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Abstract

In this paper, we present our research on photo- and videeelD ranging and modeling. We have constructed such
a 3D ranging and modeling system, PhotoModel3D, that wasnasdilable for free, non-commercial use over the

Web. The system has received over a hundred thousands Vitstawvid thousands of use in the past two years alone.
Currently, we demo 900 3D models thus constructed usingoghentd videos contributed from anonymous users all
over the world. Here, we describe the algorithms used in theipeline and present the results of a comparison

study and an accuracy analysis of its performance.
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1 Introduction

In this paper, we present our research on photo- and vidseelzD ranging and modeling. Image-based 3D modeling
is widely considered an ill-posed, inverse problem in cotapuision that is difficult to solve efficiently, robustly dn
accurately [7, 11, 21]. Furthermore, photo- and video-8&i& modeling is complicated, as it comprises a pipeline
of intertwined components, touching upon many facets of mater vision, e.g., 2D feature analysis and tracking,
localized 2D to 3D structure and motion inference, globahetical optimization, 3D surface generation, and multi-
view texture mapping. A complete 3D pipeline must succdlysfuldress all these problems and more.

Recently, the rapid maturity and wide adoption of some @luoirastructure and hardware technologies has greatly
facilitated such image-based, 3D ranging research. In 20drie, over 1.4 billion camera phones and another 100
million digital cameras were sold worldwide. A commodity B@se days comes with a 2-, 4-, or 6-core CPU with
gigabytes or terabytes of disk storage for processing anthgtimage and video data. Wired, wireless, and cellular
networks abound that allow easy upload and download of wided photos. The technological confluence is enabling
“rubber-meets-the-road” validation of over 40 years of 3iage-based ranging and modeling research, and help
pushing the academic research into the real-world consantemilitary markets.

We have developed such a photo- and video-based 3D rangingeaeling software that we call PhotoModel3D [28].
PhotoModel3D employs a photo-based and photo-only arsghgsadigm known as either structure from motion (SfM)
in the computer-vision and computer-graphics communjfed 1, 21, 19, 25, 9] or simultaneous localization and
mapping (SLAM) in the robotics communityy [5, 13, 22, 17].dRedless of the nomenclature, the general principles
of such a 3D modeling system are to exploit the motion paradifect exhibited in multiple images taken by a
travelling camera to infer the 3D scene structures and theecaposes. PhotoModel3D (1) works with both discrete
images and continuous videos taken by a consumer-marktldigmera, camcorder, or camera phone of any make
and model, (2) uses no special equipment (e.g., lens armtjtipctive projection, artificial lighting, prior camera
calibration, and man-made markers and registration pett€B) requires no user training (just point and shoot),
(4) is fully automated and end-to-end (from photographsutly ftolored and textured 3D models) without manual
intervention or data-specific parameter tuning, (5) is dveare-based solution that runs on commodity Linux and



Windows servers without the need of special hardware (GPER,[®tc.) acceleration, (6) has been demonstrated in
an unbiased study to outperform many state-of-the-art 3Datiny pipelines based on a similar SfM principle [29],
(7) has been shown to infer 3D models of high fidelity, with &arage 3D structure error less than 0.2% measured
against ground-truthed 3D LIDAR models, (8) has been degalayn the web allowing free, non-commercial use for
more than 2 years; receiving over 100 thousands web visitsterusands of use, and (9) has successfully constructed
thousands of 3D models of a large variety of 3D scenes usiagés and videos contributed from anonymous users
all over the world.

The remainder of the paper will describe our 3D processing 8ad algorithms used in PhotoModel3D. The dis-
cussion will be followed by the presentation of an compagod an accuracy study. Finally, we will summarize the
current status of our research and development in a comgjudimark.

2 Technical Description

Here we present the architecture of our 3D pipeline usingfltve
| chart depictedin Fig. 1. Different modules in Fig. 1 andtifinctions
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Figure 1: Flowchart of Visualsize’s 3D mod-p, petween the views. The core process is either a 5-poigtpatial
eling pipeline. algorithm or an 8-point linear algorithm [18, 7, 12, 11]. Thoint
algorithm handles both planar and non-planar 3D configomatiand
hence, is more general than the 8-point counterpart tHatifahe 3D scene is planar. However, 8-point runs faster
than 5-point.

The names of the inference algorithms refer to the minimumbyers of pairs of matched image features in two
views that are needed for deducing the camera’s motion peeam In reality, we track and match significantly more
features than just five or eight. Furthermore, trackingémmiaig results are necessarily imprecise due to noise and



image quantization. Catastrophic failure in trackingglo$trajectory) and matching (erroneous pairing assigris)en
do happen occasionally. To improve the robustness in camet®n inference, we use a nonlinear selection and
filtering strategy called RANSAC [8] to better condition tfeature matching process.

Finally, nonlinear optimization (Box E) is used to give a fityolish” to the best result from RANSAC and the 5-
point or 8-point linear algorithms. We have used the Levegiddarquart (LM) [11], Dog Leg (DL), Double Dog Leg
(DDL), and Hook-Step (HS) algorithms [2, 6], which are diffat variances of procedures for optimally combining
the Gauss-Newton method and the gradient-descent methde YAM, DL, DDL, and HS are nonlinear iterative
optimization procedures, convergence is fast because @bd igitial guess has been obtained (Boxes C and D).

<& Stereo rectification, matching, and depth infereiiBexes F and G): This step is to infer 3D surface depth and
construct a 3D model that captures both structure and appeainformation. We consider two different approaches.
In one approach (Box F), only the depths of the tracked/neatémage features (Boxes A and B) are explicitly

computed to form a sparse depth map. Depths of the intermegglieels are estimated through bi-linear interpolation
from those of the tracked/matched features. This appraachmputationally efficient and works well if the scene

structure is smooth.

A more accurate 3D model can be constructed by computing gisearity and inferring 3D depth a&ach and every
pixel in the images (Box G). To efficiently and reliably perfostereo analysis, the image pair should be in a standard
side-by-side configuration. If not, we must either identifg corresponding epipolar lines in the two images, orfiecti
the two images to rearrange the image pixels in such a wayhbatorresponding pixels in the two images lie on the
same image scan lines [20]. We then apply a stereo matchgogitlm based on dynamic programming [3], which
takes into consideration pixel-, neighborhood-, and dlgkzased similarity criteria in matching.

< Multi-view registration(Box H): The final step is for registering partial 3D modelsswucted from multiple 2-view
analyses into a more complete 3D model. We treat each p2stigw model as a cloud of 3D points, and these point
clouds are related by rigid-body transforms in space. Weestile registration problem by finding the rigid-body
registration parameters to match 3D point clouds with oroghaar using least-square.

Fig. 2 shows sample 3D models. Note that depending on théresgent of a particular application, we can generate
both texture-mapped models and point-cloud models, thaumd texture-mapped models are shown. A lot more
results, currently comprising 900 3D models of all kinds bjexts: human faces and others, soft and hard objects,
smooth and rough appearance, large and small targetseratdmman-made scenes, complete {3@Baround) and
partial 3D models, indoor and outdoor settings, ground armbene photos, short (as few as 5 images) and long (as
many as 800 images) sequences, are available at our wethgitéAww.visualsize.com.

3 Experimental Results

We present two studies here: one is a performance comparidtme 3D modeling systems based on the same SfM
principle, and the other is an accuray study to learn hownfigliour computer models can be to the ground-truthed
LiDAR models of the same 3D scenes.

3.1 Performance Comparison

We present here a comparison study of five 3D modeling sydbased on the SfM principles (Bundler [25], Bundler
+ PMVS2 [9], Project Photofly from Autodesk, ARC 3D Web Seevj27], and our own [29]). The usage scenario we
try to emulate in this study is that of a commercial 3D modgbgstem that accepts 3D modeling requests from clients
(cell phones, tablets, PCs, etc.) over the Web, execute3dhmodeling pipeline on a back-end server, and returns
the 3D model as a result. The users (1) are not computer vésiparts and cannot provide additional information
other than the photos themselves, (2) are not willing to gough lengthy training, or purchase expensive cameras or
specialized photography equipment for building 3D mod@lsmay be cost conscientious especially when connecting
to the back-end server through a mobile device where themiagthave to pay for the bandwidth usage (and hence,
no uploading large photos that tie up Web links for a long Jinaad (4) are accustomed to the “instant gratification”



Figure 2: Sample results of our 3D modeling system. Eachskdtes represented by one input image (left) and one
image of the 3D model (right). Short movies of the 3D model9@d test data sets are available for viewing on the
Web at: http://www.visualsize.com/3ddemo/index.php.



Web experience, and hence, are impatient to get the resudks b

While similar performance comparison has been attempténtd§3, 24, 26], our study stands out by performing
“rubber-meets-the-road” validation tests that closelynmiwhat a commercial 3D modeling system needs to accom-
plish in the real world. The novelty of our comparison stuslyhiree-fold:

(1) The comparison was performed by exercising the full 3RIetiog pipelines, from input images all the way to 3D
models, instead of testing some isolated components in dgBine [24],

(2) In addition to the ground-truthed 3D data provided by][2& have used over 100 data sets (122 to be exact), with
over three thousand images, representing a variety of 3esceollected from a large number of consumer-market
digital cameras and camera phones of many makes/modelsoatibuted by anonymous users all over the world.
Furthermore, these images were shot without prior caméitaation, use of special equipment (tripod, lens, etcd an
lighting (laser and structured light projection), and ugaming in image acquisition. In contrast, [23, 24, 26] dav
used small, calibrated data sets, and

(3) To ensure that the comparison is fair and the results dal@epend on the details of implementation, we have
included only those 3D modeling systems that are availaislage on the Web or locally in a binary format; comprise
a complete, fully-automated 3D pipeline that leads fronuinmages to 3D models—without any user intervention
and without data-dependent parameter tuning; and are algerform the feats using images of a reasonable size.
Furthermore, a diligent Web search has unearthed no other@iling system that fits the comparison requirements,
and hence, our selection is believed to be comprehensivpranites a holistic view of the state of the art.

The test platform was a PC with a 2.8Ghz Intel Core 2 Duo CPURA®/, running Windows 7. The experimental
procedures were extremely straightforward: As all thesen8idleling systems need were input images, all we did
was to provide them with the input images and then waitedrfercomputation to finish. We felt that the simplicity
of the procedures better ensured fairness. We (1) have beddnary releases of these programs so we could not
have compiled them incorrectly, (2) we have used the defdtution scripts supplied with the releases without
modification so we could not have tuned the parameters wypagtl (3) we have run these programs on the same
machine using the same number of CPU cores, the same amouongnodry, and under similar runtime conditions.
For Project Photofly and ARC 3D Web Service, the images wel@aded to their servers on the Web and there was
no end-user tunable parameters on their GUI.

Fig. 3 presents three such results of running the five moglsiistems on ten sample data sets. The two images at top
left are sample input images, the two at top right are ourltggte two at middle left are results of Bundler, the two at
middle right are results of Bundler + PMVS2, the two at bottefhare results of ARC 3D Web Service, and the two
at bottom right are results of Autodesk’s Project Photoflye Table below the graphic results shows the name and size
of the data set, how many pictures were processed, how mappBiis were generated, and the runtime for Bundler,
Bundler+PMVS2, ARC 3D Web Service, and our system. Runtim&RC 3D and Photofly was not included as
data sets were processed on their cloud servers. Photoflyaugeoprietary point-cloud format so the cloud density
information was not available either.

Results of Bundler, Bundler+PMVS2, and ARC 3D Web Servieepaesented in discrete point-cloud format as these
programs did not generate 3D texture-mapped models. Wdesuppt texture-mapped results for Project Photofly
and our system if one point-cloud picture is enough to itatstthe density and quality of such a discrete structure. As
page limit does not allow us to show all these examples, amdtlality and accuracy of a 3D model is best evaluated
by viewing the model in 3D—instead of just a few screen shegsstrongly urge interested readers to browse our Web
site for more information [29]. In terms of cloud density anehlity, and the chance of success, the test data indicated
that ours outperformed Project Photofly, which outperfairBendler+PMVS2, which outperformed Bundler, and
which outperformed ARC 3D. This observation also confirmsexgerience with the much larger, over 100 data set
ensemble.



Lady: 10 images

Bundler | Bundler + PMVS2| ARC 3D | Ours
Pic processed 4 4 6 10
# 3D points 467 2,428 148 10,810
Run time 0:39 0:58 - 2:00

Fountain: 11 images

Bundler | Bundler +| ARC 3D Ours
PMVS2
Pic processeq 5 5 11 11
# 3D points 604 7,221 1,025 | 132,670
Run time 0:55 1:30 - 6:05

Figure 3: The two images at top left are sample input imadnesiwo at top right are our results, the two at middle
left are results of Bundler, the two at middle right are resaf Bundler + PMVS2, the two at bottom left are results
of ARC 3D Web Service, and the two at bottom right are resul&sutodesk’s Project Photofly. For each data set, the
table below the graphic results shows the name and Size afdttaeset, how many pictures are processed, how many
3D points are generated, and the runtime for Bundler, Bur&®VS2, ARC 3D Web Service, and our system.



Soda Bottle: 46 images

Bundler | Bundler + PMVS2| ARC 3D | Ours
Pic processed 18 18 35 46
# 3D points | 6,214 27,221 2,473 | 75,275
Run time 5:48 11:07 - 11:18

Figure 3 continued

3.2 Accuracy Study

Here, we attempt to answer the question that is likely to keerieader’s mind: How accurate is our 3D modeling sys-
tem? Accuracy analysis requires comparison with the grawtd. However, as mentioned before, our test datasets
were collected from a large number of consumer-market casremd phones, and no ground-truth 3D profiles were
available. The Dino and Temple data sets used in [24] weleegad using the Stanford Spherical Gantry, which pro-
vided the ground truth in the camera poses, but not in the BRBtstres. Middlebury Stereo Datasets [4, 23] comprise
only short sequences (up to 7 images) using a fixed linearreatranslation, and hence, are not that interesting to us.
To our best knowledge, [26] provides the only publicly aabie 3D data sets with ground-truthed 3D profiles that used
a general camera motion, and were specifically generatelittate 3D modeling algorithms using the SfM principle.
Ground-truth 3D profiles (gathered using a LIDAR system)tiar data sets, Fountain-P11 and Herz-Jesu-P25, were
used in our accuracy analysis. These data sets are avdablewnload at: http://cvlabwww.epfl.ch/data/multiview
and were used in the following academic paper [26].

We tried to emulate—as faithfully as possible—what a conuiaéBD modeling system needs to accomplish for a
client submitting 3D modeling tasks through a Web-servicelah. To this end:

e \We have used two different spatial resolutions: the VGA $6280x 480) and a higher 21501434 resolution, for
upload and processing. This is for testing the ability ofgistem for handling both low-res and high-res imagery.

e We did not use any camera calibration data generated ekjefire, we did not use the intrinsic or the extrinsic cam-
era parameters supplied with the images). Again, in theweald application scenarios, such intrinsic and extgnsi
camera parameters are not available. Most, if not all, coestmarket digital cameras and phones are not calibrated.
A 3D modeling pipeline must be able to automatically calibrne intrinsic and extrinsic camera parameters using
nothing but the input images, without any outside assigtanc



Table 1: Accuracy Evaluation results

Data set Herz-Jesu-1| Fountain-1| Herz-Jesu-2| Fountain-2
# of images 25 11 25 11
spatial resolution 640x 480 | 640x 480 | 2150x1434 | 2150x1434
Runtime 11min 01sec| 4min 30sec| 59min 48sec| 7min 12sec
# of 3D points 342,949 140,785 1,437,984 1,072,139
# of faces 735,419 315,195 2,781,106 2,107,543
max error 4.74% 5.07% 4.42% 1.92%
median error 0.62% 0.62% 0.44% 0.23%
average error 0.41% 0.44% 0.26% 0.17%

e \We have concentrated on the “end results” and ignored th@fbglucts” of such 3D processing. That is, our com-
parison is on the faithfulness of the 3D models, not on thelraoy of the recovered intrinsic and extrinsic camera
parameters. We believe that in the consumer market, the gsrd are mainly interested in the 3D models. Further-
more, we believe that the situation where a modeling systgimated erroneous camera parameters but somehow
still obtains correct 3D structures fortuitously is extedynunlikely (we have never observed such a phenomenon).

After our 3D pipeline finished generating 3D models from thgLit VGA images, these models were aligned with the
ground-truth models in a two-stage procedure: We first usedrianual alignment process provided by Meshlab [16]
to roughly align our 3D models with the ground-truth modelghe alignment process consisted of loading both
models into Meshlab, manually specifying a small numberasfesponding points in the two models to establish a
rough alignment, and then allowing Meshlab to refine thégdhihanual alignment using an iterative ICP algorithm.

After the models were roughly aligned as in the previous,step loaded both models into our own display pro-
gram that allowed small x, y, z rotations and translatiorgiagd to the ground-truth models. We applied such small
translations and rotations interactively and eye-baleddisplay for the best qualitative alignment results.

After models had been aligned, we computed an absoluteragasure for each and every 3D pointin our 3D models.
This error was the minimum distance from a 3D point in our ni@tiethe closest points in the corresponding ground-
truth models. We then computed a percentage error by diyitli@ absolute error distance by the largest dimension of
the ground-truth models in the x, y, or z direction.

Our modeling pipeline ran on a Windows 7 desktop with an I6t&le i-3 3.3GHz processor, 6GB of memory, and 1TB
of disk space. For each data set, we used two different $padialutions: VGA and 21501434. The runtime, density
and accuracy statistics are summarized in Table 1 and the@i2lnare depicted graphically in Figs. 4 to 5. One can
also download or view these models in 3D at http://www.visiza.com/3ddemo/comparison/accuracy.html. As can
be seen in Table 1, our modeling algorithm was able to cocisBD models which confirmed with the ground-truth
models very well. The average error was less than 0.5%—asetior was computed over hundreds of thousands
of recovered 3D points. Increasing spatial resolution mupd the accuracy only marginally, but can lengthen the
computation time significantly in the case of Herz-Jesu.

4 Concluding Remarks

There is obvious trade-off of using photos and videos for 8Bging and modeling. The impact of a system like
PhotoModel3D on the society is that the system enables @&god everyone with a digital camera, camcorder, and
phone (over three billions such devices are in circulationldwide today) to become a 3D content producer without
any training in science and engineering. PhotoModel3Desgstas been deployed for about 2 years and has received
more than 100,000 Web visits and thousands of uses since Plaidever, it is theoretically impossible to determine
the absolute distance and scale using photos or videos.aBmsome dimension (distance and size) measurements
must be known of certain scene entities to make absoluterrgpgssible.
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Figure 4: Herz-Jesu-P25 (top) and Fountain-P11 (botton)gssed at the VGA resolution. For each data set, left two
on the 1st row: our results. Right two on the 1st row: grounthtr The 2nd row displays both our model and the
ground truth registered in a common reference frame.
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