Unsupervised Data Mining

Association Rule Learning

ERE

LIGH

RB

Association Rule Analysis

Popular in mining data bases

Automated discovery of sets of variables that occur frequently or one(s) leading to other(s)

Feature	Demographic	# values	Type
1	sex	2	categorical
2	marital status	5	categorical
3	age	7	ordinal
4	education	6	ordinal
5	occupation	9	categorical
6	income	9	ordinal
7	years in Bay Area	5	ordinal
8	dual incomes	3	categorical
9	number in household	9	ordinal
10	number of children	9	ordinal
11	householder status	3	categorical
12	type of home	5	categorical
13	ethnic classification	8	categorical
14	language in home	3	categorical

Association Rule Analysis (cont)

Association rule 1: Support 25%, confidence 99.7% and lift 1.03.

number in household = 1number of children = 0 \downarrow language in home = English

Association rule 2: Support 13.4%, confidence 80.8%, and lift 2.13.

anguage in home	=	English
householder status	=	own
occupation	=	$\{professional/managerial\}$
		\Downarrow
inc	come	> \$40.000

Association rule 3: Support 26.5%, confidence 82.8% and lift 2.15.

 $\begin{bmatrix} \text{language in home} &= English \\ \text{income} &< \$40,000 \\ \text{marital status} &= not married \\ \text{number of children} &= 0 \\ \downarrow \\ \end{bmatrix}$

education $\notin \{ college \ graduate, \ graduate \ study \}$

Market Basket Analysis

Retail outlets

Placement of merchandises (affinity positioning)
Cross advertising
Banks
Insurance
link analysis for fraud
Medical
symptom analysis

Co-occurrence Matrix

Customer 1: beer, pretzels, potato chips, aspirin

Customer 2: diapers, baby lotion, grapefruit juice, baby food, milk

Customer 3: soda, potato chips, milk

Customer 4: soup, beer, milk, ice cream Customer 5: soda, coffee, milk, bread

Customer 6: beer, potato chips

	Beer	Pot.	Milk	Diap.	Soda
		Chips			
Beer	3	2	1	0	0
Pot. Chips	2	3	1	0	1
Milk	1	2	4	1	2
Diapers	0	0	1	1	0
Soda	0	1	2	0	2
beer & potato chips - makes sense			milk & soda - probably noise		

Interesting cases can have 10⁴ variables and 10⁸ of samples

Co-occurrence gives only pair-wise association

Practical Solutions

- Run up against curse-of-dimensionalities
 - With 10^4 variables, each with many possible values, need very large # of samples to populate the space, "bump" hunting in fine scale is not possible
 - Look for regions in the probability spaces with high density
 - Even for binary variables, there are 2^k (e.g., 2^{{1,000} possible 1,0-tuples, must have efficient search algorithms

Simplification

- Assuming binary variables
- If not, force them binaries
 - Instead of 6 different education levels, just 2 (college and above, or below)
- Change of variables
 - □ Initially (X1,..., Xp)
 - □ Each with (S1, ... Sp) possible values
 - $\Box K = S1 + \dots Sp$
 - Create Zk binary variables
 - > 1 if the corresponding variable Xi assuming value Sij

> 0 otherwise

PR, ANN, L ML

Apriori Algorithm

- Threshold t
- ✤ 1st pass:
 - Single-variable set: must have occurrence larger than t
- * 2^{nd} pass:
 - Pair-wise variable sets: together must have occurrence large than t
- ۰...
- * mth pass:
 - Only those tuples in (m-1)th pass have probability higher than t are considered
- To avoid combinatorial explosion, t cannot be too low

Tuples to Rules

- * Tuples $\{Zk\}$ to A=>B
 - A antecedent
 - B consequent
 - T(A=>B): support, probability of simultaneously observing A and B P(A&B)
 - □ C(A=>B) = T(A=>B)/T(A): confidence, probability of P(B|A)
 - $\Box L(A=>B) = C(A=>B)/T(B): lift, probability of P(A&B)/(P(A)P(B))$

Examples

- & K={peanut butter, jelly, bread}
- \$ {peanut butter, jelly} => bread
- Support of 0.03: if {peanut butter, jelly, bread} appears in 3% of sample baskets
- Confidence of 82%: if peanut butter and jelly are purchased, then 82% time bread is also
- Lift of 1.9: If bread appear in 43% of sample baskets, then 0.82/0.43=1.9

FIGURE 14.2. Market basket analysis: relative frequency of each dummy variable (coding an input category) in the data (top), and the association rules found by the Apriori algorithm (bottom).