
Support Vector  Machines

More Generally Kernel Methods
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2 Important Concepts

 Seek linear decision boundary with two new 

concepts

Optimization based on maximizing margins 

(not GD)

Kernel mapping for better linear separation 

(“massaging data”)

PR , ANN, & ML
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Two Class Problem: Linear 

Separable Case

Class 1

Class 2
Many decision 

boundaries can 

separate these two 

classes

Which one should 

we choose?
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Example of Bad Decision 

Boundaries

Class 1

Class 2

Class 1

Class 2
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Linear classifiers: Which Hyperplane?

 Lots of possible solutions for a,b,c.

 Some methods find a separating hyperplane, 

but not the optimal one [according to some 

criterion of expected goodness]

 E.g., perceptron, GD

 Support Vector Machine (SVM) finds an 

optimal solution.

 Maximizes the distance between the 

hyperplane and the “difficult points” close to 

decision boundary

 One intuition: if there are no points near the 

decision surface, then there are no very 

uncertain classification decisions

This line 

represents the 

decision 

boundary:

ax + by - c = 0
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Another intuition

 If you have to place a fat separator between 

classes, you have less choices, and so  the 

capacity of the model has been decreased
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Support Vector Machine (SVM)

Support vectors

Maximize

margin

 SVMs maximize the margin

around the separating hyperplane.

 A.k.a. large margin 

classifiers

 The decision function is fully 

specified by a subset of training 

samples, the support vectors.

 Quadratic programming problem

 Seen by many as most successful 

current text classification method 
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SVM with Kernel Mapping

 Original  feature space might not be well 

conditioned 

 X -> f(X) (in a higher dimensional space)
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Non-linear SVMs
 Datasets that are linearly separable (with some noise) work out great:

 But what are we going to do if the dataset is just too hard? 

 How about … mapping data to a higher-dimensional space:

0

x2

x

0 x

0 x
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Non-linear SVMs:  Feature spaces

 General idea:   the original feature space 

can always be mapped to some higher-

dimensional feature space where the 

training set is likely separable:

Φ:  x→ φ(x)
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Transformation to Feature Space
High computation burden due to high-dimensionality and hard to 

get a good estimate

“Kernel tricks” for efficient computation: Only the inner products 

of feature vectors are used, mapping is not explicitly computed 

(efficiency in time and space)
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Kernel-Induced Feature Spaces

 Recall from Perceptron learning rule, 

weight is a combination of feature vectors 

(those that are difficult to handle, or 

classified wrongly)


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
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Kernel-Induced Feature Spaces

 Or, the decision rule involves only inner 

product of features, not features themselves

 
i

iii

i

ii ywyh xxxx i  )()(

 The same holds true for mapped space

 Dimension is not important (may not 

know the mapping)

 Inner products can be evaluated at the 

low-dimensional space

)())()(()(  
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Kernels

 A function that returns the value of dot 

product of mapping of two arguments

)(),()()(),( 212121 xxxxxx  k

 The same perceptron style learning can be 

applied (just replace all dot products with 

kernels; however, SVM has more 

sophisticated learning rules)
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Example
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More Example
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Even More Example

 The interpretation of mapping  is not 

unique even with a single k function
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Gaussian Kernel

 Identical to the Radial Basis Function

 Recall that 

 The feature dimension is infinitely high in this 

case

 Embedding is not explicitly computed 

(impossible), only inner product is needed in SVM

)
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SVM Cost Function

 Similar to logistic function, but piecewise 

linear, no penalty for z>1 y=1, and z<-1, 

y=0

PR , ANN, & ML
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Margin

 for wTx to be >1 (for y=1) and <-1 (for y=-1), w 

must be larger in the left figure than the right. So 

large margin imply small |w|2

PR , ANN, & ML

w

w
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Numerical Methods

 Maximize margin or minimize |w|2 cannot 

be done by gradient descent but by 

quadratic programming (DON'T try it 

yourself, find a readily available 

implementation SVM-light, SVMlib)



 i is the number of support vectors,  xi is the 

i-th support vector, aiis the weight, and b is 

a bias

PR , ANN, & ML
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The Optimization Problem

Let {x1, ..., xn} be our data set and let yi 

{1,-1} be the class label of xi

The decision boundary should classify all 

points correctly  hard magin

A constrained optimization problem

||w||2 = wTw
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Optimization f(X), no constraints

 𝛻𝑓 = 0

PR , ANN, & ML

f=𝑥2+𝑦2

x

y
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Optimization f(X), equality  

constraints
 g(X) =0: 

Min f +𝜆g or 𝛻𝑓 + 𝜆𝛻𝑔 = 0

PR , ANN, & ML

f=𝑥2+𝑦2

x

y

g: x+y=1

𝛻𝑔

𝛻𝑓
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Optimization f(X), inequality  

constraints
 h(X)<=0: Min f +𝜆h or 𝛻𝑓 + 𝜆𝛻ℎ = 0

Necessary condition for optimality: 𝛻𝑓=0

 Outside feasible region (h(X)>0), not a solution

 Inside feasible region, a solution (h(X)<0), h does 

not matter, 𝜆 = 0

 On the boundary of feasible region h(X)=0, h 

behaves just like g (an equality constraint)

 For minimization problem

 𝛻𝑓 must point inside 

 𝛻ℎ must point outside

 𝛻𝑓 = −𝜆𝛻ℎ, 𝜆 > 0
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KKT condition 

PR , ANN, & ML

ℎ 𝑥 ≤ 0
𝜆 > 0

𝛻𝑓 + 𝜆𝛻ℎ = 0
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Lagrangian of  Original Problem

 The Lagrangian is

Note that ||w||2 = wTw

 Setting the gradient of w.r.t. w and b to zero, 

Lagrangian multipliers

i0

𝜕𝐿

𝜕𝑤
= 0

𝜕𝐿

𝜕𝑏
= 0
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L=
1

2
𝑤𝑇𝑤 +  𝛼𝑖(1 − 𝑦𝑖(𝑤

𝑇𝑥𝑖 + 𝑏))

=
1

2
𝑤𝑇𝑤 + 𝛼𝑖 −𝑤

𝑇  𝛼𝑖𝑦𝑖𝑥𝑖+𝑏  𝛼𝑖𝑦𝑖

=
1

2
𝑤𝑇𝑤 +  𝛼𝑖 −𝑤

𝑇𝑤

=-
1

2
𝑤𝑇𝑤 +  𝛼𝑖

= -
1

2
(𝛼𝑖𝑦𝑖𝑥𝑖)

𝑇
(𝛼𝑗𝑦𝑗𝑥𝑗) + 𝛼𝑖

= 𝛼𝑖-
1

2
  𝛼𝑖𝛼𝑗𝑦𝑖 𝑦𝑗𝑥𝑖 ∙ 𝑥𝑗
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The Dual  Optimization Problem

We can transform the problem to its dual

This is a convex quadratic programming 

(QP) problem

Global maximum of i can always be found

well established tools for solving this 

optimization problem (e.g. cplex)

’s  New variables

(Lagrangian multipliers)

Dot product of X
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Quadratic Programming

 The cost is quadratic

Without constraint, there is a unique minimum

Any descent search technique (e.g., gradient 

descent) should eventually find the minimum 

 Added twist

 The search is with constraint
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6=1.4

A Geometrical Interpretation

Class 1

Class 2

1=0.8

2=0

3=0

4=0

5=0

7=0

8=0.6

9=0

10=0
Support vectors

’s with values 

different from zero

(they hold up the 

separating plane)! 
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Classification with SVMs

 Given a new point (x1,x2), we can score its 

projection onto the hyperplane normal:

 In 2 dims: score = w1x1+w2x2+b.

 I.e., compute score: wx + b = Σαiyixi
Tx + b

 Set confidence threshold t.

3
5

7

Score > t: yes

Score < -t: no

Else: don’t know
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Soft Margin Classification  

 If the training set is not 
linearly separable, slack 
variables ξi can be added to 
allow misclassification of 
difficult or noisy examples.

 Allow some errors

 Let some points be 
moved to where they 
belong, at a cost

 Still, try to minimize training 
set errors, and to place 
hyperplane “far” from each 
class (large margin)

ξj

ξi
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Soft margin
 We allow “error” xi in classification; it is 

based on the output of the discriminant 

function wTx+b

 xi approximates the number of 

misclassified samples

Class 1

Class 2

New objective function:

C : tradeoff parameter between 

error and margin; 

chosen by the user; 

large C means a higher 

penalty to errors
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Linear Non-Separable Case

 When classes are not separable

 Introduce slack variables and relax constraints

01)(  iiiiy xxxw

 Minimize the objective functions

 Allow some samples into the buffer zone, but minimize 

the number and the amount of protrusion

)(0:||
2

1 2 weightCCL
i

i  xw
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Wolfe Dual
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General Case
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Example
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Example (cont.)
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Example: 5 1D data points

Value of discriminant function

1 2 4 5 6

class 2 class 1class 1
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Example

5 1D data points

x1=1, x2=2, x3=4, x4=5, x5=6, with 1, 2, 6 as class 

1 and 4, 5 as class 2  y1=1, y2=1, y3=-1, y4=-1, 

y5=1

We use the polynomial kernel of degree 2

K(x,y) = (xy+1)2

C is set to 100

We first find i (i=1, …, 5) by
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Example

By using a QP solver, we get

1=0, 2=2.5, 3=0, 4=7.333, 5=4.833

Verify (at home) that the constraints are indeed 

satisfied

The support vectors are {x2=2, x4=5, x5=6}

The discriminant function is

b is recovered by solving f(2)=1 or by f(5)=-1 or 

by f(6)=1, as x2, x4, x5 lie on f(y)   and all give b=9 

with
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Software

A list of SVM implementation can be found 

at http://www.kernel-

machines.org/software.html

Some implementation (such as LIBSVM) 

can handle multi-class classification

SVMLight is among one of the earliest 

implementation of SVM

Several Matlab toolboxes for SVM are also 

available
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 Most (over)used data set

 21578 documents

 9603 training, 3299 test articles 

 118 categories

 An article can be in more than one category

 Learn 118 binary category distinctions

 Average document: about 90 types, 200 tokens

 Average number of classes assigned

 1.24 for docs with at least one category

 Only about 10 out of 118 categories are large

Common categories

(#train, #test)

Evaluation: Classic Reuters Data Set 

• Earn (2877, 1087) 
• Acquisitions (1650, 179)
• Money-fx (538, 179)
• Grain (433, 149)
• Crude (389, 189)

• Trade (369,119)
• Interest (347, 131)
• Ship (197, 89)
• Wheat (212, 71)
• Corn (182, 56)
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Reuters Text Categorization data set 

(Reuters-21578) document

<REUTERS TOPICS="YES" LEWISSPLIT="TRAIN" CGISPLIT="TRAINING-SET" 

OLDID="12981" NEWID="798">

<DATE> 2-MAR-1987 16:51:43.42</DATE>

<TOPICS><D>livestock</D><D>hog</D></TOPICS>

<TITLE>AMERICAN PORK CONGRESS KICKS OFF TOMORROW</TITLE>

<DATELINE>    CHICAGO, March 2 - </DATELINE><BODY>The American Pork Congress 

kicks off tomorrow, March 3, in Indianapolis with 160 of the nations pork producers from 44 

member states determining industry positions on a number of issues, according to the National Pork 

Producers Council, NPPC.

Delegates to the three day Congress will be considering 26 resolutions concerning various issues, 

including the future direction of farm policy and the tax law as it applies to the agriculture sector. 

The delegates will also debate whether to endorse concepts of a national PRV (pseudorabies virus) 

control and eradication program, the NPPC said.

A large trade show, in conjunction with the congress, will feature the latest in technology in all 

areas of the industry, the NPPC added. Reuter

&#3;</BODY></TEXT></REUTERS>
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New Reuters: RCV1: 810,000 docs

 Top topics in Reuters RCV1



47

47

Good practice department:

Confusion matrix

 In a perfect classification, only the diagonal has non-zero entries

53

Class assigned by classifier

A
c

tu
a

l 
C

la
ss

This (i, j) entry means 53 of the docs actually in

class i were put in class j by the classifier.
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Per class evaluation measures

 Recall: Fraction of docs in class i

classified correctly:

 Precision: Fraction of docs assigned 

class i that are actually about class 

i:

 “Correct rate”: (1- error rate) 

Fraction of docs classified 

correctly:


j

ij

ii

c
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Dumais et al. 1998: 

Reuters - Accuracy

Recall: % labeled in category among those stories that are really in category

Precision: % really in category among those stories labeled in category

Break Even: (Recall + Precision) / 2

Rocchio NBayes Trees LinearSVM

earn 92.9% 95.9% 97.8% 98.2%

acq 64.7% 87.8% 89.7% 92.8%

money-fx 46.7% 56.6% 66.2% 74.0%

grain 67.5% 78.8% 85.0% 92.4%

crude 70.1% 79.5% 85.0% 88.3%

trade 65.1% 63.9% 72.5% 73.5%

interest 63.4% 64.9% 67.1% 76.3%

ship 49.2% 85.4% 74.2% 78.0%

wheat 68.9% 69.7% 92.5% 89.7%

corn 48.2% 65.3% 91.8% 91.1%

Avg Top 10 64.6% 81.5% 88.4% 91.4%

Avg All Cat 61.7% 75.2% na 86.4%
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Reuters ROC - Category Grain
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ROC for Category - Crude
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Linear Programming

 Standard max  Standard min

PR , ANN, & ML
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Standard Max Example

 (x1,x2): (#pants, #shirts)

 (b1,b2): (#buttons, #zippers)

 (c1,c2): (profit/pant, profit/shirt)

 (y1, y2): ($/button, $/zipper) <- shadow price

 Aij: i:(buttons, zippers), j:(pants, shirts) use

PR , ANN, & ML

max 𝑐1, 𝑐2
𝑥1
𝑥2

Subject to 
𝑏𝑛1 𝑏𝑛2
𝑧𝑝1 𝑧𝑝2

𝑥1
𝑥2

≤
𝑏1
𝑏2

x1 ≥0, x2 ≥0
min 𝑦1, 𝑦2

𝑏1
𝑏2

Subject to 𝑦1, 𝑦2
𝑏𝑛1 𝑏𝑛2
𝑧𝑝1 𝑧𝑝2

≥ 𝑐1 𝑐2

y1 ≥0, y2 ≥0
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Standard Max 

 Max is primal

 Make pants/shirts 

by yourself 

 Max profits for you

 Stay within 

available buttons 

and zippers

 Min is dual

 Sell your material 

to a buyer

 Min costs for buyer

 Buyer must offer 

more than what you 

can earn by making 

things yourself

PR , ANN, & ML
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Standard Min Example
 (y1,y2): (pound of meat, pound of veggi)

 (b1,b2): ($/pound meat, $/pound veggi)

 (c1,c2): (required calorie, required protein)

 Aij: i:(meat, veggi), j:(calorie, protein) provided

 (x1, x2): ($/1 calorie supplement, $/1 protein supplement) 

<- shadow price

PR , ANN, & ML

max 𝑐1, 𝑐2
𝑥1
𝑥2

Subject to 
𝑐/𝑚𝑒𝑎𝑡 𝑝/𝑚𝑒𝑎𝑡
𝑐/𝑣𝑒𝑔𝑔𝑖 𝑝/𝑣𝑒𝑔𝑔𝑖

𝑥1
𝑥2

≤
𝑏1
𝑏2

x1 ≥0, x2 ≥0

min 𝑦1, 𝑦2
𝑏1
𝑏2

Subject to 𝑦1, 𝑦2
𝑐/𝑝𝑚𝑒𝑎𝑡 𝑝/𝑝𝑚𝑒𝑎𝑡
𝑐/𝑝𝑣𝑒𝑔𝑔𝑖 𝑝/𝑝𝑣𝑒𝑔𝑔𝑖

≥ 𝑐1 𝑐2

y1 ≥0, y2 ≥0
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Standard Min 

 Min is primal

 Buy meat and veggi

to provide calorie 

and protein 

 Min cost for you

 Supply enough 

nutrient 

 Max is dual

 Aliens sell you 

magic calorie and 

protein pills

 Max profits for 

seller

 seller must offer 

less than what you 

pay to buy for 

yourself
PR , ANN, & ML
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Some Facts about LP

 All linear programming problems can be 

transformed into either standard max or 

standard min

 If max if feasible then min if feasible and 

vice versa

 Optimal max is also the optimal min (no 

gap)

PR , ANN, & ML
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Conversion from Primal to Dual

PR , ANN, & ML

min 𝑦1, 𝑦2
𝑏1
𝑏2

Subject to 𝑦1, 𝑦2
𝑎11 𝑎12
𝑎21 𝑎22

≥ 𝑐1 𝑐2

y1 ≥0, y2 ≥0

c1-a11*y1-a21*y2≤0

c2-a12*y1-a22*y2≤0

𝑚𝑎𝑥𝑥1,𝑥2𝑚𝑖𝑛𝑦1,𝑦2b1*y1+b2*y2

+x1*(c1-a11*y1-a21*y2)
+x2*(c2-a12*y1-a22*y2)

𝑚𝑎𝑥𝑥1,𝑥2𝑚𝑖𝑛𝑦1,𝑦2𝑐1 ∗ 𝑥1 + 𝑐2 ∗ 𝑥2

+y1*(b1-a11*x1-a12*x2)

+y2*(b2-a21*x1-a22*x2)

max 𝑐1, 𝑐2
𝑥1
𝑥2

Subject to 
𝑎11 𝑎12
𝑎21 𝑎22

𝑥1
𝑥2

≤
𝑏1
𝑏2

x1 ≥0, x2 ≥0


