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MIM: High-Definition Maps Incorporated
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Hongping Zhang, and Yuan-Fang Wang

Abstract— 3D object detection has aroused increasing interest
as a crucial component of autonomous driving systems. While
recent works have explored various multi-modal fusion methods
to enhance accuracy and robustness, fusing multi-view images
and high-definition (HD) maps remains uncharted. Inspired by
our previous work, we endeavor to introduce HD maps to
camera-based detection, prompting the design of a new frame-
work. To address this, we first analyze the function of HD maps
in object detection to understand their benefits and the rationale
for their fusion. From this analysis, we identify key disparities in
view, semantics, and scale, leading to the development of MIM,
a framework for HD Maps Incorporated Multi-view 3D object
detection. HD maps are enriched in semantics by sampling unla-
beled areas and encoding them into map features. Simultaneously,
multi-view images are transformed into features in bird’s-eye
view (BEV) using the adopted baseline. These features are then
fused using attention mechanisms to align scales. Experiments
conducted on the nuScenes dataset demonstrate that MIM out-
performs camera-based methods. Moreover, an in-depth analysis
investigates how HD maps impact object detection regarding each
semantic layer. The results underscore the operational intricacies
of HD maps in perception, setting the stage for future research.
Code is available at https://github.com/WHU-xjs/MIM-3D-Det.

Index Terms— 3D object detection, autonomous driving, multi-
modal fusion, multi-view images, high-definition maps.

I. INTRODUCTION

PRECISE 3D object detection is crucial for autonomous
driving systems [1], as it predicts the 3D geometric

and semantic information of objects surrounding the vehicle.
Multi-modal fusion approaches have attracted increasing inter-
est because they capture complementary signals from diverse
data sources [2], such as cameras, LiDAR, and offline HD
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TABLE I
CHARACTERISTICS OF DIFFERENT MODALITIES. PERS.:PERSPECTIVE

maps, leading to more reliable detection results. However,
the fusion approach remains an open question given the
inherent and substantial disparities in view, semantics, and
scale between different modalities, as shown in Tab. I.

Extensive studies have been conducted on camera-LiDAR
fusion given the complementary nature of images and point
clouds, exploring various fusion stages, representations, oper-
ators, etc. Early works [3] based on LiDAR crop the input
point clouds within the region of interest, i.e., camera frustum.
Most methods fuse intermediate features [4] or detection
results [5] thereafter, building upon sophisticated backbones.
Some approaches [6] propose a potentially more generalized
approach that unifies representation before fusion. Neverthe-
less, cameras and LiDAR both provide low-level data with
object information, which differentiates them from HD maps
and renders the above frameworks not ideal.

Some recent works devise LiDAR-map fusion methods to
take advantage of HD maps in perception, incorporating their
rich geometric and semantic information of the environment.
HDNet [7] pioneers its utilization through rasterizing vector
maps and concatenating with projected 3D point clouds in
BEV, setting up a common workflow. Subsequent studies
[8], [9] delve into representing, encoding, and fusing strategies.
Despite the efforts made, existing approaches for HD maps
are still under development. Moreover, the restricted view
and vague geometry of images could lead to challenges in
transplanting LiDAR-map fusion.

Camera-only detection approaches have gained favor within
the research community. Recent advancements either leverage
2D paradigms [10] or advance towards 3D modeling [11],
[12], [13], making breakthroughs thanks to the development
of 2D image understanding. While they benefit from an
exceptional cost advantage, they face inherent limitations by
relying solely on cameras, specifically the lack of geome-
tries. HD maps have been overlooked among vision based
researches, mainly due to insufficient recognition and the
challenges associated with their utilization.
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Fig. 1. The proposed framework MIM. The dotted lines mark the parts adopted from the camera-only baseline, which are responsible for transforming views
and predicting objects. The solid lines mark the proposed modules, which are responsible for enriching semantics and aligning scales, thereby incorporating
HD maps. RRB appends an out-of-map layer to HD maps, followed by SME to encode them using dilated convolutions. The concatenated cross-modal features
are handled by CRA to adjust scales and highlight geometries in HD maps, through a series of compression, interaction, and attention in parallel branches.
These modules fuse HD maps into the camera-only baseline that depends on BEV. Multiplications are element-wise. Point clouds are for visualization only.

In summary, integrating HD maps can address the limi-
tations of camera-based methods while keeping deployment
costs low, but significant discrepancies in view, semantics,
and scale must be tackled. To this end, we propose HD Maps
Incorporated Multi-view detection (MIM), which first explores
camera-map fusion to the best of our knowledge. Similar to
our previous work [14] on LiDAR-map fusion, MIM is built
upon camera-based methods, as illustrated in Fig. 1.

MIM adopts a decoupled baseline, in which the encoder
transforms image features into BEV, aligning them with HD
maps in view. Three modules are introduced to incorporate HD
maps. First, Region Representation Balancing (RRB) enriches
the background of HD maps, balancing the representation of
labeled and unlabeled environments. Next, Semantic Maps
Encoding (SME) encodes HD maps into high-dimensional fea-
tures, aligning them closely with image features in semantics.
Finally, Cross-modal Refinement Attention (CRA) fuses the
features, adjusting scales across modalities and emphasizing
geometries. These modules integrate HD maps with image
features, while the decoder and detection head from the
baseline generate the final predictions.

Experiments were conducted on the large-scale public
autonomous driving dataset nuScenes [15]. MIM achieved
an mAP of 40.9% and an NDS of 46.3%, surpassing the
baseline by 1.7% and 1.9%, respectively, on the validation set,
and outperforming camera-only methods on both subsets. The
comparison and ablation results demonstrate the effectiveness
of HD maps and the proposed modules. Further experiments
evaluate the contribution of individual HD map layers, provid-
ing insights for future studies. The key contributions of this
paper are summarized as follows:

• To explore camera-map fusion, we investigated the ratio-
nale behind integrating HD maps with images, identified
key challenges to resolve in view, semantics, and scale,
and proposed MIM as the first approach of its kind.

• To achieve camera-map fusion, we developed three mod-
ules that enrich semantics and align scales on top of a

camera-only baseline, which handles view transforma-
tion, leading to improved detection performance.

• To deepen the understanding of camera-map fusion,
we conducted an in-depth analysis of the operational
intricacies of each HD map layer, paving the way for
future research in HD map-integrated perception.

II. RELATED WORK

In this section, we first introduce camera-LiDAR fusion
detection methods as references for multi-modal architectures.
Then we introduce camera-only 3D object detection as the
baseline of camera-map fusion, and LiDAR-map fusion per-
ception that explores the utilization of HD maps.

A. Camera-LiDAR Fusion 3D Object Detection

Camera-LiDAR fusion has been extensively studied thanks
to the complementary nature of images and point clouds.
PointPainting [16] assigns the semantic segmentation labels
from images to the 3D points. FS-Net [4] matches image
features to key points according to the scale and receptive
field. MENet [17] expands the mapping range and levels.
Instead of input point clouds, a few works [18], [19] devise
to fuse image pixels at voxel-level after point cloud feature
extraction. Except for minor differences in image feature
extraction, these approaches can also be classified as feature-
level fusion, which usually share a common architecture. The
middle-fusion or feature-level fusion paradigm [6], [20], [21]
fuses output features from backbone networks of each modal-
ity and propose various ways to build correspondence between
features, including view projection, graph modeling, attention
mechanism, etc. In addition, research also explores late-fusion
paradigm [22], [23], [24] that fuses detected instances from
both modalities, like bounding boxes and feature tokens.
It often brings computational advantages for the network since
objects are sparse compared to dense sensor data. There are
also many methods [5], [25] that combine different level fusion
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to further improve detection performance, or propose fusion
strategies that are hard to categorize [26], [27].

The tremendous success achieved by camera-LiDAR fusion
makes it so representative in the field of multi-modal fusion
that other approaches are paid less attention. Extra com-
putation and deployment overhead are inevitable trade for
combining camera and LiDAR.

B. Camera-Only 3D Object Detection

1) Following 2D Detection Paradigms: The success of
2D object detection encourages numerous 3D derivatives.
FCOS3D [10] extends the advanced 2D anchor-free detector
FCOS to predict transformed 3D object geometries directly
in the camera view. PGD [28] further constructs geometric
relation graphs between objects, facilitating depth estimation.
Much work has been done on introducing auxiliary tasks
to 2D paradigms. In [29], a 2D segmentation mask is pro-
duced using annotated point clouds, which help the model
distinguish objects and occlusions. MonoPixel [30] develops
a way to utilize point clouds as depth supervision, but in
an object-centric manner instead of generating dense depth
map [31]. Without point clouds or external data, [32] designs
some parallel heads to predict 2D key points projected by 3D
bboxes during training, which eases model learning.

2) Developing Paradigms With 3D Modeling: DETR3D
[33] follows DETR [34] but projects learnable 3D queries
in 2D images, and then samples the corresponding features
for end-to-end 3D detection without post-processing. The
subsequent study [35] focuses on improving the detection of
objects across views via graph modeling. Another concurrent
work PETR [12] proposes 3D position embedding to elevate
2D features, an alternative to 3D projection. Other methods
propose to generate BEV features from multi-view images.
BEVDet [11] adopts LSS [36] and feeds BEV feature into
LiDAR-based 3D detection head, demonstrating the feasibility
of 3D detection in BEV. Meanwhile, BEVFormer [13] argues
for the necessity of LSS and proposes to learn BEV feature
adaptively with Transformer blocks. Recent advances enlarge
the input window to include more temporal cues, developing
hybrid temporal fusion [37] with parallel and recurrent flow.

These methods strongly believe in the irreplaceable cost
advantage of camera-only solutions. HD maps, which could
serve as an alternative to LiDAR, have been overlooked due
to discrepancies between modalities.

C. LiDAR-Map Fusion 3D Perception

HD maps, though providing rich environment information
[38], have not gained much attention due to their special
properties. To make use of continuous vector maps in discrete
network, an early work HDNet [7] proposes to rasterize HD
map and concatenate drivable area mask to LiDAR BEV grids,
telling the potential of HD maps in 3D perception and put for-
ward the idea of raster representation. MapFusion [8] attempts
to extract map features with 2D modules before fusion and
introduces a subtask to reproduce the map input from voxel
features. LaneFusion [9] further provides a detailed discus-
sion on map representation, fusion type, and map backbone
structure, which evidences the advantage of parallel backbone

architecture. MENet [14] tests a few attention mechanisms as
fusion plugins, finding that dilated convolution is potentially
a better choice for HD maps encoding.

LiDAR is the best sensor for capturing precise environment
geometries, but LiDAR-map fusion does not address its lack
of detailed texture. Moreover, the fusion of HD maps has not
been extensively studied.

III. METHODS

In this section, we illustrate the proposed camera-map fusion
framework MIM. We first introduce the overview and the
camera-only baseline, followed by discussions on the ideology
of our framework design. We then show the implementation
of HD maps incorporation, including three modules in the
network and a customized data augmentation strategy.

A. Overview

As displayed in Fig. 1, MIM encodes multi-view images
and HD maps in parallel and fuses features in BEV, then
feeds the fused features into a decoder and detection head,
predicting 3D objects. In terms of resolving discrepancies, the
whole network can be divided into four parts: an encoder of
multi-view images that aligns views, an encoder of HD maps
that aligns semantics, a multi-modal feature fuser that aligns
scales, and the remainder that produces detection results. The
image transform encoder obtains multi-view image features
and transforms them into BEV. RRB simulates the sampling
of HD maps with a non-trivial twist in the representations,
SME then encodes the sampled local HD maps into features
for fusion. CRA further refines the concatenated multi-modal
features through adjusting the scales and highlighting the
geometries. At last, a BEV decoder and detection head from
the baseline predict objects using the fused features.

B. Camera-Only Detection Baseline

To leverage HD maps, a decoupled and scalable multi-view
3D detection baseline is required, therefore BEVDet [11] is
adopted. It includes an encoder for images, and a BEV decoder
and detection head.

1) Image Transform Encoder: The image transform encoder
first extracts multi-scale high-level image features, then
converts features from the perspective view to BEV. The
feature extraction network constructs a feature pyramid
network (FPN) employing the attention-based backbone
swin-transformer [39]. The view transformation network is
primarily adopted from LSS, involving depth distribution
estimation, inverse projection, and BEV pooling.

2) BEV Decoder and Detection Head: The BEV decoder
utilizes ResNet blocks to construct FPN, capturing critical
cues defined in the BEV space such as scale, orientation, and
velocity. The detection head from CenterPoint [40] is adopted,
which employs the decoded BEV features to generate 3D
bounding boxes, describing their geometric attributes.

C. The Role of Background in Detection

The emphasis on detection accuracy often leads to a lack
of interest in HD maps, whose rationality we argue for.
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This section aims to analyze the pros and cons of different
detection strategies, thereby elucidating the role of background
in them.

Let a frame of scene denoted as U = S ∪D, in which S is
the set of background and D is the set of foreground. And let
sensor data acquired be U = ϕ(U), where ϕ represents sam-
pling procedure of the sensor, then a vanilla object detection
method following strategy (a) is described as:

O = ω[F(U )] (1)

Here, O is the set of objects detected, and the method
is divided into a general feature extraction network F and
a detection head ω. Based on the previous consensus that
background is nothing but a distraction to the representation
of objects, strategy (b) which expects to remove background
can be ideally formulated as:

O = ω[F(D)] (2)

This strategy assumes that the optimal result O is obtained
when the input contains only D. The tremendous success
achieved in most image recognition tasks demonstrates its
superiority over the vanilla strategy (a). However, recent
advance [41] holds a different opinion that detection relies
on background context when D proves insufficient, detecting
tiny objects for example. The proposed strategy (c) is ideally
expressed as:

O = ω{ f [F(D),F(S)]} (3)

where f represents fusion. The conflict between (b) and (c)
motivates us to seek a unified ideology for detection. Com-
paring Eq. 2 and Eq. 3 tells that (c) should behave no worse
than (b), as F(S) may be discarded by f through learning if it
appears noisy to detection. In real-world situations, however,
the question lies in the mixed sampled data U = ϕ(S)∪ϕ(D).
In order to obtain F(D), research has focused on developing
Fsep, which ideally should meet Eq. 4:

Fsep(S ∪ D) = (F(S),F(D)) (4)

Fsep aims to separate objects from background at feature-level,
particularly leveraging attention mechanism. Obviously, such
an estimation cannot be completely accurate since the question
is ill-posed. Noticing the difference between Eq. 1 and Eq. 3,
we draw a novel conclusion: the success of (b) comes from
separation instead of suppression. When it comes to the role
of S in detection, we claim that background is noise when
mixed with objects, but is helpful when separated.

Nevertheless, (c) has not gained popularity as (b) in studies.
We contribute it to not only the misunderstanding of the role
of S but also the difficulty of learning an accurate Fsep. The
next subsection discusses the benefits brought by HD maps
and how they make (c) a viable option.

D. Involving HD Maps as Background

Before delving into the function of HD maps, we offer at-
a-glance design of multi-modal fusion approaches. Denoting

inputs from two modalities are U1 = ϕ1(U), U2 = ϕ2(U),
a widely accepted paradigm is formulated as:

O = ω{ f [F1(U1),F2(U2)]} (5)

where F1,F2 are common feature extraction networks for
U1, U2, respectively, usually adopted from single-modal
approaches. There are other frameworks for camera-LiDAR
fusion but Eq. 5 has been the choice for LiDAR-map fusion.

In datasets, HD maps can be regarded as SM ⊂ S and
require procession to be utilized. HDNet [7] proposes to
acquire the drivable area as grids and concatenate it with
BEV features, which can be described as inputting ϕda(SM )

to f . Followers [8], [14] then improve the sampling method
ϕ to represent more information, and introduce simple FC
from image processing for ϕ(SM ). Let point clouds be UL =

ϕL(U), backbone networks be FL , modern LiDAR-map fusion
approaches obey the following form:

O = ω{ f [FL(UL),FC (ϕ(SM ))]} (6)

Equation 6 shares the same form as Eq. 5, except for the
explicit expression of the sampling procedure ϕ. Perception
methods do not get involved with online data acquisition, but
need to figure out their own way in using offline HD maps,
e.g. various representation methods experimented in [9]. Note
that ϕ decides the content and structure of input map data,
which is beyond F and cannot be merged.

Interestingly, Eq. 6 is similar to Eq. 3 as well, thanks to
the static nature of HD maps. We believe this similarity is not
coincidental, but rather the underlying reason for the effective-
ness of HD map-fused methods, which should also extend to
camera-map fusion. We break down this reasoning into three
key factors: discretionary sampling, precise annotation, and the
natural separation inherent in HD maps, as discussed below.

• Discretionary sampling. HD maps deliver descriptions
of environment SM ⊂ S, allowing customized sampling
methods to meet the need of approaches, alleviating the
burden of modality alignment. It is possible to acquire
lane directions, define 2D or polygonal data structure,
and scale to desired resolutions, to name a few.

• Precise annotation. Stronger backbones for extracting
higher-level semantics are always the pursuit of
researchers, while HD maps deliver high-level precise
annotations, relieving the burden of feature extraction and
eliminating noise (excluding annotation errors).

• Natural separation. The most vital characteristic of HD
maps lies in their static nature. We argue that containing
no direct cues about objects turns out to benefit strategy
(c). The aforementioned analyses are based on the fact
that D and S are estimated. However, as it is easy to
derive D = U − S, learning f satisfying Eq. 7 would be
much easier than learning Fsep provided SM ⊂ S.

f [F(U ),F(ϕ(SM ))] = F(D) (7)

These characteristics make HD maps an abstract background
that fits seamlessly into (c). Besides, it is noteworthy that all
discussions do not restrict a certain modality, therefore the
success achieved by LiDAR-map fusion would be granted to
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Fig. 2. Illustration of semantic maps encoding. SME comprises three major layers including two downsampling encode layers (DEL) and one local encode
layer (LEL). The two types of layers have a very similar structure except for the second convolution. DEL halves the length and height of features and expands
the channels. LEL keeps features in the same size, with a residual connection across itself.

Fig. 3. The process of RRB. Each color indicates a semantic label in the
HD maps, except purple for the non-labeled layer. We use 6 labeled semantic
layers, only 3 of them are drawn for a simplified view.

camera-map fusion. Summarizing all above, we propose to
fuse HD maps with images to enhance 3D object detection.
To begin with, we formulate the camera-only baseline as:

O = ω[FC (UC )] (8)

where FC is the image transform encoder and ω is the BEV
decoder and detection head, UC is multi-view images sampled
by cameras. Then our MIM, following Eq. 3 in (c) and Eq. 6
in LiDAR-map fusion, is formulated as:

O = ω{ fCRA[FC (UC ),FSME(ϕRRB(SM ))]} (9)

where ϕRRB is a simulated sampling module, or representation
module, FSME is a simple feature extraction module, and fCRA
is a multi-modal fusion module.

E. HD Maps Incorporation

1) Region Representation Balancing: As previously dis-
cussed, we view the presentation of HD maps as a sampling
procedure, which differs from the conventional approach
of acquiring supportive information for objects. Therefore,
we argue that unlabeled areas in HD maps have been inadver-
tently overlooked, rendering off-road environments and objects
non-existent rather than unknown.

To address this bias to model recognition, the balancing
layer is derived as illustrated in Fig. 3. RRB modifies the
representation of HD maps to ensure the completeness of the
static environment, which is conducive to (c). For a layer L

that only has binary values (labeled or not), we first define
layer-wise boolean addition as Eq. 10:

L = Li ⊕ L j ⇐⇒ L(x, y) = Li (x, y) ⊕ L j (x, y) (10)

where ⊕ means boolean addition, (x, y) is a location within
the map, (x, y) ∈ [0, H) × [0, W ). Given the input HD map
M is a set of n binary map layers M = {L1, L2, . . . , Ln},
we obtain the out-of-map layer Lb that marks all regions
without any initial label by Eq. 11:

Lb = 1H×W
− (L1 ⊕ L2 ⊕ · · · ⊕ Ln) (11)

where 1H×W refers to a matrix of shape (H, W ) in which
all elements are 1. Then the balanced HD maps Mb can be
obtained by Eq. 12:

Mb = M ∪ {Lb} (12)

In RRB, layers of vector maps are obtained by dividing labeled
areas into grids, following common practices. Although Lb is
simple, it puts the unlabeled areas, which take up around 85%
of the entire perception space for nuScenes, on equal footing
with the other layers. It enhances the contextual information
around objects as well as aids in their separation.

2) Semantic Maps Encoding: It has been empirically found
and evaluated [9] that “ground-truth” HD maps require encod-
ing. SME aligns local HD maps with image features in terms
of semantics and adjusts them to the same resolution. This
module is primarily adapted from LiDAR-map fusion [14] due
to the similar functions involved.

SME employs multiple convolutional layers for encoding,
with Squeeze-Excitation (SE) layers added to enhance its
modeling capability. The module consists of three major
layers, with the detailed structure shown in Fig.2. The overall
procedure can be formulated as Eq.13:

FSME(M) = L E L[DE L2(M)] + DE L2(M) (13)

where M represents the input HD map layers processed by
RRB, DE L and L E L are the encoding layers. The simplified
form of M , containing only class labels, is used, which has
been proven sufficient [9].

For input, M is sampled at a higher resolution to pre-
serve the precise structure of vector maps. Two DE L layers
downsample it to match the resolution of BEV grids. L E L
then encodes it further with a residual connection to enrich
semantics. Both DE L and L E L follow Eq. 14:

layer(M) = convhead{SE[convtail(M)]} (14)
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where conv refers to convolutional layer, convhead always
employs dilated convolution, as indicated by conclusions
from [14], and convtail differentiates DE L from L E L . These
layers work together to represent HD maps at a lower resolu-
tion through expanded channels and continuous values. With
map features aligned to BEV grids, simple operations can take
place as the basis for multi-modal feature fusion.

3) Cross-Modal Refinement Attention: CRA plays the role
of multi-modal fusion, taking effect in BEV. The encoded
image and map features are concatenated along channel
dimension and fed to parallel channel and spatial attention to
reduce scale discrepancy and emphasize geometries, respec-
tively. The refined features are obtained by combining both
branches.

The natural discrepancy between images and HD maps can
lead to a prominent scale gap between their features. Unfor-
tunately, we cannot determine their scales after encoding, nor
the optimal scales for the detection head. The lack of prior
forces us to develop a learnable approach for adjustment,
which becomes the channel attention branch. Let F denotes
the concatenated features, it can be formulated as Eq. 15:

channel(F) = M L P[Avg Pool(F)] (15)

where Avg Pool is global average pooling, and M L P com-
prises a linear layer, batch norm, and ReLU.

Additionally, the introduction of SME necessitates a tai-
lored design. Drawing insights from position embedding [42],
we attempt to compensate for the loss of ground-truth infor-
mation during the encoding. Since features have already been
aligned to BEV grids, this can be addressed by empha-
sizing geometries through spatial attention, re-weighting the
multi-modal features in the spatial domain, formulated as
Eq. 16:

spatial(F) = conv{dil2
[reduce(F)]} (16)

where conv is a standard convolution, reduce is a convolu-
tional layer with a stride of 2, and dil is a dilated convolutional
layer with a stride of 1. The Avg Pool and reduce shrink
the shape of F to save computations, followed by linear
or convolutional layers to perform cross-modal interactions.
Finally, the refined features F ′ is obtained with Eq. 17:

F ′
= F ⊙ {1 + sigmoid[channel(F) ⊙ spatial(F)]} (17)

where ⊙ represents element-wise multiplication, operands are
expanded to the shape of F . Adding 1 introduces a residual
connection between F and F ′.

4) HD Maps Constrained Data Augmentation: Data
augmentation [43] plays a crucial role in accelerating
learning, with some methods [44], [45] achieving notable
success on the nuScenes dataset under the default limited
learning schedule. However, the widely used CBGS [45] is
not feasible in terms of computational cost for us. Therefore,
we introduce map-constrained data augmentation (MCDA)
based on GT-Paste [44], anticipating that it will offer
competitive acceleration while maintaining efficiency.

MCDA begins by constructing a ground-truth database
for multi-view images. For each instance in the dataset,
we first retrieve their annotations and crop corresponding

image patches by projecting 3D bounding boxes onto the
images. Low-quality objects that are too large or too small are
removed. The image patches for all instances are then stored
in the database, along with metadata such as the scene index,
instance index, and image view, which are saved in a separate
file.

The key to pasting objects lies in the consistency of anno-
tations with respect to autonomous vehicles, regardless of
the frame. For a random object sampled from the database,
we locate it by projecting its annotated 3D bounding box
onto local HD maps at the current frame. Vehicle classes
are restricted to the drivable_area, while other classes are
confined to any labeled map layer to avoid pasting objects into
buildings. Objects that do not meet these criteria are discarded.
This sampling process repeats until a desired number of
objects have been pasted for each category.

IV. EXPERIMENTS

In this section, we first show the details of conducting
experiments. To validate our method, we then discuss quanti-
tative and qualitative comparison results, and the ablations of
proposed modules. Additionally, we analyze the effects of HD
maps on each object class and the associations of map layers
with spatial attention, exploring their operational dynamics.

A. Experimental Details

1) Data for Camera-Based Detection: The widely used
dataset for monocular detection in autonomous driving, KITTI,
does not contain HD maps as it was found early. Therefore
we use nuScenes [15], another popular large-scale dataset
consisting of 1000 scenes of roughly 20s duration each. The
key frames contain six RGB images, annotated at 2Hz. These
sum up to 40,157 key frames and 1.4 million annotated 3D
bounding boxes from 10 categories.

2) Data for HD Maps: In nuScenes, four HD maps
from different regions are provided. Each HD map consists
of 3 geometry layers representing elements as points and
10 semantic layers labeling areas, all merged into 6 layers
for use. The dense and large-scale point cloud used to gener-
ate these HD maps is not publicly available in the dataset.
Additionally, localization data (including heading) for the
autonomous vehicle is provided at every key frame.

3) Evaluation Metrics: The detection metrics given by
nuScenes are adopted, where a match is defined by thresh-
olding the 2D center distance d on the ground plane. The
mean Average Precision (mAP) is then calculated as the
normalized area under the precision-recall curve, and averaged
over matching thresholds of D = {0.5, 1, 2, 4} meters and the
set of classes C:

mAP =
1

|C||D|

∑
c∈C

∑
d∈D

APc,d (18)

Under d = 2m matching threshold, five True Positive (TP)
metrics are defined to evaluate translation (ATE), scale (ASE),
orientation (AOE), velocity (AVE), and attribute (AAE).
The mean TP (mTP) over all classes are computed as Eq.19:

mTP =
1

|C|

∑
c∈C

TPc (19)
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TABLE II
QUANTITATIVE COMPARISON ON NUSCENES validation SET. †: TRAINED WITH CBGS THAT ENLONGATES ONE EPOCH INTO 4.5 EPOCHES

TABLE III
QUANTITATIVE COMPARISON ON NUSCENES Test SET

TABLE IV
PER-CLASS COMPARISON WITH THE BASELINE ON TWO NUSCENES SUBSETS, EVALUATED WITH AVERAGE PRECISION. Val.: validation,

1: DIFFERENCE OVER THE BASELINE, C.V.: CONSTRUCTION VEHICLE, PED.: PEDESTRIAN, T.C.: TRAFFIC CONE

Finally, the nuScenes Detection Score (NDS) is defined based
half on the Average Precision metric mAP, half on the set of
five TP metrics TP, formulated as Eq. 20:

NDS =
1

10

[
5 · mAP +

∑
mTP∈TP

(1 − min(1, mTP))

]
(20)

4) Model Configurations: In our modules, a convolutional
layer comprises convolution with a 3 × 3 kernel, batch norm,
and ReLU. Specifically, the convtail in L E L , SME, the first
and the last convolution in the spatial(·), CRA, use a 1×1 ker-
nel. Inputs and BEV features are augmented mainly following
BEVDet, with the exception of using MCDA instead of CBGS.
MCDA is disabled in the second half schedule to help the
model learn data distribution in real scenes.

5) Optimization: Models are trained and tested on a single
NVIDIA GeForce RTX 3090 GPU. Optimization is carried
out using AdamW with a weight decay of 10−2. Under a
resolution of 256×704, the batch size is 16 and learning rate
is 5×10−5. Under a resolution of 512×1408, the batch size is
1 and learning rate is 3 × 10−6, and batch norms are replaced
with layer norms since the former fails at batch size 1. The
cyclic policy is adopted as common, and the total schedule is
terminated within 24 epochs by default.

B. Comparison Results

1) Quantitative Results: We compare MIM with recent
camera-only methods on the nuScenes validation set.

Competitors include monocular methods FCOS3D, PGD, and
MonoPixel, DETR based methods DETR3D, G-DETR3D,
and PETR, BEV based methods BEVDet and BEVFormer-
S. BEVDet is MIM retrained under the same settings, but
without HD maps and incorporation modules, ensuring a fair
comparison. Other methods are loyal to their original papers.
As illustrated in Tab. II, MIM boosted BEVDet by 1.7% in
mAP and 1.9% in NDS, achieving a remarkable performance
with an mAP of 40.9% and NDS of 46.3%.

Moreover, the increase is achieved at minimal computational
cost. As shown in Tab. VI, the three modules introduced add
only 0.3M parameters and 8.3G FLOPs compared to BEVDet.
Notably, RRB incurs almost no FLOPs on its own, with
the slight increase attributed to the appended map layer to
encode in SME. This negligible computational cost results
in a comparable running speed. The high overall FLOPs is
primarily due to the Swin-B backbone. PETR’s FLOPs is
significantly lower, but this is for a single view, whereas MIM
and other methods process six views.

We then compare MIM with other available methods on
the nuScenes test set in Tab. III. Considering the results
across both subsets, our method demonstrates a substantial
improvement over the baseline. It excels in predicting objects’
locations with the assistance of HD maps, albeit sometimes at
the expense of predicting orientations and attributes.

To validate HD maps’ effect on different classes, we present
a detailed per-class comparison in Tab. IV. The detec-
tion on vehicles enjoys a significantly higher AP increase
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TABLE V
INCORPORATING HD MAPS TO THE LIDAR-BASED APPROACHES, EVALUATED ON NUSCENES validation SET.

C.V.: CONSTRUCTION VEHICLE, PED.: PEDESTRIAN, T.C.: TRAFFIC CONE

Fig. 4. Visualizations of detection from the baseline and MIM. Cyan boxes are ground-truths and yellow boxes are predicted targets, red rectangles and
circles mark the major differences. Images are cropped and rearranged for a better view, point clouds are for visualization only.

TABLE VI
COMPARISON AND DECOMPOSITION OF MODEL COMPLEXITY

(3.2% in average), which aligns with expectations since HD
maps provide detailed annotations for on-road elements. C.V.
is the only vehicle class that shows no overall increase.
We attribute this to its arbitrary location on HD maps
and shared detection sub-head with the truck. The increase
observed in other classes (1.1% in average) indicates that HD
maps also contribute to the detection of non-vehicle objects.

We further extended our evaluation by applying MIM
to LiDAR-based approaches, as shown in Tab. V. This
transplantation shows a clear improvement over the Center-
Point baseline [40] and a competitive performance compared
to the state-of-the-art [14]. MIM achieves the highest
mAP and NDS scores, offering a general performance
increase.

2) Qualitative Results: We compared MIM with the base-
line on the nuScenes validation set. Fig. 4(a) shows that MIM
distinguishes off-road objects from cars where the baseline
suffers from their similar appearance. Fig. 4(b) displays a
heavy-loaded intersection with numbers of targets. MIM keeps
the high detection accuracy learning from lanes in HD maps
when the baseline becomes incapable. Fig. 4(c) illustrates
an easy environment with hard samples, including a person
and partly occluded parked cars appearing across views.
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Fig. 5. Visualization comparisons with the state-of-the-arts. The BEV view is synthetic and point clouds are for visualization only.

MIM has a smaller prediction error and one less false detection
compared to the baseline.

More visualization comparisons with the state-of-the-arts
are displayed as Fig. 5. Models with similar performance are
tested if reported ones are not public. In Fig.5(a), MIM detects
two off-road vehicles without false positive or false negative at
a higher precision than PETR. The long trucks in Fig.5(b) are
hard to distinguish since they occlude each other, and MIM
delivers a better result regarding those in the front and to the
right, especially in their heading. For the comprehensiveness
of evaluation, Fig.5(c) includes a scene in extreme lighting
with non-vehicle objects, where MIM is the only method that
detects the person on the roadside.

C. Ablation Studies

1) Overall: By default, ablation experiments were carried
out on nuScenes validation set under 704×256 resolution
with MCDA. Note that RRB refers to appending the out-
of-map layer, as HD maps cannot be directly used without
sampling. The results are presented in Tab. VII. A1 proves
that introducing HD maps without further handling does not
improve perception. A2 to A4 show that each proposed module
contributes to a certain performance increase, with SME being
the most significant. This finding is reasonable as SME is
essential for fusion, while RRB and CRA play auxiliary roles.
Collectively, the proposed modules improve the fusion effect
by 3.3% in both mAP and NDS.

2) Region Representation Balancing: Experiments are con-
ducted on various compositions of representing and fusing
HD maps, listed in Tab. VIII. It shows that models with
RRB achieved higher mAP and NDS than models without
it. An average increase of 0.3% mAP and 0.6% NDS under
three different fusion approaches is non-trivial, supporting the
idea of sampling and the out-of-map layer.

3) Semantic Maps Encoding: Experiments are conducted
to investigate the proper map feature dimension in SME.

TABLE VII
ABLATIONS OF MIM. THE BASELINE DOES NOT USE HD MAPS.

EXPERIMENTS ARE CONDUCTED ON NUSCENES validation SET UNDER
704 × 256 RESOLUTION WITH MCDA BY DEFAULT

TABLE VIII
ABLATIONS OF RRB AND CRA USING DIFFERENT FUSION METHODS.

1: CHANGE FROM APPENDING OUT-OF-MAP LAYER

TABLE IX
ABLATIONS ON THE MAP FEATURE DIMENSION IN SME, NO MCDA

The number is set to 64 in other low-resolution experiments
to test different fusion strategies. Intuitively, the alignment
in dimension may benefit alignment in semantics. However,
Tab. IX shows that 16 is a better option, although the influence
is minor in most cases. The improvement from expanding
channels is substantial when the number is less than 8, but
saturates quickly as it becomes larger.

4) Cross-modal Refinement Attention: Tab. VIII illustrates
that the model with a combination of RRB and CRA achieved
the best mAP of 34.6% and NDS of 42.6%. Comparing
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TABLE X
ABLATIONS OF AUGMENTATION TECHNIQUES

Fig. 6. Visualization of channel attentions, the light colors represent higher
attention than the dark colors. The attention on image features (top half) is
generally higher than that on map features (bottom half).

Fig. 7. The evolution of NDS with or without MCDA, experimented on the
MIM and camera-only baseline BEVDet.

different rows, B3 takes a steady lead in mAP and NDS,
demonstrating the necessity of CRA. Using the best model
under 1408×512 resolution, the channel attentions learned by
CRA are visualized as Fig. 6, which remain highly consistent
across different samples. This indicates that the natural scale
gap is the major disparity beyond sample-wise differences, and
CRA learns a stable ratio for adjustment.

5) Map Constrained Data Augmentation: A comparison of
MIM using different augmentations is shown in Tab. X, where
GT-Paste refers to our image-based MCDA without HD maps
for filtering samples. GT-Paste improves MIM by a substantial
2.2% in mAP and 2.7% in NDS, taking only about 8% overall
extra training time. These gains are further enhanced by an
additional 0.4% in mAP and 0.1% in NDS when HD maps
filtering is applied at negligible time cost. Additionally, Fig. 7
shows that MCDA provides a comparable performance boost
to the baseline, making it easily transferable.

D. HD Maps Analysis

1) Evaluation Methodology: We conducted experiments on
the validation set to delve into the contributions of different
layers of HD maps, aiming to unveil their underlying func-
tionality. The local HD map layers ϕRRB(SM ) are compared to
the spatial attention fCRA, which is more straightforward than
compared to multi-channel map features and helps identify the
role of CRA. We utilized Structural Similarity (SSIM) as the

Fig. 8. SSIM between the HD map layers and spatial attention, including the
out-of-map layer and the sum of all layers. Note that “all layers” is indicative
rather than quantitative, as the sum of SSIM is not meaningful. The axis is
stretched to focus on the lower range where most values lie in.

Fig. 9. Ablations on the HD map layers used, incrementally appending
layers. Top 3 layers include drivable_area, walkway, and carpark_area.

evaluation metric due to its descriptive name, and the fact that
shapes directly reflect geometries in BEV. Layers were resized
to 1/4 in height and width using bilinear interpolation to match
the dimensions of spatial attention.

2) Contribution Layout w.r.t. Layers: We initiated a
straightforward experiment to assess the statistics of SSIM
between layers and attention, as depicted in Fig. 8. It shows
a clear hierarchical pattern in the contributions, with the
majority from out-of-map. Then follows drivable_area with
the only non-zero minimum SSIM of 0.002, underscoring its
significance. The carpark_area exhibits a maximum SSIM
comparable to walkway, yet its median value hovers near 0 due
to its infrequent appearance. The SSIM values for the others
are notably low. We posit that these semantic layers heavily
rely on temporal information and traffic signs for contextual
understanding. Absent such cues, discerning navigation cues
for vehicles or pedestrians becomes challenging.

From a result-oriented perspective, the significance of each
layer is evaluated by discarding it, as shown in Fig. 9. Discard-
ing the stop_line layer results in a change of −0.47% in NDS
and +0.20% in mAP, a small overall degradation. Accounting
for noise, the performance remains nearly unchanged with or
without the other two less important layers.

Besides, Fig. 8 highlights that while individual layers may
register minimum SSIM values of 0, their collective impact
exceeds 0.2. In other words, it is the combined effect of
multiple layers rather than any specific layer that consis-
tently contributes to the attention. To further understand this
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Fig. 10. Composition of spatial attention w.r.t. layers and Top-k. Top-k refers
to the layer with the k-th largest average SSIM.

Fig. 11. Ratios of HD map layers at the Top-k position.

dynamic, we analyze the composition of attention in a new
view of Top-k order, as discussed below.

3) Contribution Layout w.r.t. Order: In Fig. 10, the top
row illustrates the layer-wise decomposition, providing a
direct comparison between layers. The areas for ped_crossing,
stop_line, and divider are very narrow. Notable traits emerge
from the bottom row, Top-k decomposition: the Top-1 ratio is
surprisingly high, and the Top-1 to Top-3 determines the major
influence of HD maps on attention. These findings suggest that
attention can be selective in utilizing different layers. Further-
more, the similar composition between layer-wise and Top-k
motivates us to investigate their associations. Consequently,
we conducted an experiment whose results are presented in
Fig. 11.

Fig. 11 reveals that in typical scenarios, the ranking of layers
based on SSIM remains stable. The Top-1 to Top-3 layers
follow the same order as discussed earlier, with little variation.
The likelihood of variation increases as the importance of the
layer decreases. For instance, out-of-map consistently occupies
over 95% of the Top-1 position, while this figure decreases
to around 80% for walkway at the Top-3 position. These
high ratios indicate that the median case represents the most
common occurrence.

To comprehensively investigate the impact factors of
contribution, we present the standard deviation (std) of SSIM
concerning layer labels and Top-k in Tab.XI. Interestingly,
except for Top-3, the stds at Top-k are smaller compared
to those at labels, indicating that the substituted layers
closely match the average SSIM at their respective positions.
Furthermore, we note that the sole increase in std results from
including carpark_area in Top-3, which lowers the SSIM for
Top-4 below 0.01. These observations indicate that the model
prioritizes 3 key layers from the HD maps when constructing

TABLE XI
SORTED STD OF SSIM REGARDING LAYER AND TOP-K ON NUSCENES

validation SET UNDER 1408 × 512 RESOLUTION. UNIT: 10−2

TABLE XII
INFLUENCE OF HD MAPS SAMPLING RESOLUTION ON NUSCENES

validation SET UNDER 704 × 256 RESOLUTION

the attention, and their contributions are more influenced by
their selection order than their labels.

4) Resolution for Sampling HD Maps: Experiments were
conducted to evaluate the model at different HD map resolu-
tions. The default sampling resolution is 0.2m×0.2m per grid.
We increased the grid size to 0.4m and 0.8m and compared
the results with the baseline. Convolution strides in SME were
adjusted accordingly to maintain spatial alignment of the fea-
tures. As shown in Tab. XII, although a lower resolution results
in a performance drop, the model sampling at 0.8m resolution
still achieves an mAP of 34.0% and NDS of 41.9%, which
are 2.0% and 3.3% higher than the baseline, respectively.
These results demonstrate that the performance decrease at
lower sampling resolutions is acceptable, suggesting potential
applications with more accessible standard-definition maps.

In conclusion, the addition of the out-of-map layer
from RRB significantly influences attention. Among the
six semantic layers, the drivable_area, walkway, and
carpark_area are favored by the model, potentially due to
the absence of temporal cues. Further empirical experiments
shed light on the operational dynamics of HD maps.

V. CONCLUSION

In this paper, the absence of research on fusing HD maps
and multi-view images and the associated challenges are
discussed. Therefore, a unified framework MIM is proposed
to explore camera-map fusion. To start with, the reason why to
fuse HD maps in object detection is analyzed, consequently a
solution on how to fuse is introduced. Recognizing disparities
in view, semantics, and scale, MIM employs a baseline and
develops three modules to align HD maps and images. The
baseline transforms image features to align views, RRB and
SME enrich and encode the HD maps to align semantics,
and CRA uses attention to align scales. Extensive experiments
conducted on the nuScenes dataset demonstrate the efficacy of
MIM and its modules, and importantly, identify what to fuse
in the HD maps. An in-depth analysis reveals the operational
dynamics of HD maps in object detection. We envision that
MIM could serve as inspiration for further investigations into
HD maps-integrated 3D perception.
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