)
1Trace X(XTX+I)-1XT is called effective 

degrees of freedom
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More Details
 Trace X(XTX+I)-1XT is called effective 

degrees of freedomdegrees of freedom
Controls how many eigen modes are actually 

used or activeused or active
 Different methods are possible

Sh i ki th t ib ti l d Shrinking smoother: contributions are scaled 
 Projection smoother: contributions are used (1) 

or not sed (0)or not used (0)
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Practical Issue: Speed
 When there are many training samples, G

and  matrices are of size n by nand  matrices are of size n by n
 Inverting such a matrix is of O(n3) 
 Reducing the number of bases used
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Practical Issue: Speed (cont.)
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Practical Issue: Training
 How can the center of radial basis functions 

for the reduced basis set be determined?for the reduced basis set be determined? 
 Chosen randomly
 Training involves finding wi, using SVD

PR , ANN, & ML 27



Training with K-mean
 Using unsupervised clustering

Fi d h d t l t d th t i Find where data are clustered – that is 
where the radial basis functions should be 

l dplaced 
 With k-mean
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K-Means Algorithm
(fixed # of clusters)(fixed # of clusters)

 Arbitrarily pick N cluster centers, assign 
samples to nearest center

 Compute sample mean of each clusterp p
 Reassign samples to clusters with the 

nearest mean (for all samples)nearest mean (for all samples)
 Repeat if there are changes, otherwise stop
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Training with Gradient Decent
 Error Expression
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 Free variables in the error expression are
Weightg
Center location
Basis spreadp
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Effect of Weights
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Effect of Center Positions
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Effect of Basis Spread
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Details
 A lot of theoretical development results are 

omitted hereomitted here
E.g., relation to kernel regression and SVM

A l t f t i id ti t A lot of tuning considerations are not 
covered here
E.g., how to determine ?

 This is an active research area
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Examples
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Problem Definition
i i l d f d Given a point cloud of data
 From laser range scanner, or
CT MR etcCT, MR, etc.

 Find a single analytical surface approximation
 Or an inside outside function Or an inside-outside function

Range data are s(X)=0
Outside is s(X)>0Outside is s(X)>0
 Inside is s(X)<0

 Just sample data s(X)=0 is not enoughp ( ) g
 s can be a trivial zero function
Need off-surface data generation
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Procedures
1. Off surface data generation
2. Choose a subset from the interpolation node xi and p i

fit an RBF only to these
3. Evaluate the resideual ei = fi – s(xi)
4. If max(ei)<accuracy, then stop
5. Else append new centers where ei is largepp i g
6. Re-fit RBF and go back to step 2
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More Results
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