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Abstract—Multivariate time series (MTS) data sets broadly
exist in numerous fields, including health care, multimedia,
finance and biometrics. How to classify MTS accurately has
become a hot research point since it is an important element in
many computer vision and pattern recognition applications. In
this paper, we propose a Mahalanobis distance based Dynamic
Time Warping (MDDTW) measure for MTS classification. The
Mahalanobis distance builds an accurate relationship between
each variable and its corresponding category. It is utilized to
calculate the local distance between vectors in MTS. Then we
use Dynamic Time Warping (DTW) to align those MTS which
are out of sync or with different lengths. After that, how to
learn an accurate Mahalanobis distance function becomes another
key problem. This work establishes a LogDet divergence based
metric learning with triplet constraint (LDMLT) model which
can learn Mahalanobis matrix with high precision and robustness.
Furthermore, the proposed method is applied on 9 MTS data sets
which are selected from the UCI machine learning repository and
Robert T. Olszewski’s homepage, and the results demonstrate the
improved performance of the proposed approach.

Keywords—Multivariate Time Series, Metric Learning, Dynamic
Time Warping, Mahalanobis Distance

I. INTRODUCTION

MOST machine learning and pattern recognition algo-
rithms are constructed based on measuring the similarity

of a feature space. Traditional methods based on static features
which are extracted from specific points have been broadly
explored by researchers. However, in some applications, the
extracted features change over time. For example, we can’t
diagnose heart disease only by observing some static data
from electrocardiograms. Unlike static data, the time series
comprises dynamic features which are varying with time [1].
Thus, time series can provide further information on how
subject changes, such as heart activity observed from an
electrocardiogram. Time series data are of wide interest as
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they are used in various applications, such as complex system
states prediction [2], signature verification [3], earthquake
prediction [4] and action recognition [5].

There are many kinds of time series data. In [1], the distinc-
tions of time series are made according to the data types. First,
there are discrete-valued and continuous-valued time series. In
most applications, the continuous-valued sequences are always
sampled by numerous sensors with different samplers and
frequencies. Thus, we only consider the discrete-valued time
series in this paper. Second, time series can be classified as
uniformly or non-uniformly sampled time series. With identi-
cal samplers and frequencies, measuring the distance between
uniformly time series is not complex. However, when compar-
ing with non-uniformly sampled time series, there is no one-
to-one correspondence because of different frequencies and
lengths. The main problem is how to align the non-uniformly
sampled time series, which makes the distance measuring
difficult. Third, according to the number of variables, the time
series can be distinguished as univariate and multivariate ones.
The similarity measurement for univariate time series (UTS)
has been widely researched [6]–[9]. However, UTS can only
represent one property of instances and it is not sufficient
for some applications. In these applications, MTS should be
utilized to represent multiple properties of instances. And how
to measure the divergence between MTS has become a big
challenge due to the following reasons: a) MTS instance has
lots of variables. On one hand, if MTS instance is broken
into several UTS, the correlations among the variables will
be lost and the distance measuring will be inaccurate [10],
[11]. Thus, MTS should be treated as a whole. On the other
hand, the relevance of each variable in MTS to the category
of an instance may be different. Among these variables, some
of them have a strong correlation with the label of instances
while others may be polluted by noise and have weak or
no correlation. Thus, we shouldn’t consider MTS as a whole
completely. b) For the non-uniformly sampled MTS, the MTS
instances may be with different lengths and phases. There is no
one-to-one correspondence between two MTS when measuring
their distance. We should consider the synchronization when
measuring the different variables of MTS at the same time.
Therefore, how to align two MTS is another challenge.

This paper mainly aims at accurate MTS classification,
which is one of the bases in various computer vision and
pattern recognition applications. Our objective is to propose a
supervised learning algorithm to label multivariate sequences
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with variable lengths and phases. One of the key problems is
to find an efficient measure to compare MTS. Various distance
measures might be used for MTS comparison, including Eu-
clidean distance, short time series distance [12], dynamic time
warping distance, probability-based distance function [13],
Kullback-Liebler distance [1], J divergence and symmetric
Chernoff information divergence [14], 2-dimensional singular
value decomposition (2dSVD) [10], and locality preserving
projections (LPP) [15]. Among these methods, Euclidean
distance and short time series distance all require that the
time series has the same phases, which are not suitable for
comparing those non-uniform MTS. Probability-based distance
function and Kullback-Liebler distance all regard time se-
ries as probability distributions. However, non-linear warps
between two MTS would result in large difference between
two probability distributions. Meanwhile, Kullback-Liebler
distance requires that two time series should have the same
lengthes, which is not applicative in many real situations. J
divergence and symmetric Chernoff information divergence
can be utilized to measure the distance among spectral matrix
estimators for stationary MTS. However, these two methods
can only deal with linearly warped non-uniform MTS. If there
is non-linear warps between two MTS, these two divergences
will lose efficiency. 2dSVD captures of eigenvectors of row-
row and column-column covariance matrices as features of
MTS, and the distance between two MTS is computed by
measuring the distance of these features. The LPP method
is an extension of 2dSVD. The main idea of LPP is to
project the feature vectors extracted using 2dSVD into a lower-
dimensional feature speace, in which the MTS samples related
to the same class are close to each other. The main problem
of these two methods is that they treat the MTS as a whole
completely. They are not robust because they are sensitive to
noise and outliers.

Compared with above methods, DTW distance has lots of
advantages. DTW was first introduced into measuring time se-
ries by Berndt [16] to overcome the phase aberration problem
in time series matching. The main idea of DTW algorithm
to reduce the problem of time series comparing to a static
problem by suitably transforming the set of input sequences
into a rectangular table composed by a fixed length [17].
The DTW algorithm is good at finding the optimal alignment
between two non-uniform time series [18], [19]. It uses a
dynamic programming technique to find the minimum distance
by stretching or shrinking the linearly or non-linearly warped
time series [19]. However, traditional DTW method can only
process UTS. To overcome this problem, the DTW algorithm
is extended to multiple dimensions and a multidimensional
DTW algorithm was proposed [20]. The multidimensional
DTW algorithm regards a time point in DTW as a vector
and the corresponding local distance measure is chosen as
the Euclidean distance, and the aligning process is the same
to the traditional DTW algorithm. The weak point of this
method is that it assigns the same weight to each variable,
which is not practical in the real applications. The Euclidean
distance cannot accurately measure the distances among these
local vectors. As mentioned above, variables have different
correlation with the label of subjects and there might also be

Fig. 1. The framework of MDDWT measure. Multivariate features are
extracted from time series objects using the state-of-the-art feature extraction
methods. Then, these MTS are compared using the Mahalanobis distance based
dynamic time warping measure.

correlations among the different variables. A feasible strategy
is to use the Mahalanobis distance function to measure the
local distance of vectors in MTS.

The Mahalanobis distance is a unitless measure parame-
terized by a positive semi definite (PSD) matrix. Compared
with other various metrics, Mahalanobis distance has numerous
advantages. First, the Mahalanobis metric takes into account
the correlations of different variables and a more accurate
relationship between variables and labels of MTS can be
established. Secondly, Mahalanobis distance has a multivariate
effect size. It means that the scale of the Mahalanobis distance
has no effect on the performance of classification or clustering
of MTS. All these advantages make Mahalanobis distance a
good local distance metric [21] for MTS comparison. How-
ever, how to learn a Mahalanobis metric from the training
samples is a complex process. And the process is named as
metric learning. Traditional metric learning algorithms, such as
Probabilistic Global Distance Metric Learning (PGDM) [22],
BoostMetric [23], MetricBoost [24] and Information-Theoretic
Metric Learning (ITML) [25] can only deal with the metric
learning process with static features. How to extend metric
learning algorithm to process MTS data is another key prob-
lem.

In this paper, based on the above analysis, we propose
a novel framework for accurate MTS classification. In this
framework, we firstly propose a novel MDDWT method to
measure the divergence among MTS, as shown in Fig. 1.
The Mahalanobis distance over the feature space is utilized to
compute the distance of local vectors in MTS. After applying
the DWT algorithm, the non-uniform MTS can be aligned as
MTS with the same phase and length. In this framework, the
selection of Mahalanobis distance is very important. Therefore,
we also propose a LogDet divergence based metric learning
algorithm for aligned MTS to learn the Mahalanobis dis-
tance. After that, basic classification methods, including k-
nearest neighbors (k-NN) and support vector machine (SVM)
algorithm along with MDDWT measure can be utilized for
MTS classification. Furthermore, the comparison experiments
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TABLE I. SOME NOTATIONS USED IN THIS PAPER

Symbol Definition
x a 1 × m matrix representing a UTS
X a d × m matrix representing a MTS
xi a 1 × m matrix representing the ith row of X
Xi a d × 1 matrix representing the ith column of X
W a 2 × p matrix representing the optimal warp path between

two UTS or MTS
x̄ a 1 × p matrix representing extended UTS of x with the

constructed optimal warp path W
X̄ a d × p matrix representing extended MTS of X With the

constructed optimal warp path W

were conducted on several MTS data sets to demonstrate the
performance of the proposed framework by comparing with
the state-of-the-art methods.

The remainder of this paper is organized as follows. In Sec-
tion II, some related literature and background knowledge are
presented. Then, the proposed MDDWT measure is described
in Section III. Section IV illustrates the LogDet divergence
based metric learning algorithm for MTS. Section V gives
experimental results on several MTS data sets to demonstrate
the effectiveness of the proposed algorithm. Finally, we draw
conclusions and point out future directions in Section VI.

II. RELATED WORKS

In this section, we give a brief review of some background
knowledge, including DTW, Mahalanobis distance and metric
learning. Table. I illustrates the definition of some notations
which can be easily confused in the remainder of this paper.

A. Dynamic Time Warping

In time series analysis, DTW is an algorithm which can
measure the divergence between two time series with different
phases and lengths. The basic idea of DTW is to calculate an
optimal warp path between two given time series. With the ob-
tained warp path, the two given time series can be warped non-
linearly in the time dimension. After that, these two extended
time series will be placed in one-to-one correspondence, and
their similarity can be measured easily.

Given two UTS x (i), i = 1, 2, · · · ,m and y (j), j =
1, 2, · · · , n. The optimal warp path W is expressed as

W =

(
wx (k)
wy (k)

)
, k = 1, 2, · · · , p

where wx (k) represents an index from time series x (i), and
wy (k) represents an index from time series y (j). p is the
length of the warp path W . (wx (k) , wy (k))

′ indicates that
the wx (k)

th element in x (i) is corresponded to the wy (k)
th

element in y (j).
There are two constraints when constructing the warp path

W [19]. The first one is that all indices of both time series
should be used in the warp path W . The second one is that
the warp path W should be continuous and monotonically
increasing. With these two constraints, the starting point of
warp path W is restricted as W (1) = (1, 1)

′ and the ending
point is restricted as W (p) = (m,n)

′. At the same time,

these constraints also require that adjacent points W (k) and
W (k + 1) should satisfy that{

wx (k) ≤ wx (k + 1) ≤ wx (k) + 1
wy (k) ≤ wy (k + 1) ≤ wy (k) + 1

.

Therefore, there are only three choice for W (k + 1),
that is (wx (k) , wy (k + 1))

′, (wx (k + 1) , wy (k))
′, and

(wx (k + 1) , wy (k + 1))
′. Meanwhile, the length of W satisfy

that p ∈ [max (m,n) ,m+ n].
With the constructed optimal warp path W , the two given

time series x (i) and y (j) can be extended to two new time
series x̄ (k) and ȳ (k), expressed as{

x̄ (k) = x (wx (k))
ȳ (k) = y (wy (k))

k = 1, 2, · · · , p

And the warp distance between time series x (i) and y (j) can
be represented by the Euclidean distance between these two
extended time series x̄ (k) and ȳ (k), expressed as

DWT (x, y) = D (x̄, ȳ) =

p∑
k=1

D (x (wx (k)) , y (wy (k))).

The dynamic time warping can be summarized as following
steps [19], [26]. First of all, a cost distance matrix Dist (i, j),
i = 1, 2, · · · , l, j = 1, 2, · · · ,m, is constructed. In this matrix,
each element Dist (i, j) represents the minimum warp distance
of sub time series x of length i and sub time series y of
length j. The corresponding path is named as Wij . Then, as
mentioned above, the warp path Wij includes (i, j)′ and one of
the following choice: (i− 1, j)

′, (i, j − 1)
′ or (i− 1, j − 1)

′,
which can construct the relationship between Dist (i, j) and
Dist (i− 1, j − 1), Dist (i− 1, j) or Dist (i, j − 1). Because
Dist (i, j) represents the minimum warp distance, thus the
relationship is expressed as

Dist (i, j) = D (x (i) , y (j)) + min

{
Dist (i− 1, j − 1)
Dist (i− 1, j)
Dist (i, j − 1)

,

where Dist (1, 1)=d (x (1) , y (1)). After computing all the
elements in the cost distance matrix Dist (i, j), Dist (m,n)
equals to the minimum warp DWT (x, y) distance between
time series x (i) and y (j), and the corresponding warp path
W is the most optimal warp path.

B. Mahalanobis Distance and Metric Learning
The Mahalanobis distance is a standard distance metric. It

satisfies all the conditions of metric definition, including non-
negativity, symmetry, triangle inequality and identity of indis-
cernibles. Given two vectors u and v, the square Mahalanobis
distance parametrized by a symmetric PSD matrix M between
instances u and v is defined as

DM (u, v) = (u− v)
T
M (u− v) . (1)

The PSD matrix M is named as Mahalanobis matrix. When
M = I , the Mahalanobis distance degenerates to the Eu-
clidean distance. Applying singular value decomposition, the
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Mahalanobis matrix can be decomposed as M = HΣHT .
H is a unitary matrix which satisfies HHT = I . The left
unitary matrix is the transpose of right unitary matrix due
to the symmetry of Mahalanobis matrix M . Σ is a diagonal
matrix which contains all the singular values. Thus, the square
Mahalanobis distance can be rewritten as

DM (u, v) = (u− v)
T
HΣHT (u− v)

=
(
HTu−HT v

)T
Σ
(
HTu−HT v

)
(2)

From Eqn. 2 we can see that the Mahalanobis distance has
two main functions. The first one is to find the best orthogonal
matrix H to remove the correlation among variates. The second
one is to assign weights Σ for the new variates. Therefore, the
Mahalanobis distance can measure the distance between two
vectors efficiently. However, how to learn such a Mahalanobis
distance is a complex procedure.

The purpose of metric learning is to learn a Mahalanobis
distance which can represent the relevance of features to the
labels of training instances. The obtained Mahalanobis distance
should emphasize the relevant features while decrease the
effect of irrelevant dimensions [27]. There are lots of metric
learning algorithms in literature. The most famous one is
large margin nearest neighbor (LMNN) [28] metric learning
algorithm. This method applies the idea of SVM to the metric
learning. The objective Mahalanobis function is to maintain
consistency of data in the same class while keeping a large
margin at the boundaries of different categories. The work [29]
improves the LMNN algorithm by combing the hierarchical
distance metric learning (HDM) with LMNN. And the so-
called HLMNN achieve the better performance of multi-class
data classification. In [30], the probabilistic global distance
metric learning (PGDM) is proposed. In this method, the train-
ing samples are labelled as ‘similar’ and ‘dissimilar’ pairwise
constraints according to the categories of instances. Then the
metric learning process is formulated as a convex optimization
problem with respect to these constraints. Another metric
learning strategy is proposed in [23]. This algorithm regards
the Mahalanobis distance as the composing of trace-one rank-
one matrices. And a boosting-based technique could be applied
in the metric learning process. In [23], triplet constraints which
represent instances in the same category are more similar than
instances in a different category are firstly used in metric
learning. Triplet constraints represent the proximity relation-
ships, which are weaker than pairwise constraints. Of these
two methods, the Mahalanobis matrix is solved by iterative
projection algorithms. However, the Mahalanobis matrix is
updated by using all the pairs or triplets in each optimization
iteration, which is not suitable for on-line applications. To
solve this problem, the information theoretic metric learning
(ITML) method [25] formulates metric learning problem as
that of minimizing the differential relative entropy between two
multivariate Gaussian distributions under pair constraints on
the distance function. ITML only uses one pairwise constraint
in each optimization iteration, and the efficiency is very
high. In [31], the authors proposed a Mahalanobis metric
learning algorithm which is based on gradient descent. The

algorithm also optimized the Mahalanobis metric step by step
as receiving the pairwise constraints. However, the pairwise
constraints are not as weak as triplet constraints, which will
lead to very conservative results.

III. MAHALANOBIS DISTANCE BASED DYNAMIC TIME
WARPING

In this section, we present the MDDTW measure for MTS.
Given two MTS X and Y ,

X=


x1 (1) x1 (2) · · · x1 (m)
x2 (1) x2 (2) · · · x2 (m)

...
...

. . .
...

xd (1) xd (2) · · · xd (m)


and

Y=


y1 (1) y1 (2) · · · y1 (n)
y2 (1) y2 (2) · · · y2 (n)

...
...

. . .
...

yd (1) yd (2) · · · yd (n)

 ,

where d is the number of variables. How to accurately measure
the distance between X and Y is the main problem in this
section.

As mentioned above, the traditional dynamic time warping
algorithms can only deal with univariate time series because
D (·, ·) is the distance between two data points. However, in
many applications, UTS can only provide partial information,
which is not sufficient for accurate time series classification.
In the work [32], the traditional DTW is extended for MTS.
The local distance measure D (·, ·) is defined as

D
(
Xi, Y j

)
=

d∑
k=1

(xk (i)− yk (j))
2
.

where Xi represents the ith column in X , and Y j represents
the jth column in Y . Then the minimum distance warp path
calculated based on all obtained D

(
Xi, Y j

)
is the optimal

alignment between two time series. In this method, the function
D (·, ·) is chosen as the Euclidean distance. Thus, this method
is named as Euclidean distance based dynamic time warping
(EDWT) measure. One deficiency of this method is that it
assigns the same weight to each variable, which is not practical
in many situations. First, each variable may have different units
of measure in the collection process. Second, some variables
may contain lots of noise and outliers, which will disturb
the classification results. Third, some variables may have a
coupling relationship. Noise and outliers in one variable would
affect several other variables. Hence, different variables will
play different roles in determining the categories of instances.
Therefore, the Euclidean distance can’t measure the local
distance accurately.

In the work [32], another measure for comparing MTS
is proposed. The so called lower-bounding measure (LBM)
is also an extension of DWT, but it reduces the calculation
sharply. When comparing two MTS X and Y , two time series
U and L are constructed to approximate MTS Y . U is the
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upper boundary in a neighbourhood which is determined by
the path constraint, and L is the lower boundary. And the
lower-bounding measure is expressed as

LBM (X,Y )

=

√√√√√ n∑
j=1

d∑
i=1

 (xi (j)− ui (j))
2
if xi (j) > ui (j)

(xi (j)− li (j))
2

if xi (j) < li (j)
0 otherwise

The main advantage of this method is that the computation
is very cheap. However, this method is sensitive to the path
constraints because the local measure is non-linear.

The main difference between the proposed MDDTW mea-
sure and the traditional DTW measure lies in the choosing
of the local distance function D (·, ·). In this paper, the local
distance measure D (·, ·) is chosen as Mahalanobis distance

DM

(
Xi, Y j

)
=

(
Xi − Y j

)T
M

(
Xi − Y j

)
.

And the corresponding DTW algorithm is expressed as

DistM (i, j) = DM

(
Xi, Y j

)
+min

{
DistM (i− 1, j − 1)
DistM (i− 1, j)
DistM (i, j − 1)

,

The initial condition is DistM (1, 1)=DM

(
X1, Y 1

)
. Fig. 2

illustrates the optimized warping path between two given MTS
X and Y using the MDDTW algorithm.

As mentioned above, the optimal warp path W is the one
which has a minimum sum of distance from (1, 1) to (m,n).
At the same time, the optimal warp path W is also a way
to find the optimal alignment between two multivariate time
series. Furthermore, W also indicates that how MTS X and
Y stretch or shrink along its time axis. Thus, we define two
new multivariate time series sequences X̄d×p and Ȳd×p as{

X̄k = X(wx(k))

Ȳ k = Y (wy(k))
.

As shown in Fig. 3, using the information in the warp path W ,
the original X and Y will be mapped to X̄ and Ȳ . And there
is one-to-one correspondence between these two new MTS X̄
and Ȳ . Therefore, the MDDTW measure DWTM (X,Y ) =
DistM (m,n) could be rewritten as

DWTM (X,Y ) =

p∑
k=1

DM

(
Xwx(k), Y wy(k)

)
=

p∑
k=1

DM

(
X̄k, Ȳ k

)
=

p∑
k=1

(
X̄k − Ȳ k

)T
M

(
X̄k − Ȳ k

)
= trace

(
PTMP

)
(3)

where Pd×p=X̄d×p − Ȳd×p.
There are several advantages when using MDDTW measure

to compare MTS. First of all, the variables of MTS stretch
or shrink along time axis integrally instead independently.

i1

x1

x2

|X|

1

j

|Y |

y1y2

dM
(

X i, Y j
)

=

(

X i − Y j
)T
M

(

X i − Y j
)

Y

X

Y

2

Fig. 2. Optimized warping path between two MTS X and Y .
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Fig. 3. The MDDTW between MTS X and Y . (a) The original MTS X
and Y ; (b) The extended MTS X̄ and Ȳ .

This will not break the relationship among variables. Be-
sides, a good Mahalanobis distance will rebuild an accurate
relationship among variables. The noise and outliers in some
variables will be suppressed when comparing MTS, which
is benefitial for precise MTS classification. Furthermore, the
MDDTW measure can be expressed as a very simple form
as Eqn. 3. It will be easy to study the corresponding metric
learning algorithm with that form in the following section. The
computational complexity of the proposed measure is about
O (mn), which is similar to that of standard DTW. The main
computational time is spent on finding the optimal path W .
And the algorithm can be accelerated by applying techniques
such as FastDTW [19] and SparseDTW [33].

IV. LOGDET DIVERGENCE BASED METRIC LEARNING

As mentioned above, the MDDTW measure has its own
advantages compared with the traditional measures. And the
main reason for these advantages is that Mahalanobis function
can accurately reveal the relationships between variables and
categories of instances. Therefore, how to learn an appropriate
Mahalanobis metric is the key problem in MTS classification.
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The goal for learning a metric is to emphasize relevant
dimensions while reducing the influence of non-informative
dimensions [27]. In other words, using the obtained Maha-
lanobis distance function, the instances which are far away in
terms of Euclidean distance but within the same class should
be closer. Meanwhile, the instances which are close in terms
of Euclidean distance but belonging to different classes of
instances should be far away. A good metric learning algorithm
should have three properties. The first one is that the algorithm
should be global. The algorithm should avoid some local
minima and find a global minimum. As many as useful samples
should be used for training. However, due to the limitation
of algorithmic efficiency, only a part of the whole samples
could be used in the training process in most cases. And
inappropriately selecting part of the whole samples always
results in the over-fitting problem. Therefore, how to select
efficient training samples should be well considered in metric
learning algorithms. Another property is that the algorithmic
efficiency should not be too low. Metric learning algorithms
should be scalable with respect to the number of the training
samples. The third property is that the labels of the training
samples should be as weak as possible. Training samples with
strict labels are hard to obtain in most real-world applications.
Thus weaker labels mean more practical.

There are three kinds of constraints for metric learning, i.e.,
class label [34], pairwise label [25], [35] and triplet label. The
class label gives each instance a definite label, which indicates
that the instance belongs to this category. The pairwise label
indicates the similarity or dissimilarity of the instance pairs.
If two instances belongs to the same category, the pair is
labelled as similarity and their target Mahalanobis distance
should be smaller than a desired superior limit; if not, the pair
will be labelled as dissimilarity and their target Mahalanobis
distance should be larger than a desired lower limit. Although
pairwise labels are weaker than class labels [34], some of the
constraints are needless [36]. The pairwise label still has some
limitations in practical applications. In literature [24], [27], an
even weaker representation called triplet label is introduced
into metric learning algorithms. The triplet label {x, y, z}
requires that the instance x should be more similar to the
instance y than the instance z using the target Mahalanobis
distance function, where instances x and y are in the same
category while z is in different category. The work in [24], [37]
pointed out that triplet constraints can be derived from pairwise
constraints, but not vice versa. In our previous work [36], we
have demonstrated that triplet constraints are weaker than the
pairwise constraints theoretically. Thus, triplet constraint is the
weakest one as well as the most natural constraint in these
three constraints. In this paper, considering the above three
properties, a novel and practical metric learning model for
MTS is proposed.

First of all, to make the metric learning algorithm more real-
izable in real applications, the triplet constaints are utilized to
train the Mahalanobis matrix. The objective of metric learning
is to find a PSD matrix M to ensure all triplet constraints
{X,Y, Z} satisfy that the MDDTW measure between two
MTS X and Y in the same category is closer than that of

X and Z in different categories, expressed as

DWTM (X,Y )−DWTM (X,Z) < −ρ, (4)

where ρ > 0 represents the target margin.
In order to avoid getting in a local minimum, we should

use as many triplets as possible during training. The total
number of triplet constraints is the cubic of the number of
the training samples. To solve this problem, we have two main
strategies. One strategy is to choose part of all possible triplets
randomly. Another strategy is that we choose the most useful
triplets for training. This work has been done in our previous
work [36], and the dynamic triplets building strategy is used
in our framework for choosing triplets. How to guarantee
that the metric learning process is scalable with respect to
the size of the training samples is another problem. In this
paper, we adopt an online metric learning framework [25],
[38] to learn the Mahalanobis distance function. The model
trains one constraint at a time and the Mahalanobis distance
function changes step by step as constraints received. Assume
Mt is a known quantity which represents the current obtained
Mahalanobis distance at time step t. When received a triplet
constraint (Xt, Yt, Zt), if the constraint satisfies the request of
Eqn. 4, there is no loss when using the current Mt to measure
these MTS; if not, the loss function is expressed as

l (M) = ρ+DWTM (X,Y )−DWTM (X,Z) .

And the current Mt should be updated to a better Mahalanobis
distance to reduce the loss. The optimized M will be picked as
Mt+1 at the next time step t+1. When the total loss function
L (M) =

∑
t ℓ (Mt) reaches its minimum, the obtained M

is the closest to the objective distance function. In metric
learning algorithm, we should also focus on the stability
of the learning process. A regularization term is added to
the metric learning model to guarantee that the Mahalanobis
matrix changes gradually and stably in the process. Thus, the
regularization term should be able to measure the divergence
of two matrices. There are various kinds of matrix divergence,
including squared Frobenius norm, Neumann divergence [39].
Most of them are derived from Bregman matrix divergence,
which is defined as

Dϕ (M,Mt) = ϕ (M)− ϕ (Mt)

− tr
(
(∇ϕ (Mt))

T
(M −Mt)

)
,

(5)

where the function tr () stands for the trace of a matrix.
Properties of Bregman matrix divergence Dϕ (M,Mt) are
determined by the differentiable function ϕ (M). When the
differentiable function ϕ (M)=−

∑
i log λi=− log (det (M))

is chosen as the Burg entropy of the eigenvalues λi, the
corresponding Bregman matrix divergence is called LogDet
divergence [40],

Dld (M,Mt) = tr
(
MMt

−1
)
− log

(
det

(
MMt

−1
))

− n.
(6)

where n is the dimension of M . There are several advan-
tages when using LogDet divergence to regularize the metric
learning process. First, the LogDet divergence between the
covariance matrices is equivalent to the Kullback−Leibler
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divergence between corresponding multivariate Gaussian dis-
tributions [41]. Second, the LogDet divergence is general
linear group transformation invariant, i.e. Dld (M,Mt) =
Dld

(
STMS,STMtS

)
, where S is an invertible matrix [25].

These good properties make LogDet divergence very useful in
metric learning.

Applying the LogDet divergence as the regularization term,
the proposed LogDet divergence based metric learning model
for MTS is to solve the following iterative minimization
problem,

Mt+1 = argmin
M≻0

Dld (M,Mt) + ηtℓ (M) (7)

where ηt > 0 is a regularization parameter which balances the
regularization function Dld (M,Mt) and loss function ℓ (M).
The function Dld (M,Mt) + ηtℓ (M) reaches its minimum
when its gradient is zero. Thus, we get the following equation
by setting the gradient of Eqn. 7 to be zero with respect to M :

Mt+1 =
(
M−1

t + ηt
(
PPT −QQT

))−1
(8)

where Pt = Xt − Yt and Qt = Xt − Zt. To avoid expensive
computation of matrix inverse, we apply the Woodbury matrix
identity to solve Eqn. 8. The standard Woodbury matrix
identity is

(A+ UCV )
−1

= A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1

However, in our updating equation, there are two items which
are the outer product of matrices. To solve this problem, we
assume that γt =

(
Mt

−1 + ηtPtP
T
t

)−1
, and Eqn. 8 is split

into two standard Woodbury matrix identity questions,{
γt =

(
M−1

t + ηtPPT
)−1

Mt+1 =
(
γ−1
t − ηtQQT

)−1

Applying the Woodbury matrix identity, we arrive at an ana-
lytical expression for Mt+1{

γt = Mt − ηtMtP
(
I+ηtP

TMtP
)−1

PTMt

Mt+1 = γt+ηtγtQ
(
I − ηtQ

T γtQ
)−1

QT γt
. (9)

In these updating equations, the regularization parameter ηt
is used to control the balance of the regularization function
and the loss function. On one hand, if we choose a big ηt, the
Mt+1 will mainly be updated to minimize the loss function
and satisfy the target relationship among the three instances
in the current triplet, which makes the metric learning process
unstable. On the other hand, if ηt is too small, the Mt+1 will
have small divergence with the current Mahalanobis matrix Mt

and every iteration will have little influence on the updating of
the Mahalanobis matrix. Thus, the metric learning process will
be very slow and conservative. Therefore, the selection of ηt
should consider the trade-off between efficiency and stability.
Meanwhile, ηt should also make sure that Mt+1 is a PSD
matrix in each iteration, i.e.{

ηt
(
PPT −QQT

)
+M−1

t ≥ 0
ηt ≥ 0

.

This is a standard linear matrix inequalities (LMIs). Lots of
tools can be utilized to solve this LMIs, such as “LMI Solvers”
in MATLAB. If the obtained result using “LMI Solvers” is η̄t,
the ηt ∈ [0, η̄t] can make sure that Mt+1 is a PSD matrix in
each iteration. In this paper, we select ηt = αη̄t, where α is
the learning rate parameter which is chosen between 0 and 1.

Using the simple form of MDDTW measure, the time series
with various lengths and phases can be trained uniformly. The
advantage of the proposed method is that our metric learning
model can obtain the Mahalanobis metric using the updating
equations Eqn. 9 efficiently. However, the computational com-
plexity of the metric learning method is about O

(
Nd2mn

)
,

where N is the number of triplets. The metric learning process
is time consuming. This is a weak point of the proposed
method.

V. EXPERIMENTAL RESULTS

In this section, several experiments are conducted to evaluate
the performance of the proposed algorithm. The benchmark da-
ta sets are selected from the UCI machine learning repository1

and Robert T. Olszewski’s homepage2. We firstly compare the
proposed algorithm with the state-of-the-art methods on these
benchmark data sets. After that, the computational efficiency
is analyzed. Furthermore, the relationship between the perfor-
mance and some parameters are analyzed through experiments.
All experiments are tested in MATLAB 2012a, and all tests are
implemented on a computer with Intel(R) Core(TM) i5-2400,
3.10GHz CPU, 4G RAM, and Windows 7 64-bit operating
system. The code of our algorithms can be downloaded from
the website3.

A. Performance comparison with the state-of-the-art methods
In the first experiment, 9 real-world data sets were selected

from the UCI machine learning repository and Robert T.
Olszewski’s homepage. All the data sets are listed in Table II.

The UCI machine learning repository provides 7 data sets,
i.e. Japanese vowels (JapaneseVowels) data set, pen-based
recognition of handwritten digits (PenDigits) data set, Libras
movement (Libras) data set, Australian sign language signs
(AUSLAN) data set, character trajectories (CharacterTrajec-
tories) data set, spoken Arabic digit (ArabicDigits) data set
and Robot execution failures (RobotEF) data set (including 5
subset). The JapaneseVowels data set was collected from 9
male speakers who uttered two Japanese vowels /ae/ succes-
sively. Each utterance by a speaker is processed with 12-degree
linear prediction analysis. And an utterance is regarded as a
MTS instance with 12 attributes. The length of these MTS
ranges from 7 to 29. The total number of the MTS is 640. The
PenDigits data set is created by collecting 250 digit samples
from 44 writers. The (x, y) coordinate information is extracted
for each digit which is written on a pressure sensitive tablet.
The length of MTS is 8. And there are 10092 instances in this

1http://archive.ics.uci.edu/ml/
2http://www.cs.cmu.edu/∼bobski/
3http://www.mathworks.com/matlabcentral/fileexchange/

47928-ldmlt-multivariate-time-series-classification-zip
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data set. The Libras data set contains 15 classes, where each
class references to hand movement type in Libras. The libras
movement is recorded by video. 45 frames are selected from
each video and the (x, y) coordinate information of centroid
pixels of the segmented objects is extracted as 2 attributes.
The total number of the formed MTS in Libras data set is
360. The AUSLAN data set was collected from a volunteer
native Auslan signer over a period of nine weeks. The data set
contains 95 signs, 27 samples per sign. In literature [10], [15],
two methods only selected the first 25 signs in the experiments.
In order to compare with these two methods fairly, we also use
the first 25 signs in the experiments. Thus, the total number
of signs is 675. Each sign is represented by 22 channels of
information. The length of each sample ranges from 45 to 136.
The CharacterTrajectories data set consists of 2858 character
samples. The data ware captured using a WACOM tablet.
Three attributes including (x, y) coordinate information and
pen tip force are recorded in the data set. There are 20 classes
in the CharacterTrajectories data set and the length of each
sample ranges from 109 to 205. The ArabicDigits data set was
taken from 44 males and 44 females Arabic native speakers
between the ages 18 and 40. Each speaker repeat ten spoken
Arabic digit 10 times, and the total number of digit samples is
8800. Each digit sample is captured by 13 frequency cepstral
coefficients. And the length of MTS which represents digit
sample is 4 ∼ 93. The RobotEF includes 5 subsets, each of
them defines a different learning problem. (a) LP1: failures in
approach to grasp position; (b) LP2: failures in transfer of a
part; (c) LP3: position of part after a transfer failure; (d) LP4:
failures in approach to ungrasp position; (e) LP5: failures in
motion with part.

The Wafer data set and ECG data set are provided by
Robert T. Olszewski’s homepage. The Wafer data set collects
sequences of measurements recorded by six vacuum-chamber
sensors during the manufacture of semiconductor microelec-
tronics. Each wafer has an assigned category of normal or
abnormal. Abnormal wafers are representative of a range of
problems commonly encountered during semiconductor man-
ufacturing. In this database, there are 327 MTS instances,
among which 200 samples are normal and 127 samples are
abnormal. The length of MTS sample is between 104 and 198.
The ECG data set collected the sequence of measurements
recorded by two electrode during a heartbeat. There are two
classes in ECG data set: normal and abnormal. All abnormal
heartbeats are representative of a cardiac pathology known as
supraventricular premature beat. The ECG data set contains
200 MTS samples, among which 133 samples are normal
and 67 samples are abnormal. The length of MTS sample is
between 39 and 152.

In this experiment, the test index is chosen as the cross-
validation error rates. The performance of the proposed method
is evaluated according to the classification error rates using
the 1-NN classification (1NNMDDTW ) and support vector
machine (SVMMDDTW ) respectively. In the metric learning
process, the target margin ρ is set as the difference between
the 90th and 10th percentiles of the distribution of Euclidean
distances between sample pairs in the training data. For those
data sets with large size, including “PenDigits”, “Charac-

TABLE II. MTS DATA SETS USED IN THE EXPERIMENTS.

Name # Attributes # Classes Length # of Instances
JapaneseVowels 12 9 7 ∼ 29 640
PenDigits 2 10 8 10992
Libras 2 15 45 360
AUSLAN 22 25 47 ∼ 95 675
CharacterTrajectories 3 20 109 ∼ 205 2858
ArabicDigits 13 10 4 ∼ 93 8800
ECG 2 2 39 ∼ 152 200
Wafer 6 2 104 ∼ 198 1194
RobotEF
LP1 6 4 15 88
LP2 6 5 15 47
LP3 6 4 15 47
LP4 6 3 15 117
LP5 6 5 15 164

terTrajectories”, “ArabicDigits” and “Wafer”, we randomly
choose 10% ∼ 20% triplet constraints for training. In other
data sets, we adopt a dynamic triplets building strategy [36]
to choose triplet constraints. In 1NNMDDTW method, the
distance between each test sample and all training samples
are calculated using the MDDTW measure with obtained
Mahalanobis function. The label of the nearest training sample
is selected as the category of the test sample. In SVMMDDTW

method, we use the the MDDTW measure with obtained
Mahalanobis function as a kernel function. After kernelization,
we train the SVM classifiers and predict the labels of test
samples.

The proposed methods are compared with some basic clas-
sification methods and the state-of-the-art metric learning al-
gorithms, including Euclidean distance based DTW (EDTW),
lower-bounding measure (LBM) [32], 2-dimensional singular
value decomposition (2dSVD) [10], locality preserving pro-
jections (LPP) [15], temporal discrete SVM (TDVM) [17],
discrete SVM (DSVM) [17], SVM with dynamic time warp-
ing (SVMDTW ) [17] and the 1-nearest neighbour classifier
(1NNWD) [17]. For convenience, some parameters are chosen
the same as that in [17]. In other words, we apply 5-fold cross-
validation on “ECG” and “RobotEF”. For other data sets, we
use 10-fold cross-validation to evaluate the performance of the
proposed method.

Table III presents the experimental results of different
methods. We obtain the experimental results of all data set
using the 1NNMDDTW , SVMMDDTW , EDTW and LBM.
Results of 2dSVD and LPP are reported by literature [10]
and [15] respectively, and the results using TDVM, DSVM,
SVMDTW and 1NNWD are reported by the work [17]. The
performance comparison reveals that the proposed methods
achieves the best performance on most data sets except “ECG”
and “Wafer”. Some interesting conclusions can be reached
from the table III. First of all, the proposed method would
outperform more if the number of variable becomes larger,
especially compared with the EDTW. The reason is obvious for
this phenomenon. The function of the obtained Mahalanobis
function is to lay stress on important variables while reducing
the influence of the useless variables. If the number of the
variable is too small, the Mahalanobis matrix will lose its
efficiency. Thus, the performance of the proposed method
will be approximate to that of EDTW. For example, the
experimental results of the proposed method only improved
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TABLE III. CROSS-VALIDATION ERROR RATES COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE MTS DATA SETS.

Data set 1NNMDDTW SVMMDDTW EDTW LBM 2dSVD LPP TDVM DSVM SVMDTW 1NNWD

JapaneseVowels 0.014 0.009 0.037 0.081 0.046 0.065 0.034 0.064 0.054 0.077
ECG 0.135 0.125 0.175 0.310 0.269 0.290 0.095 0.145 0.140 0.100
Wafer 0.012 0.010 0.016 0.064 0.014 0.007
AUSLAN 0.041 0.042 0.100 0.237 0.052 0.048
PenDigits 0.006 0.006 0.007 0.122 0.037 0.054 0.066 0.055
RobotEF
LP1 0.091 0.079 0.125 0.375 0.148 0.273 0.182 0.182
LP2 0.277 0.321 0.298 0.400 0.362 0.426 0.362 0.404
LP3 0.298 0.255 0.320 0.362 0.319 0.362 0.342 0.383
LP4 0.077 0.034 0.112 0.163 0.145 0.248 0.128 0.137
LP5 0.275 0.287 0.293 0.348 0.329 0.433 0.379 0.348
Libras 0.092 0.117 0.095 0.189
ArabicDigits 0.031 0.004 0.037 0.237
CharacterTrajectories 0.039 0.010 0.044 0.143

a little when compared with EDTW on data sets “ECG”,
“Libras” and “PenDigits”, but there is a great improvement
when testing the rest data sets. The second conclusion is
that the proposed framework is not good at dealing with the
problem of distinguishing normal and abnormal data. Neither
1NNMDDTW nor SVMMDDTW can achieve the best perfor-
mance among all methods on “ECG” and “Wafer” data sets. In
general, normal data are concentrated while abnormal data are
far from each other. Therefore, we can’t satisfy Eqn. 4 when
dealing with abnormal data. The proposed metric learning
algorithm can’t obtain the best Mahalanobis distance function.
The third conclusion is that SVMMDDTW can achieve better
performance than 1NNMDDTW on most data. If 1NNMDDTW

can get good classification results, it requires that the samples
in the same categories has the shortest Mahalanobis distance.
However, SVMMDDTW only requires that the samples with
same categories has the similar distribution when comparing
with all training samples. The SVMMDDTW has less require-
ments than 1NNMDDTW , so the performance is better in most
situations.

B. Computational efficiency analysis

In this part, we’d like to analyze the computational efficiency
of the proposed method. Table IV presents the processing times
at different stages in 1 cross of the above cross-validation
experiments. tmetric represents the running time at metric
learning stage while t1NN and tSVM stands for the running
time at classification stage.

There are several factors which affect the execution effi-
ciency of the proposed method. First of all, when considering
the metric learning process, the size of training data plays
important roles. As is mentioned above, the time complexity
of the metric learning method is about O

(
Nd2mn

)
. Thus, the

number of instances, length and number of attributes are three
important factors. Meanwhile, the intrinsic structure of training
data affect the convergence rate, which also has influence on
the number of triplets N . In the triplets building process, our
work has two strategies. If using the random triplets building
method, the time can be neglected. However, if applying
the dynamic triplets building strategy [36], the complexity of
dynamic triplets building is about O

(
L2
trainmn

)
. Ltrain is the

number of training instances. Sometimes, the triplets building
strategy would occupy much more time than metric learning

TABLE IV. THE PROCESSING TIMES IN DIFFERENT STAGES.

Data set Ltrain Ltest tmetric t1NN tSV M

JapaneseVowels 576 64 120.3s 3.7s 36.4s
ECG 160 40 80.2s 8.4s 43.0s
Wafer 1074 120 120.9s 15.1s 382.5s
AUSLAN 607 68 25.8s 40.5s 1605.3s
PenDigits 9892 1100 226.5s 29.2s 343.2s
RobotEF
LP1 70 18 1.7s 0.2s 1.1s
LP2 38 9 1.1s 0.1s 0.4s
LP3 38 9 1.7s 0.1s 0.4s
LP4 93 24 2.7s 0.4s 2.0s
LP5 131 33 4.6s 0.7s 3.8s
Libras 324 36 132.4s 6.5s 65.0s
ArabicDigits 7920 880 300.0s 144.0s 1504.1s
CharacterTrajectories 2572 286 766.7s 3561.2s 4638.5s

itself. Then, in the classification process, the time complexity
of 1NN classifier is about O (LtrainLtestmn), where Ltest

is the number of testing instances. When it comes to SVM
classifier, it contains the calculating Mahalanobis kernel of
training and testing data O

(
L2
trainmn

)
+O (LtrainLtestmn)

and training linear SVM classifier O
(
cL2

train

)
(c is the number

of categories).
In the whole algorithm, the memory complexity is not a

main issue. The online algorithm can deal with received triplets
one by one. The variables which occupy the most storage space
are the Mahalanobis kernels of training and testing data, which
are about O

(
L2
train

)
+O (LtrainLtest).

C. Influence of parameters on performance

In the proposed algorithm, several parameters may have
influence on the MTS classification performance. The first
one is the learning rate parameter α. As mentioned above,
the α will determine the learning rate of the metric learning
process. On one hand, if α is too large, each triplet constraint
will have significant influence on the updating of Mahalanobis
matrix. And the Mahalanobis matrix would not be stable in
the learning process. Thus the obtained Mahalanobis matrix
would have a low classification accuracy. On the other hand,
if the learning rate α is very small, each iteration will have too
little influence on the changing of the Mahalanobis matrix, and
the metric learning process will be very slow and insufficient.
Then the obtained Mahalanobis matrix will not have a good
performance because it approximates to the Eudiance distance.
The Fig. 4 illustrates the relationship between the classification
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Fig. 4. The relationship between classification error rate and the parameter
learning rate α. (a) The experiment results based on data set “JapaneseVow-
els”; (b) The experiment results based on data set “Wafer”.

error rate and the parameter learning rate α on data set
“JapaneseVowels” and “Wafer”. From Fig. 4 we can see, when
α is very small, the classification error rate of the proposed
method is smaller than but similar to that of EDTW. When
the α approximates to 1, the classification error rate will also
become large, even worse than that of EDTW. The best α is
determined by several factors, including the total quantity of
triplet constraints N and the target margin ρ. Firstly, α and
N has an inverse relationship. When the number of triplet
constraints becomes larger, the α should be smaller to avoid
overfitting. Secondly, approximate inversely linear dependency
exists between α and ρ. If ρ is larger, more triplets can’t meat
the relationship in Eqn. 4. We should decrease α to avoid
overfitting the higher margin ρ. Thus, in our work, an optional
rule for α is recommended as c

N(1+ρς) . In our experiment, we
choose c = 10 ∼ 50 and ς = 0.2 ∼ 0.5.

Another factor which may affect the MTS classification
performance of the proposed algorithm is the number of classes
in data set. In this experiment, we increase the number of
classes in the data set gradually to test the cross-validation
error rates on data set “JapaneseVowels” and “AUSLAN”.
The main purpose is to test the relationship between the
classification error rate and the number of classes, which can
reveal the robustness of the algorithm to a certain degree.
Theoretically, the classification error rate will increase when
the number of classes becomes large. If the growth rate of
the classification error rate is very low, it indicates that the
performance of the algorithm is robust to the number of
classes. We compare the performance of the proposed method
with 2dSVD and LPP in this experiment. The experimental
results of 2dSVD and LPP are reported in the literature [15].
From Fig. 5 we can see, the classification error rate of the
proposed method is lower than 2dSVD and LPP in most
situations. At the same time, the growth rate of classification
error rate of the proposed method is also very low in Fig. 6(a).
However, in Fig. 6(b), classification error rate has a jump in the
proposed method. In fact, three methods all have a jump when
adding the 12th class, indicating that the 12th class is easy
to be confused with other categories. The rest stable curve of
the proposed method in Fig. 6(b) demonstrates the it is more
robust than 2dSVD and LPP.

In the following experiment, we also explore the relation-
ship between the accuracy and size of the training data set.
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Fig. 5. The relationship between classification error rate and the number of
classes. (a) The experimental results based on data set “JapaneseVowels”; (b)
The experimental results based on data set “AUSLAN”.

Theoretically, the size of the training data set may affect
the classification accuracy from two aspects. On one hand,
the number of training samples might have influence on
the metric learning process. And the performance of the
obtained Mahalanobis distance function then affect the final
classification results. On the other hand, the classification
performance of the basic classifiers, including 1NN classifier
and SVM classifier also rely on the size of the training data
set. Thus, we conduct 3 comparative experiments to illustrate
the influence of the size of the training data set. In these
experiments, we use 10-fold cross-validation to evaluate the
performance of MTS classification. In the first experiment,
we randomly choose 10%∼100% training samples in metric
learning process, and these chosen samples are also used for
the following classifying process. The results are shown in
Fig. 6. We can see that more training samples can improve
the classification accuracy greatly. However, this experiment
can’t distinguish which factor plays a dominant role. The
experimental condition of the second and third experiment is
similar to the first experiment, the difference is that the second
experiment use all training samples for metric learning while
the third experiment use all training samples for classifying
process. We can see that the size of the training data set has
less influence on metric learning process than the classifying
process. We can use a small number of training samples to train
a good Mahalanobis distance function with high performance.

VI. CONCLUSION

In this work, we consider the problem of measuring and
classifying MTS, which is one of the bases for various
computer vision and pattern recognition applications. A novel
measure for MTS is described. In the proposed method, the
Mahalanobis distance is firstly used for measuring the local
distance of vectors in MTS. Then the DTW is utilized to find
the most optimized path to align MTS which are out of sync
or with different length. After that, the difference between two
MTS can be obtained for MTS classification and clustering.
Another key problem in the proposed MDDTW measure is to
learn the Mahalanobis function for MTS dataset. This work
built a LDMLT model for metric learning in MTS case. In
the experiments, we conducted our algorithm on several well
known data sets. The results demonstrated the robustness and
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Fig. 6. The relationship between classification error rate and the size of
training set on data set “JapaneseVowels”. The first condition means that only
a part of samples used for metric learning process and classifying process.
The second condition represents that all training samples are used for metric
learning and part of them are utilized in classifying process. In the third
condition, all training samples are used for classifying process while part
samples are used for metric learning. (a) The experimental results using 1NN
classifier; (b) The experimental results using 1NN classifier.

high precision of the proposed approach. One drawback is that
the proposed framework has a low computational efficiency.
The MDDTW measure has a high computational cost. Thus,
further research should be carried out on the computational
optimization of the proposed method.
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