CS 8, Winter 2015
Homework Assignment #? (draft)

Assignment Overview

This project allows you to practice more data retrieval, summarization, and tabulation tasks and
sharpens your skills with all kinds of data structures: string, list, and dictionary.

Background

The National Basketball Association (NBA) is the USA's premier professional men's basketball league.
It has 30 teams; 29 in the United States and one in Canada. It is an active member of USA Basketball
(USAB), which is recognized by the International Basketball Federation as the National Governing
Body (NGB) for basketball in the United States. The NBA is one of the four major North American
professional sports leagues which are NBA, NHL, NFL and MLB.

Project Specifications

You are to get the raw NBA stats from a file, compute the efficiency of 3924 players, and compare and
output the most efficient players, as well as some other interesting statistics. Your program is to take
no other input (except for reading the file) and produce an internal database that can be queried to
obtain many kinds of results.

The format of this file is easy to understand. The first line tells you the names of all columns. From the
second line, each line’s data corresponds to one player’s regular season’s statistics. Each field is
separated by “|”

To understand the meanings of each of the abbreviations, look at the page:
http://www.databasebasketball.com/about/aboutstats.htm

Efficiency

How do many NBA coaches quickly evaluate a player's game performance? They check his efficiency.
NBA.com evaluates all players based on the efficiency formula indicated below (and shown on the
aboutstats.htm page). In this project, we will follow this efficiency formula. Since we are not
evaluating a player based on one game, we need to divide the average efficiency by the number of
games the player played. So the formula is:

Efficiency = [(pts + reb + asts + stl + blk) — ((fga — fgm)+ (fta — ftm)+ turnover)]/ gp
The technical words on the right side correspond to the fields in the statistics file.
Other Stats

Besides efficiency, also collect statistics like:
1. The player who played the most minutes
2. The player who played the most games
3. The player who scored the most points
4. The player who got the most rebounds
5. The player who got the most penalties

http://www.databasebasketball.com/about/aboutstats.htm

6. The player who made the most free throws

Similar to the query of the movie databases, there are multiple ways a query can be posed. In the
movie search, you can either query an actor to find all the movies that he/she played in or you can
query a movie to find all the actors in it. Similarly, you can query a player and find all his stats or you
can query a stat and find all the top players in that particular stat category (accumulatively over the
career of a player).

Deliverables
The deliverable for this assignment is the following file:
NBA.py — the source code for your Python program

Be sure to use the specified file name and submit it for grading via the turnin system before the
project deadline.

Assignment Notes:

1. When read the input file, you should be careful about the first line which does not contain any
data. That line is important for you to tabulate and print the query results though.

2. Don’t forget to convert the string to number.

3. You cannot use a player’s name as key, as there are multiple players with the same names in
NBA. Instead, use player ID as the key, but be warned that the ID must be normalized against
random upper/lower case change.

4. Be warned that this database project is considerably more complex than either the sunspots or
Apple stock ones. You need the following functions:

a. A function “initDB (filename)” that takes one argument (the input file) and builds
multiple dictionary structures (how many and what are they are up to you). You should
also compute the efficiency of a player and add that as a field in your dictionary.

b. A function “playerLookup (fname, Iname)” that looks up a player with all his available
stats tabulated yearly. Note that as the dictionary is not organized by names, but by ID,
before you can get to a player’s stats you must call the function below

c. A function “keyLookup(fname, Iname)” that looks up a players unique ID. This
function should not be called from outside your package, as user of your system should
not know the player ID but only the player’s name. However, this call is important as
the given player name might not be unique. If there are multiple players of the same
names, this function should retrieve multiple IDs (keys) for you to index into the
database.

d. A function “statLookup(stat, numberltems) that looks up the player stats, sort them, and
print out the top numberltems.

e. A function “efficiency(numberitems) that looks up the most efficient numberltems
players.

Sample Outputs:

If you look up a player “Larry Bird”, as the name in unique, you should get only one hit. You need to
tabulate all available stats by year and add a line of average stats over the player’s career. Note that in
the sample implementation, the player’s yearly record is stored in a dictionary, so the display may not
put the accumulative record at the end.

>>> NBA.playerLookup('larry', "bird")

Larry Bird exists in database

in year 199@ : [ee, 2277, 11&4, 53, 456, 589, 431, 1es, ss, 187, 118, 1e17, 462, 183, 163, 198, 77]
in year 1991 : [45, 1662, 988, 46, 388, 434, 3@6, 42, 33, 125, 82, 758, 353, 162, 158, 128, 52]
accummulative over all years: [897, 34443, 21791, 1757, 7217, 8974, 5695, 1556, 755, 2816, 2279, 17334, 8591, 4471, 3968, 1727, £49]
in year 1979 : [82, 2955, 1745, 216, 636, BS2, 370, 143, S3, 263, 279, 1463, 693, 368, 301, 143, 58]
in year 1989 : [75, 2944, 182e, 9@, 622, 712, Se2, 1es, &1, 243, 173, 1517, 718, 343, 319, 195, 6€5]
in year 1988 : [&, 189, 116, 1, 36, 37, 29, 6, 5, 11, 18, 184, 43, 19, 18, 8, @]

in year 1983 : [79, 328, 19e8, 181, 615, 796, 520, 144, &9, 237, 197, 1542, 758, 421, 374, 73, 18]
in year 1982 : [79, 2982, 1867, 193, 677, B7@, 458, 148, 71, 248, 197, 1481, 747, 418, 351, 77, 22]
in year 1981 : [77, 2923, 1761, 2@e, 637, 837, 447, 143, &6, 254, 244, 1414, 711, 38e, 328, 52, 11]
in year 198 : [82, 3239, 1741, 191, 784, 895, 451, 161, &3, 289, 233, 1583, 719, 328, 283, 74, 28]
in year 1987 : [76, 2965, 2275, 108, 595, 783, 467, 125, 57, 213, 157, 1672, 881, 453, 415, 237, 98]
in year 1986 : [74, 3@e5, 2076, 124, 558, 682, 566, 135, 7@, 24@, 185, 1497, 786, 455, 414, 225, 9@]
in year 1985 : [82, 3113, 2115, 19@, €15, 885, 557, 166, 51, 266, 182, 1686, 796, 492, 441, 194, 82]
in year 1984 : [8@, 3161, 2295, 164, 678, 842, 531, 129, 98, 248, 208, 176@, 918, 457, 483, 131, 56]
33

If you look up a player “Larry Johnson”, you should get two hits — as there are two NBA players with
that name. So the keyLookup call should return two keys that allow you to retrieve records of both
players and display them.

>>> NBA.playerLookup('larry', 'johnson')

Larry Johnson exists in database

accummulative over all years: [4, 38, 6, 1, 4, 5, 7, 5, 2, 3, 3, 13, 3, 2, @, @, @]

in'year 1977 : [4,:38, 6; 1, 8, 5, 7,5, 2, 3, 3,13, 3, 2, 9, 6, 0]

Larry Johnson exists in database

in year 1994 : [81, 3226, 1525, 19@, 395, 585, 369, 78, 28, 207, 174, 1219, 585, 354, 274, 210, 81]
in year 1995 : [81, 3274, 166@, 249, 434, 683, 355, 55, 43, 182, 173, 1225, 583, 564, 427, 183, 67]
in year 1996 : [76, 2613, 976, 165, 228, 393, 174, 64, 36, 136, 249, 735, 376, 274, 190, 105, 34]
in year 1997 : [7e, 2412, 1e87, 175, 226, 401, 15, 4@, 13, 127, 193, 884, 429, 284, 214, 63, 15]
in year 1991 : [82, 3e47, 1576, 323, 576, 899, 292, 81, 51, 16, 225, 1258, 616, 409, 339, 22, 5]
in year 1992 : [82, 3323, 181e, 281, 583, 864, 353, 53, 27, 227, 187, 1385, 728, 438, 336, 71, 18]
in year 1993 : [51, 1757, 834, 143, 35, 448, 184, 29, 14, 116, 131, 672, 346, 197, 137, 21, 5]

in year 1998 : [49, 1639, 587, 91, 193, 284, 119, 34, 1@, 89, 147, 458, 210, 164, 134, 92, 33]

in year 1999 : [7e, 2281, 750, 87, 293, 380, 175, 42, 7, 94, 205, 652, 282, 167, 128, 174, 58]

in year 2000 : [65, 2185, 645, 9@, 273, 363, 127, 39, 29, 97, 209, 598, 246, 128, 102, 163, 51]
accummulative over all years: [7e7, 25677, 1145e, 1794, 3586, 530@, 2298, 515, 258, 1435, 1893, 9e86, 4401, 2979, 2281, 11e4, 367]

sss |

The following shows stat look up for both non-existent and existing stats.

>>> NBA.statLookup('efficiency”, 20)

the particular stat efficiency is not in the table

availabe stats for lookup are: ['gp’, 'minutes®, 'pts’, 'oreb', ‘dreb’, 'reb’, ‘asts’, °stl', °'blk', 'turnover®', 'pf', 'fga', 'fgm', ‘fta', "ftm', 'tpa’, 'tpm"']
availabe stats for compute are: eff

>>> NBA.statLookup('pts’, 20)

fname 1name pts
Kareem Abdul-jabbar 38387
Karl Malone 36928
wilt Chamberlain 33953
michael Jordan 32292
Moses Malone 38663
Julius Erving 38826
Shaguille 0'neal 29087
Dominigue Wilkins 28591
Dan Issel 27482
Allen Iverson 27457
Elvin Hayes 27313
Hakeem 0lajuwon 26946
Alex English 26931
Oscar Robertson 26710
George Gervin 26595
John Havlicek 26395
Adrian Dantley 26274
Kobe Bryant 25738
Reggie miller 25279
Rick Barry 25279
Artis Gilmore 25286

The following shows the top 15 efficient players using the stats calculated over their careers.

»»»> NBA.efficiency(15)

fname
wWilt
Elgin
Michael
Bob
LeBron
Oscar
Larry
Jerry
Kareem
Rick
Julius
Karl
Allen
Pete
Dominique
George

lname
Chamberlain
Baylor
Jordan
Pettit
James
Robertson
Bird
Hest
Abdul-jabbar
Barry
Erving
Malone
Iverson
Maravich
wWilkins
Mikan

a7
77
74
73
&9
69
€8
&7
&7
66
&3
&2
62
61
6l
&l

