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Abstract

In this paper, we present our research on photo- and video-based 3D ranging and modeling. We have constructed such
a 3D ranging and modeling system, PhotoModel3D, that was made available for free, non-commercial use over the
Web. The system has received over a hundred thousands Web visits and thousands of use in the past two years alone.
Currently, we demo 900 3D models thus constructed using photos and videos contributed from anonymous users all
over the world. Here, we describe the algorithms used in the 3D pipeline and present the results of a comparison
study and an accuracy analysis of its performance.
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1 Introduction
In this paper, we present our research on photo- and video-based 3D ranging and modeling. Image-based 3D modeling
is widely considered an ill-posed, inverse problem in computer vision that is difficult to solve efficiently, robustly and
accurately [7, 11, 21]. Furthermore, photo- and video-based 3D modeling is complicated, as it comprises a pipeline
of intertwined components, touching upon many facets of computer vision, e.g., 2D feature analysis and tracking,
localized 2D to 3D structure and motion inference, global numerical optimization, 3D surface generation, and multi-
view texture mapping. A complete 3D pipeline must successfully address all these problems and more.

Recently, the rapid maturity and wide adoption of some crucial infrastructure and hardware technologies has greatly
facilitated such image-based, 3D ranging research. In 2011alone, over 1.4 billion camera phones and another 100
million digital cameras were sold worldwide. A commodity PCthese days comes with a 2-, 4-, or 6-core CPU with
gigabytes or terabytes of disk storage for processing and storing image and video data. Wired, wireless, and cellular
networks abound that allow easy upload and download of videos and photos. The technological confluence is enabling
“rubber-meets-the-road” validation of over 40 years of 3D image-based ranging and modeling research, and help
pushing the academic research into the real-world consumerand military markets.

We have developed such a photo- and video-based 3D ranging and modeling software that we call PhotoModel3D [28].
PhotoModel3D employs a photo-based and photo-only analysis paradigm known as either structure from motion (SfM)
in the computer-vision and computer-graphics communities[7, 11, 21, 19, 25, 9] or simultaneous localization and
mapping (SLAM) in the robotics communityy [5, 13, 22, 17]. Regardless of the nomenclature, the general principles
of such a 3D modeling system are to exploit the motion parallax effect exhibited in multiple images taken by a
travelling camera to infer the 3D scene structures and the camera poses. PhotoModel3D (1) works with both discrete
images and continuous videos taken by a consumer-market digital camera, camcorder, or camera phone of any make
and model, (2) uses no special equipment (e.g., lens and tripod), active projection, artificial lighting, prior camera
calibration, and man-made markers and registration patterns, (3) requires no user training (just point and shoot),
(4) is fully automated and end-to-end (from photographs to fully colored and textured 3D models) without manual
intervention or data-specific parameter tuning, (5) is a software-based solution that runs on commodity Linux and
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Windows servers without the need of special hardware (GPU, DSP, etc.) acceleration, (6) has been demonstrated in
an unbiased study to outperform many state-of-the-art 3D modeling pipelines based on a similar SfM principle [29],
(7) has been shown to infer 3D models of high fidelity, with an average 3D structure error less than 0.2% measured
against ground-truthed 3D LIDAR models, (8) has been deployed on the web allowing free, non-commercial use for
more than 2 years; receiving over 100 thousands web visits and thousands of use, and (9) has successfully constructed
thousands of 3D models of a large variety of 3D scenes using images and videos contributed from anonymous users
all over the world.

The remainder of the paper will describe our 3D processing flow and algorithms used in PhotoModel3D. The dis-
cussion will be followed by the presentation of an comparionand an accuracy study. Finally, we will summarize the
current status of our research and development in a concluding remark.

2 Technical Description

Figure 1: Flowchart of Visualsize’s 3D mod-
eling pipeline.

Here we present the architecture of our 3D pipeline using theflow
chart depicted in Fig. 1. Different modules in Fig. 1 and their functions
are described in more detail below.

3 Feature selection, tracking, and matching(Boxes A and B): This
step identifies prominent and semi-invariant features and matches
these features across multiple images to establish their correspon-
dences. We use two complementary paradigms: continuous tracking
for videos (Box A) and discrete matching for images (Box B).

When continuous videos are captured at a high video frame rate, there
is often trifling change in the appearance and position of image fea-
tures in adjacent frames. We therefore detect prominent features (us-
ing the Harris corner detector [10]) and track their locations in images
through a localized search operation. While a large number of trackers
are available, we have opted to use our FFT-based tracker [14] that is
accurate and achieves real-time performance for reasonably complex
scenes.

If only a few isolated snapshots of the scene are acquired, changes in
a feature’s pose and appearance in these snapshots can be significant
to render tracking infeasible due to large changes in perspective and
illumination, and a limited search-window size. Instead, we compute
advanced features (similar to SIFT [15] or SURF [1]) which are in-
sensitive to scale, rotation, and color changes in images. We match
these features in two images, regardless of their locations, to establish
feature correspondences.

3 Robust camera motion inference(Boxes C, D, and E): This step uses
matched image features in two views to infer the camera’s movement
in between the views. The core process is either a 5-point polynomial
algorithm or an 8-point linear algorithm [18, 7, 12, 11]. The5-point
algorithm handles both planar and non-planar 3D configurations, and

hence, is more general than the 8-point counterpart that fails if the 3D scene is planar. However, 8-point runs faster
than 5-point.

The names of the inference algorithms refer to the minimum numbers of pairs of matched image features in two
views that are needed for deducing the camera’s motion parameters. In reality, we track and match significantly more
features than just five or eight. Furthermore, tracking/matching results are necessarily imprecise due to noise and
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image quantization. Catastrophic failure in tracking (loss of trajectory) and matching (erroneous pairing assignments)
do happen occasionally. To improve the robustness in cameramotion inference, we use a nonlinear selection and
filtering strategy called RANSAC [8] to better condition thefeature matching process.

Finally, nonlinear optimization (Box E) is used to give a final “polish” to the best result from RANSAC and the 5-
point or 8-point linear algorithms. We have used the Levenberg-Marquart (LM) [11], Dog Leg (DL), Double Dog Leg
(DDL), and Hook-Step (HS) algorithms [2, 6], which are different variances of procedures for optimally combining
the Gauss-Newton method and the gradient-descent method. While LM, DL, DDL, and HS are nonlinear iterative
optimization procedures, convergence is fast because of a good initial guess has been obtained (Boxes C and D).

3 Stereo rectification, matching, and depth inference(Boxes F and G): This step is to infer 3D surface depth and
construct a 3D model that captures both structure and appearance information. We consider two different approaches.
In one approach (Box F), only the depths of the tracked/matched image features (Boxes A and B) are explicitly
computed to form a sparse depth map. Depths of the intermediate pixels are estimated through bi-linear interpolation
from those of the tracked/matched features. This approach is computationally efficient and works well if the scene
structure is smooth.

A more accurate 3D model can be constructed by computing pixel disparity and inferring 3D depth ateach and every
pixel in the images (Box G). To efficiently and reliably perform stereo analysis, the image pair should be in a standard
side-by-side configuration. If not, we must either identifythe corresponding epipolar lines in the two images, or rectify
the two images to rearrange the image pixels in such a way thatthe corresponding pixels in the two images lie on the
same image scan lines [20]. We then apply a stereo matching algorithm based on dynamic programming [3], which
takes into consideration pixel-, neighborhood-, and globally-based similarity criteria in matching.

3 Multi-view registration(Box H): The final step is for registering partial 3D models constructed from multiple 2-view
analyses into a more complete 3D model. We treat each partial2-view model as a cloud of 3D points, and these point
clouds are related by rigid-body transforms in space. We solve the registration problem by finding the rigid-body
registration parameters to match 3D point clouds with one another using least-square.

Fig. 2 shows sample 3D models. Note that depending on the requirement of a particular application, we can generate
both texture-mapped models and point-cloud models, thoughonly texture-mapped models are shown. A lot more
results, currently comprising 900 3D models of all kinds of objects: human faces and others, soft and hard objects,
smooth and rough appearance, large and small targets, nature and man-made scenes, complete (360o all-around) and
partial 3D models, indoor and outdoor settings, ground and airborne photos, short (as few as 5 images) and long (as
many as 800 images) sequences, are available at our website http://www.visualsize.com.

3 Experimental Results
We present two studies here: one is a performance comparisonof five 3D modeling systems based on the same SfM
principle, and the other is an accuray study to learn how faithful our computer models can be to the ground-truthed
LiDAR models of the same 3D scenes.

3.1 Performance Comparison
We present here a comparison study of five 3D modeling systemsbased on the SfM principles (Bundler [25], Bundler
+ PMVS2 [9], Project Photofly from Autodesk, ARC 3D Web Service [27], and our own [29]). The usage scenario we
try to emulate in this study is that of a commercial 3D modeling system that accepts 3D modeling requests from clients
(cell phones, tablets, PCs, etc.) over the Web, executes the3D modeling pipeline on a back-end server, and returns
the 3D model as a result. The users (1) are not computer visionexperts and cannot provide additional information
other than the photos themselves, (2) are not willing to go through lengthy training, or purchase expensive cameras or
specialized photography equipment for building 3D models,(3) may be cost conscientious especially when connecting
to the back-end server through a mobile device where the usermay have to pay for the bandwidth usage (and hence,
no uploading large photos that tie up Web links for a long time), and (4) are accustomed to the “instant gratification”
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Figure 2: Sample results of our 3D modeling system. Each dataset is represented by one input image (left) and one
image of the 3D model (right). Short movies of the 3D models of900 test data sets are available for viewing on the
Web at: http://www.visualsize.com/3ddemo/index.php.
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Web experience, and hence, are impatient to get the results back.

While similar performance comparison has been attempted before [23, 24, 26], our study stands out by performing
“rubber-meets-the-road” validation tests that closely mimic what a commercial 3D modeling system needs to accom-
plish in the real world. The novelty of our comparison study is three-fold:

(1) The comparison was performed by exercising the full 3D modeling pipelines, from input images all the way to 3D
models, instead of testing some isolated components in a 3D pipeline [24],

(2) In addition to the ground-truthed 3D data provided by [26], we have used over 100 data sets (122 to be exact), with
over three thousand images, representing a variety of 3D scenes, collected from a large number of consumer-market
digital cameras and camera phones of many makes/models, andcontributed by anonymous users all over the world.
Furthermore, these images were shot without prior camera calibration, use of special equipment (tripod, lens, etc.) and
lighting (laser and structured light projection), and usertraining in image acquisition. In contrast, [23, 24, 26] have
used small, calibrated data sets, and

(3) To ensure that the comparison is fair and the results do not depend on the details of implementation, we have
included only those 3D modeling systems that are available for use on the Web or locally in a binary format; comprise
a complete, fully-automated 3D pipeline that leads from input images to 3D models—without any user intervention
and without data-dependent parameter tuning; and are able to perform the feats using images of a reasonable size.
Furthermore, a diligent Web search has unearthed no other 3Dmodeling system that fits the comparison requirements,
and hence, our selection is believed to be comprehensive andprovides a holistic view of the state of the art.

The test platform was a PC with a 2.8Ghz Intel Core 2 Duo CPU, 4GRAM, running Windows 7. The experimental
procedures were extremely straightforward: As all these 3Dmodeling systems need were input images, all we did
was to provide them with the input images and then waited for the computation to finish. We felt that the simplicity
of the procedures better ensured fairness. We (1) have used the binary releases of these programs so we could not
have compiled them incorrectly, (2) we have used the defaultexecution scripts supplied with the releases without
modification so we could not have tuned the parameters wrongly, and (3) we have run these programs on the same
machine using the same number of CPU cores, the same amount ofmemory, and under similar runtime conditions.
For Project Photofly and ARC 3D Web Service, the images were uploaded to their servers on the Web and there was
no end-user tunable parameters on their GUI.

Fig. 3 presents three such results of running the five modeling systems on ten sample data sets. The two images at top
left are sample input images, the two at top right are our results, the two at middle left are results of Bundler, the two at
middle right are results of Bundler + PMVS2, the two at bottomleft are results of ARC 3D Web Service, and the two
at bottom right are results of Autodesk’s Project Photofly. The table below the graphic results shows the name and size
of the data set, how many pictures were processed, how many 3Dpoints were generated, and the runtime for Bundler,
Bundler+PMVS2, ARC 3D Web Service, and our system. Runtime of ARC 3D and Photofly was not included as
data sets were processed on their cloud servers. Photofly used a proprietary point-cloud format so the cloud density
information was not available either.

Results of Bundler, Bundler+PMVS2, and ARC 3D Web Service are presented in discrete point-cloud format as these
programs did not generate 3D texture-mapped models. We supplement texture-mapped results for Project Photofly
and our system if one point-cloud picture is enough to illustrate the density and quality of such a discrete structure. As
page limit does not allow us to show all these examples, and the quality and accuracy of a 3D model is best evaluated
by viewing the model in 3D—instead of just a few screen shots,we strongly urge interested readers to browse our Web
site for more information [29]. In terms of cloud density andquality, and the chance of success, the test data indicated
that ours outperformed Project Photofly, which outperformed Bundler+PMVS2, which outperformed Bundler, and
which outperformed ARC 3D. This observation also confirms our experience with the much larger, over 100 data set
ensemble.
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Lady: 10 images
Bundler Bundler + PMVS2 ARC 3D Ours

Pic processed 4 4 6 10
# 3D points 467 2,428 148 10,810
Run time 0:39 0:58 - 2:00

Fountain: 11 images
Bundler Bundler + ARC 3D Ours

PMVS2
Pic processed 5 5 11 11
# 3D points 604 7,221 1,025 132,670
Run time 0:55 1:30 - 6:05

Figure 3: The two images at top left are sample input images, the two at top right are our results, the two at middle
left are results of Bundler, the two at middle right are results of Bundler + PMVS2, the two at bottom left are results
of ARC 3D Web Service, and the two at bottom right are results of Autodesk’s Project Photofly. For each data set, the
table below the graphic results shows the name and size of thedata set, how many pictures are processed, how many
3D points are generated, and the runtime for Bundler, Bundler+PMVS2, ARC 3D Web Service, and our system.
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Soda Bottle: 46 images
Bundler Bundler + PMVS2 ARC 3D Ours

Pic processed 18 18 35 46
# 3D points 6,214 27,221 2,473 75,275
Run time 5:48 11:07 - 11:18

Figure 3 continued

3.2 Accuracy Study
Here, we attempt to answer the question that is likely to be ina reader’s mind: How accurate is our 3D modeling sys-
tem? Accuracy analysis requires comparison with the groundtruth. However, as mentioned before, our test datasets
were collected from a large number of consumer-market cameras and phones, and no ground-truth 3D profiles were
available. The Dino and Temple data sets used in [24] were gathered using the Stanford Spherical Gantry, which pro-
vided the ground truth in the camera poses, but not in the 3D structures. Middlebury Stereo Datasets [4, 23] comprise
only short sequences (up to 7 images) using a fixed linear camera translation, and hence, are not that interesting to us.
To our best knowledge, [26] provides the only publicly available 3D data sets with ground-truthed 3D profiles that used
a general camera motion, and were specifically generated to validate 3D modeling algorithms using the SfM principle.
Ground-truth 3D profiles (gathered using a LIDAR system) fortwo data sets, Fountain-P11 and Herz-Jesu-P25, were
used in our accuracy analysis. These data sets are availablefor download at: http://cvlabwww.epfl.ch/data/multiview,
and were used in the following academic paper [26].

We tried to emulate—as faithfully as possible—what a commercial 3D modeling system needs to accomplish for a
client submitting 3D modeling tasks through a Web-service model. To this end:

• We have used two different spatial resolutions: the VGA size(640×480) and a higher 2150×1434 resolution, for
upload and processing. This is for testing the ability of thesystem for handling both low-res and high-res imagery.

• We did not use any camera calibration data generated externally (i.e., we did not use the intrinsic or the extrinsic cam-
era parameters supplied with the images). Again, in the real-world application scenarios, such intrinsic and extrinsic
camera parameters are not available. Most, if not all, consumer-market digital cameras and phones are not calibrated.
A 3D modeling pipeline must be able to automatically calibrate the intrinsic and extrinsic camera parameters using
nothing but the input images, without any outside assistance.
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Table 1: Accuracy Evaluation results

Data set Herz-Jesu-1 Fountain-1 Herz-Jesu-2 Fountain-2
# of images 25 11 25 11

spatial resolution 640× 480 640× 480 2150×1434 2150×1434
Runtime 11min 01sec 4min 30sec 59min 48sec 7min 12sec

# of 3D points 342,949 140,785 1,437,984 1,072,139
# of faces 735,419 315,195 2,781,106 2,107,543
max error 4.74% 5.07% 4.42% 1.92%

median error 0.62% 0.62% 0.44% 0.23%
average error 0.41% 0.44% 0.26% 0.17%

• We have concentrated on the “end results” and ignored the “byproducts” of such 3D processing. That is, our com-
parison is on the faithfulness of the 3D models, not on the accuracy of the recovered intrinsic and extrinsic camera
parameters. We believe that in the consumer market, the end users are mainly interested in the 3D models. Further-
more, we believe that the situation where a modeling system estimated erroneous camera parameters but somehow
still obtains correct 3D structures fortuitously is extremely unlikely (we have never observed such a phenomenon).

After our 3D pipeline finished generating 3D models from the input VGA images, these models were aligned with the
ground-truth models in a two-stage procedure: We first used the manual alignment process provided by Meshlab [16]
to roughly align our 3D models with the ground-truth models.The alignment process consisted of loading both
models into Meshlab, manually specifying a small number of corresponding points in the two models to establish a
rough alignment, and then allowing Meshlab to refine the initial manual alignment using an iterative ICP algorithm.

After the models were roughly aligned as in the previous step, we loaded both models into our own display pro-
gram that allowed small x, y, z rotations and translations applied to the ground-truth models. We applied such small
translations and rotations interactively and eye-balled the display for the best qualitative alignment results.

After models had been aligned, we computed an absolute errormeasure for each and every 3D point in our 3D models.
This error was the minimum distance from a 3D point in our models to the closest points in the corresponding ground-
truth models. We then computed a percentage error by dividing the absolute error distance by the largest dimension of
the ground-truth models in the x, y, or z direction.

Our modeling pipeline ran on a Windows 7 desktop with an IntelCore i-3 3.3GHz processor, 6GB of memory, and 1TB
of disk space. For each data set, we used two different spatial resolutions: VGA and 2150×1434. The runtime, density
and accuracy statistics are summarized in Table 1 and the 3D models are depicted graphically in Figs. 4 to 5. One can
also download or view these models in 3D at http://www.visualsize.com/3ddemo/comparison/accuracy.html. As can
be seen in Table 1, our modeling algorithm was able to construct 3D models which confirmed with the ground-truth
models very well. The average error was less than 0.5%—and this error was computed over hundreds of thousands
of recovered 3D points. Increasing spatial resolution improved the accuracy only marginally, but can lengthen the
computation time significantly in the case of Herz-Jesu.

4 Concluding Remarks
There is obvious trade-off of using photos and videos for 3D ranging and modeling. The impact of a system like
PhotoModel3D on the society is that the system enables anyone and everyone with a digital camera, camcorder, and
phone (over three billions such devices are in circulation worldwide today) to become a 3D content producer without
any training in science and engineering. PhotoModel3D system has been deployed for about 2 years and has received
more than 100,000 Web visits and thousands of uses since 2011. However, it is theoretically impossible to determine
the absolute distance and scale using photos or videos alone. So some dimension (distance and size) measurements
must be known of certain scene entities to make absolute ranging possible.
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Figure 4: Herz-Jesu-P25 (top) and Fountain-P11 (bottom) processed at the VGA resolution. For each data set, left two
on the 1st row: our results. Right two on the 1st row: ground truth. The 2nd row displays both our model and the
ground truth registered in a common reference frame.
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