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Abstract—Recently, WAVE/DSRC has become an attrac-
tive technology for vehicular safety applications. Vehicles with
WAVE/DSRC devices can communicate with their neighboring
vehicles to exchange information to achieve collaborativesafety.
This paper proposes a new vehicle blind spot elimination system
which utilizes the on-board videos captured from other vehicles
and the host vehicle. The preceding vehicle which fully or
partially blocks the field of view of the host vehicle could be
translucentized in the video captured by the host vehicle and the
driving environment of the front vehicle could be then visually
checked by the host driver.

I. I NTRODUCTION
The statistics from NHTSA (National Highway Traffic

Safety Administration) show that, in the U.S, 31% of traffic
accidents are due to rear-end collisions. Often times, a rear-end
collision happens when a front vehicle suddenly slows down or
stops, giving the following vehicles no warning and little time
to react. Traditional passive safety systems could only reduce
injuries or casualties. On the other hand, active vehicle safety
systems could prevent the potential hazard from happening.

Active vehicle safety systems can roughly be classified
as autonomous and collaborative schemes. In autonomous
solutions, many collision warning systems [1], [2], [3], [11]
have been proposed. For instance, a vehicle can detect its
distance to another vehicle via sensors, such as laser, radar,
and camera. Then, emergency events could be prevented using
the perceived information. However, even though a vehicle is
equipped with such a system, the driver still could not respond
quickly if a preceding vehicle fully or partially blocks the
field of view of the host vehicle and suddenly slows down or
stops. As to the collaborative solutions, location information of
vehicles is periodically exchanged to prevent potential danger
in advance [9], [10]. It is difficult for the drivers to sense the
immediate danger electronically because human beings tend
to believe in what they see with their own eyes. Hence, we
believe that enhancing the visual feedback to the driver is the
key to improved safety.

In this paper, we propose a new vehicle blind spot elimi-
nation system which utilizes the on-board videos captured from
multiple vehicles to make vehicles on the road translucent.The
particular scenario involves two vehicles, one following the
other. As a result, the view of the back vehicle is often partially
blocked by the front vehicle. If both vehicles are equipped
with a front-looking camera and a V2V communication device
which allows the exchange of the video streams, it is then
possible to replace the image of the front vehicle in the video

stream of the back vehicle by what the front vehicle sees, and
thus eliminate the blind spot created by the front vehicle in
the back cameras video stream.

This data analysis and fusion paradigm is best understood
by examples, and four are shown in Fig. 1 (one per row). The
left column of Fig. 1 shows what the front vehicle sees, and the
middle column shows what the back vehicle sees. Depending
on the separation between the front and back vehicles, the view
of the back vehicle is partially blocked by the front vehicle.
In some cases, the blockage can severely limit the ability of
the driver of the back vehicle to interpret the road condition
ahead. On the right column, we show that by using our sensor
data fusion algorithm, it is possible to make the front vehicle
“translucent” in the back video frame, and hence, provide a
much better visual feedback to the driver of the back vehicle
of the road ahead.

The proposed algorithm uses image analysis to achieve
sensor data registration and fusion, anddoes not rely on any
other external sensors such as GPS and gyroscope. Further-
more, the visualization shown in the right column of Fig. 1 is
from the point of view of the host driver, not simply displaying
the videos of the front, blocking vehicle to the host driver.
Below, we will describe our algorithm in detail.

II. T ECHNICAL RATIONALE
The gist of the algorithm is to use image analysis meth-

ods to infer the relative pose between the two cameras, identify
the image location of the front vehicle in the back image frame,
and blend the front image content into the back image around
the front vehicle location. The process makes use of feature
correspondences extracted and identified in these images—that
is, objects seen by both cameras. Such feature correspondences
enable the following computations: (1) sensor registration:
ascertain the relative pose (rotation and translation) of the two
cameras, (2) vehicle localization: determine the locations of the
epipoles, or the projected location of the (front, back) camera’s
optical center in the image plane of the (back, front) camera,
and (3) data fusion: compute both a mapping equation and
the size of the mapping region where pixel values of the front
image are blended into the corresponding pixels in the back
image. These steps are discussed in more detail below.

a) Feature detection: For an object in an image,
representative points on the object can be extracted to provide
a characteristic description of the object. This description,
extracted from an image, can then be used to locate the
object in another image. To perform reliable object matching,
it is important that the features extracted from an image be



Fig. 1. Left: image seen by the front camera, center: image seen by the back camera, and right: the back image with blended-in content from the front image.

detectable in another image even with changes in image scale,
noise and illumination.

One popular feature detection and description method
is due to David Lowe. Lowe’s SIFT method [7] transforms
an image into a large collection of feature vectors, each of
which is invariant to image translation, scaling, and rotation,
partially invariant to illumination changes, and robust tolocal
geometric distortion. Key locations are defined as maxima and
minima of a difference of Gaussian (DoG) function applied
in a scale-space to a series of smoothed and re-sampled
images. Low contrast candidate points and edge response
points along an edge are discarded. Dominant orientations are
assigned to localized keypoints. These steps ensure that the
keypoints are more stable for matching and recognition. SIFT
descriptors robust to local affine distortion are then obtained by
considering pixels around a radius of the key location, blurring
and resampling of local image orientation planes. We have
used a public-domain SIFT implementation (www.vlfeat.org)
for this purpose.

b) Feature matching: SIFT scheme [7] uses a 128-
element-long feature descriptor that characterizes the gradient
pattern in a properly oriented neighborhood surrounding a
SIFT feature location in a way that is (semi-)invariant to
incidental environmental changes in lighting, viewpoint,and
scale. Note that we do not know the relative pose of the
front and back cameras as no external sensor is used. Hence,
matching SIFT feature descriptors in two images is a 2D search
based on the similarity of the descriptors only. Algorithmically,
we use a brute-forceO(n2) scheme to match features detected
in the front and back images. A potential match must satisfy
two criteria: the pairing itself must be of a high quality andit
must be much better than all other possible matings—meaning
that the match should not be ambiguous. We compute the
Euclidean distance between two SIFT feature vectors as the
matching score and require that the ratio of the matching scores
of the best pairing and the second best to be less than 0.8, a
constant suggested in [7]. The left column of Fig. 2 shows
the resulting matches for the four examples shown in Fig. 1.
Note that erroneous pairings do exist based only on feature



similarity. We will attempt to filter out these incorrect matches
using geometrical constraints discussed below.

c) RT computation: Based on the feature corre-
spondences identified in the previous step, we compute the
relative pose (R: rotation andT : direction of translation)
between the two cameras. The inference process imposes the
epipolar constraint in terms of a Fundamental Matrix relation:
p′Fp = 0, whereF is the Fundamental Matrix [5]. As shown
in Fig. 3,P represents the 3D feature location whilep andp′

the projected 2D feature locations in two images (orp andp′

form a corresponding pair).O andO′ denote the optical centers
of the two cameras, andΠ andΠ′ are the image planes.

Geometrically, it is easy to see that pointsO,O′, p, p′

andP all lie on the same plane (the epipolar plane). Hence,

O′p′ · (O′O ×Op) = 0. (1)

Denote the camera’s intrinsic matrix [5] asK andK ′ for the
two cameras; we can convertp andp′ from pixel coordinates
to real-world coordinates asK−1p andK ′−1p′. If we denote
the movement of the camera between the two frames asR and
T , then quite obviouslyO′O = T and Op expressed in the
primed frame is then

Op = RK−1p+ T. (2)

(K ′−1p′)T (T × (RK−1p+ T )) = 0
p′TK ′−T (T ×RK−1p) = 0
p′T (K ′−TT ×RK−1)p = 0

p′TFp = 0

(3)

Each corresponding feature pair identified in step 2 above
then provide one constraint onF . With enough such feature
correspondences, we can solve forF , and henceT and
R. The process can be based on either the Calibrated Five
Point Algorithm of Nister [8] or the Normalized Eight Point
Algorithm of Hartley [6].

While the names of the inference algorithms refer to
the minimum numbers of pairs of matched image features in
two views that are needed for deducing the camera’s motion
parameters, in reality, we can often match significantly more
features than just five or eight. Furthermore, matching results
are necessarily imprecise due to noise and image quantization,
and catastrophic failure in erroneous pairing assignmentsdoes
happen occasionally as shown in Fig. 2. To improve the
robustness in camera motion inference, we use a nonlinear
selection and filtering strategy called RANSAC [4] to better
condition the feature matching process by imposing the epipo-
lar constraints.

The essence of the RANSAC selection process is to
repeatedly apply 5-point or 8-point computation to a small
subsets of randomly selected “seed” correspondences, in hope
that at least one set of seed correspondences were not corrupted
by bad, outlier correspondences. Such outlier-free seeds will
lead to anF that produces small residual errors in|p′Fp| for
most inlier correspondences. Hence, outlier correspondences
are identified and filtered out as those with unreasonably large
residual errors. The best seed selection corresponds to theone
that produces the minimum median|p′Fp| residual error. One
final run of the 5-point/8-point algorithm is then performed
using all inlier correspondences in a least-squared sense.

d) Estimation of the positions of the epipoles:
Geometrically speaking,Fp represents the epipolar linel′ in
the primed frame [5] orl′ = Fp because the linear epipolar
relation p′Fp = 0 implies that p′ lies on Fp. As shown
in Fig. 3, all such epipolar lines pass through the epipole
e′ in the primed frame, and hence,e′TFp = (e′TF )p = 0
for all p. Hence, e′ must be the left null vector of the
Fundamental matrixF . Similarly, one can show thatl = FT p′

or eTFT p′ = p′TFe = p′T (Fe) = 0 for all p′. e is therefore
the right null vector of the Fundamental Matrix. We can solve
for e ande′ using the standard Singular Value Decomposition
(SVD) of F [5].

The results of steps c and d above are shown in the
right columns of Fig. 2 with the estimated epipole positions
marked in red. As can be seen that the epipole positions look
reasonable (inside the image of the front vehicle) and many
erroneous feature pairings from step b were filtered out.

e) Estimation of the sensor data fusion parameters:
This step estimates both the geometric configuration and
functional form necessary for achieving sensor data fusion.
Firstly, we need to know three pieces of information relatedto
the geometric configuration, namely, the location, size, and
shape of the fusion region. There are at least two distinct
mechanisms to determine this region in the back camera’s
frame. One possibility is that some vehicle detection algorithm
is used to locate the front vehicle in the back image. The
fusion region can then be the region identified by the vehicle
localization algorithm, with the goal of replacing pixels inside
the vehicular region by the corresponding pixels seen in the
front image.

In the absence of such a solution, some educated guess
of the fusion region must be made. Intuitively speaking, the
epipole in the back image gives the position of the front
camera’s optical center. This location, if inferred correctly,
must be inside the front vehicle. Hence, barring evidence
saying otherwise, a reasonable choice is to center the fusion
region around the epipole. A circular shape is often assumed
to avoid introducing color blending artifacts. The size (or
radius) of the blending region is chosen based on the size
of the regions surrounding the epipoles that are devoid of
matched features (often implying that the two cameras are
seeing different objects, and hence, no matched feature pairs
can be identified).

Secondly, once the fusion region in the back frame is
identified, we need to compute a functional form,p′ = f(p),
to map pixels from the front image to the back one. While
such a relation in general can be highly nonlinear and be
different for different image neighborhoods, we feel that it is
not technically feasible to derive an accurate relation given
the stringent time constraint (be able to present the fused
images in real time to the driver) and a limited amount of
data. Nor is such an accurate mapping relation necessary, as
our experiments showed that we can roughly approximate the
mapping relation in a global, linear form in polar coordinates
to achieve visually appealing color fusion results (Fig. 1).

Refer to Fig 4(a), the front-and-back epipolar geometry
dictates that the epipoles form a matching pair and serve natu-
rally as the blending centers. This is because the optical axes of
the two cameras are perfectly aligned regardless of the depth of
the 3D object viewed at the epipole location. Furthermore, the
epipolar geometry is most conveniently described in a polar
system centered around the epipoles, as shown in Fig. 4(a).



Fig. 5. Different blending effects by varying blending transparency and shape parameters.

Therefore, we model the pixel mapping relation as a global,
linear relation in polar coordinates centered at the epipoles, or
we try to infer two linear equations,(p′ − e′) = R(p− e) and
(p′−e′) = A(p−e)—one for polar radialR and the other for
polar angleA, that map a pointp in the front image to a point
p′ in the back image. That is, we translate the origin of each
image plane into its respective epipole and then convert the
Cartesian coordinates(p− e) into the polar coordinate(ρ, θ).
Using the corresponding features (obtained from steps a to d)
in the front and back images, we perform a best linear fit to
deriveR andA. Again, while such a global, linear fit cannot
account for local depth variation, it works well for performing
global color blending.

f) Color blending: The final step is to modify the
colors of the pixels in the back image which depict the front
vehicle with the corresponding pixels seen by the front camera.

The blending process is applied to a circle (or a box)
of confusion centered at the epipole in the back image. The
radius of the circle or the size of the box is estimated as a
percentage of the region around the epipole in the back image
that is devoid of feature correspondences or is the size of the
vehicular region reported by a vehicle localization algorithm.
The blending mixture is controlled by a transparency parameter
that makes the front vehicle more or less apparent inside the
region of confusion. The effect of these two parameters (shape
and transparency) combined is best illustrated in Fig. 5. Ascan
be seen that with increased transparency (from left to right),
the vehicle becomes less visible. Comparing the results on
the same column (with the same transparency parameter), the
rectangular box hides the vehicle better along the vehicle’s
boundary.

III. E XPERIMENTAL RESULTS
We have equipped two minvans with forward-looking

cameras. A video capturing system was also installed that
allowed the on-board video to be captured and stored for later
analysis. The two vehicles were driven in a front-and-back
following configuration on many different roads (inside the
ITRI campus and on major highways in Taiwan). We then
applied the proposed algorithm for feature analysis, camera
pose calibration, and color blending. Sample results are shown

in Figs. 1, 2, and 6.

IV. CONCLUDING REMARKS
In this paper, we introduce a computer-vision and

augmented-reality based algorithm to eliminate blind spots in
on-board videos.
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Fig. 2. Left: feature correspondences for the four examplesin Fig. 1 from
similarity matching. Right: feature correspondences for the four examples from
similarity matching and epipolar pruning.

Fig. 3. A typical stereo configuration.

(a) (b)

Fig. 4. A front-and-back stereo configuration.



Fig. 6. Left: image seen by the front camera, center: image seen by the back camera, and right: the back image with blended-in content from the front image.


