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Abstract— the goal of the project is to design intelligent and 
robust image-processing and augmented-reality algorithms for 
driver assistance and enhanced vehicular safety. In particular, 
the focuses were two-fold: (1) realizing the abilities to identify 
and localize in a vehicle's on-board video the sweeping 
windshield wipers during raining days and (2) designing and 
implementing an in-painting technique to remove the image of 
the windshield wipers and replace it with the corresponding 
pixels (not blocked by the wipers) from an adjacent frame.  

I. I. INTRODUCTION 

 Advances in video technology have enabled its wide 
adoption by the auto industry. For examples, many vehicles 
today are equipped with backup and side-looking cameras that 
allow the driver to easily monitor the traffic around the vehicle 
for enhanced safety. V-to-V communication (either directly or 
through relay stations strategically positioned along highways 
and road junctions) facilitates the exchange and sharing of 
video information among multiple vehicles for better 
cognizance of the surrounding road conditions, hazardous 
incidents, and traffic accidents.  

In such V-to-V communication, a vehicle's onboard 
video can be processed automatically, say, to remove 

undesirable motion blur and pixel blockage before 
retransmission to others for heightened situation awareness and 
driver assistance. This research is centered on such a video 
refinement scheme, namely in detecting and localizing wiper 
pixels and replacing them with the corresponding unblocked 
pixels from an adjacent non-wiper frame in the onboard video 
to improve the visual feedback to the drivers. We address two 
problems here: that of wiper detection and localization and, 
once the presence of a wiper is identified, to mask off the wiper 
pixels with suitable unblocked, non-wiper pixels from an 
adjacent video frame for enhanced viewing.   
 This process is best illustrated by an example. As 
shown in Figure 1, during the raining days, many video frames 
may have the wiper presence that blocks out the road and 
vehicles on the road (Figure 1 left column). If we can detect and 
localize the wiper pixels in such a wiper frame (Figure 1 middle 
column) and find a suitable adjacent video frame without the 
wiper presence, we can then replace those wiper pixels in the 
wiper frame with the corresponding pixels in the adjacent non-
wiper frame (Figure 1 right column) to enhance the viewing 
feedback to other drivers through V-to-V communication.  
 
  

Figure 1(a) a video frame with the wiper presence, (b) the wiper frame with the wiper detected and localized automatically 
by our computer program (wiper pixels are marked in red), and (c) wiper pixels in the wiper frame are replaced by the 
corresponding pixels in the adjacent non-wiper frame to provide better viewing of the surrounding. 

 

 

 



Note that while in-painted regions in a wiper frame may not 
faithfully depict objects on the road at that particular time 
instance - as the in-painted pixels are extrapolated from an 
adjacent, non-wiper frame - the improved visual feedback to the 
driver is useful as wiper blockage can  be significant as shown 
in Figure 1. Furthermore, as will be shown later, a wiper frame 
and the adjacent non-wiper frame used for masking the wiper 
pixels are separated by tens of milliseconds at most. Hence, the 
changes of road conditions are often negligible in such cases. 
We believe that such a wiper-masking system can be of great 
assistance to the driver in improving visualization and situation 
awareness. 
 In this paper, we describe our technical formulation 
and present some preliminary experimental results to validate 
the approach. We are currently implementing the algorithm on 
an on-board DSP, and the timing and performance results will 
be described in an ensuing paper.  

II. TECHNICAL RATIONALE 

 As mentioned before, the wiper elimination algorithm 
comprises two steps: (1) wiper classification and localization, 
and (2) wiper pixel masking and in-painting. We describe these 
two steps below: 
 
A. Wiper Classification and Localization  

We surmise that there are at least two possible 
approaches to the wiper localization and tracking problem: top-
down, model-guided and bottom-up, image-directed. A top-
down approach creates a graphic model of the wiper, and the 
model is then animated to match the sweeping motion of the 
real wiper. One advantage of a model-guided formulation is that 
well-established tracking frameworks, such as the Kalman 
Filter and the Particle Filter [1,2], are readily applicable. That 
is, essential model parameters (shape, pose, etc.) can be 
extracted from the graphic wiper model to form a state-space 
representation.  The said representation can then be evolved 
over time using the standard "initialization-prediction-
observation-correction" processing cycle of a Kalman or 
Particle Filter to track the movement of the wiper in a vehicle's 
onboard video.  
  

While such a top-down, model-guided approach 
appears conceptually sound, the execution of such a scheme in 
real videos presents many challenges. To name a few:  

(1) While a simple abstraction of a wiper is a narrow, 
highly elongated, and maybe slightly curved rectangle, its shape 
is actually much more complicated. The standard wiper blades 
have a "coat-hanger" shape at rest, but the shape can deform 
drastically at various stages of the sweeping actions as 
illustrated in Figure 2. To accurately model such a large degree 
of deformation, sophisticated and elaborate graphic models are 
needed to capture the dynamic shape change. As more 
variances of the conventional wiper design are introduced, new 
graphic models are needed to describe them. Hence, an 
anatomical model may be particular to the wipers of a specific 
make and model, making model generalization an expensive 
and manual process. 

(2) Conventional wipers have a small, fixed number of 
sweeping speeds (usually low, median and high). With the 
newer intermittent and the rain-sensing wipers, the sweeping 
speed can assume a wide, continuous range to complicate the 
computer analysis. Furthermore, a wiper's sweeping action and 
the camera's shutter are not synchronized in any way. Our 
observation is that even with the wiper in a low-speed setting; 
its movement across the windshield is too fast to easily defeat 
automated tracking. In Figure 3, we show some typical 
sequences of an activated wiper with the speed at a low setting. 
The sampling rate is 30 frames per second. What we observe is 
that (a) a wiper does not stay visible for more than three or four 
consecutive frames, (b) the wiper can often travel over half an 
image length or more and (c) the shape of the wiper can change 
drastically from one frame to the next  (over 1/30th second). In 
fact, we know of no tracking algorithm that can reliably track 
movements over such a large distance and exhibiting such a 
large deformation, without the guidance of a highly accurate 
domain model. 

Therefore, we have decided to abandon the top-down, 
model-based formulation in favor of a bottom-up, image-
directed one. We believe that such an image-based approach 
enjoys a number of advantages over a model-based one in that 

     

     

     
Figure 2 Upper-left corner: a standard "coat-hanger" wiper, and the rest: different ways a standard wiper can appear in an 

onboard video (the pictures were taken against a uniform background for clarity). 



 it is much simpler to formulate, readily generalized to wipers 
of all makes and models, and with a potential for fully 
automated deployment. 

The main idea is to exploit the principal component 
analysis [3]. The approach was motivated by the various 
"eigen"-representations made popular in computer vision (e.g., 
eigen-faces [4]). As the camera is rigidly affixed to the rear-
view mirror and the relative position of the camera and the 
windshield does not change, ideally a wiper should have a 
consistent appearance when imaged at the same location on the 
windshield. If we were to observe the wiper at many possible 
locations on the windshield (using training images or training 
videos), it is then possible to detect the presence of and localize 
the wiper in other videos by a similarity search. 
 To translate the above observation into an efficient and 
robust classification scheme, we need to pay attention to the 
following implementation issues: 
 Efficiency: A brute-force method may compare a test 
image with each and every wiper image in the training set. This 
will then limit the number of training images that can be used. 
Wiper comparison can be done much more efficiently by 
organizing the training wiper images effectively to eliminate 
redundancy. Hence, we construct an "eigen"-wiper space to 
represent all wipers in the training images. The representation 
is advantageous in that (1) we do not use images at the full 
native resolution. For the relatively uncomplicated geometrical 
shape that a wiper assumes, down-sampling reduces the pixel 
count at no material loss on the recognition accuracy, and (2) 
the training wiper images are vectorized and collectively 
represented by a set of orthogonal basis vectors (or "eigen" 
wipers). While the full dimensionality of a vectorized wiper 
image is the number of pixels - a very large number even with 
down-sampling, together all these vectorized wipers occupy 
only a small subspace in this large vector space. Hence, instead 
of comparing pixel values, we compare the wipers' projection 

coefficients in the vector subspace using a greatly reduced 
effort.  
 Robustness: As the camera shutter and the movement 
of a wiper are not synchronized, the wiper does not appear in 
just a small number of "canonical" positions on the windshield. 
To observe all possible wiper appearance will require a very 
large number of training images. We institute two mechanisms 
to extrapolate from the observed wiper locations to likely wiper 
locations not observed in the training images: (1) a short-range 
extrapolation: this is accomplished by smoothing the training 
wiper images and thus enlarging the "footprint" of a wiper to 
better predict the wiper presence in close-by locales, and (2) a 
long-range prediction: using a rigid-body transformation, a 
wiper image is aligned with its most similar counterpart in the 
training set. The alignment facilitates the prediction to the 
likeliness of two wipers brought together artificially. 
 In more detail, the wiper classification algorithm 
comprises three phases: training, validation, and deployment. 
The training phase is for constructing the eigen wiper space 
using a set of training images containing a wiper. The validation 
phase uses two types of labeled images: positive ones with 
wiper presence and negative ones without. The goal is to learn 
the best system dichotomy parameters for classifying unseen 
images into the wiper and non-wiper classes. The deployment 
phase uses such a classification system in real-world scenarios.  
 Due to the page limit, we will not describe our wiper 
segmentation algorithm in detail. Suffice it to say that a wiper 
has a distinct color signature (much darker than the 
surroundings). We use a K-mean clustering algorithm to 
separate images into a small number of clusters and identify a 
cluster with a sufficiently large footprint and a dark signature 
as a potential wiper region (sample segmentation results are 
shown in the left columns of Figure 4). Note that we do not use 
the shape characteristics in this initial segmentation stage. This 
is because, as shown in Figure 2, the wiper shape can change 

Figure 3 Each row represents one continuous, yet ephemeral, presence of the wiper in the onboard video. 



drastically and we use our eigen-wiper scheme to capture such 
shape variation.  
 Training: The training phase comprises the following 
major processing steps: 
(1) A wiper localization program (based on K-mean clustering) 
is first applied for localizing the wiper regions in an image.  
(2) The resulting image is then converted into a binary mask 
with a pixel value of 1 representing wiper pixels and 0 
representing non-wiper pixels. This binary conversion is 
essential as wiper pixels can assume varying color and intensity 
values in different images. Furthermore, the non-wiper, or 
background, pixels can depict all kinds of scene objects. For the 
eigen-representation to be representative and repeatable, such 
random variation need be eliminated.   
(3) Wiper images are then convolved with a Gaussian kernel to 
smooth out and enlarge the footprint of the wiper region.  This 
step is used to resolve small misalignment of wipers and is 
particularly useful when the footprint of the wiper is small, and 
hence, even a slight misalignment can be problematic.  
(4) The resulting images were then down-sampled to reduce the 
pixel count (from 720 by 480 to 90 by 60 in our setup).  
(5) The down-sampled images are vectorized by performing a 
linear, sequential scan of all pixels (a vector of 5,400 long).  
(6) The mean wiper vector is computed as the average of all 
vectorized training wipers and the mean is subtracted from all 
wiper vectors. 
(7) All such vectorized training images are then collected, 
column-wise, into an observation matrix O. An optional size 
parameter can be used in this step to eliminate training images 
where the size of the wiper region is too small.  
(8) The singular value decomposition of the observation matrix 
is performed, or O = UDVT.  The columns of U represent eigen 
wipers, the diagonal matrix D records the significance (or 
importance) of each eigen wiper in a non-increasing order, and 
the matrix V records the projection coefficients (coordinates) of 
the training images in the eigen wiper space.  
(9) An optional accuracy parameter can be used to eliminate 
eigen wipers whose singular values in the D matrix is smaller 
than a certain threshold.  
 Validation: The validation phase comprises the 
following major processing steps using labeled wiper images, 
both positive and negative ones. For each test images, two 
matching scores are computed; the first matching score is used 
to select the closest neighbor in the set of training images and 
is based on the separation of a test image and training images 
in the eigen wiper space. After the closest neighbor, or the best 
match, of a test image is found, we attempt to align the test 
image and its best match before we compute a second matching 
score, based on the amount of pixel overlap in the image plane. 
The second matching scores of all labeled positive and negative 
images are then used to determine the optimal dichotomy 
threshold. The major validation steps are summarized below: 
(1) Steps 1-6 above are applied to each test image.  
(2) The vectorized test image (I) is projected onto the eigen 
wiper space with the projection coefficient as IT U. 
(3) The likeliness or similarity of I to each training image can 
be computed two ways: either as the inner product (similarity 

in angle alignment) or as the Euclidean distance (similarity in 
position alignment). More specifically, if n vectorized training 
images are used and each one is represented as a vector of 
dimension p, then U is a matrix of dimension p by n, D is n by 
n, V is n by n, and IT U 1 by n. DVT, an n by n matrix, records 
the coordinates of the training images in the eigen space in the 
columns. 
Angle alignment is computed as {IT U}{DVT }. The quantity 
{IT U}{DVT} is a 1 by n vector and records the inner product 
of I with all n training images. We use the notation {.} to denote 
the "normalized" vector or matrix quantities. A normalized 
vector is a vector of norm 1, and a normalized matrix is one 
where each column is of norm 1. Position alignment is 
computed this way: we create an n by n matrix R by duplicating 
the n by 1 vector {IT U}T n times column-wise.  As {IT U}T  and 
DVT  record the projection coordinates  of the test and training 
images, respectively, in the eigen space,  the Euclidean 
distances between I and all training images are then the 
diagonal of the  following matrix ((R-DV T) T (R-DV T)). 
(4) The training image assumes the best matching score (either 
the largest inner product or the smallest Euclidean distance) 
with a test image is chosen as the most probable wiper 
placement in the test image.  
(5) An alignment operation is then performed to align the wiper 
region in the test image with that in the best-match training 
image. A rigid-body transformation is applied to translate the 
wiper region so that the centroids of the two wiper regions in 
the testing image and the best-match training image coincide. 
The wiper region in the test image is further rotated so that the 
principal axes line up with those of the wiper region in the best-
match training image. 
(6) The second matching score is computed as the ratio of the 
pixel counts of the overlapped region between the aligned test 
wiper and its best-match counterpart over the average pixel 
counts of the two wipers.  
(7) Two histograms of the matching scores, one for the positive 
samples and the other for the negative samples, are studied to 
determine a threshold for wiper/non-wiper classification. This 
step selects the valley between the two histograms as the 
threshold by minimizing the misclassification error.  
 Deployment: The deployment phase comprises the 
following major processing steps: 
(1) Steps 1-6 in the validation phase are applied.   
(2) An image is classified as either a wiper image or a non-
wiper image based on the threshold determined in the validation 
step.  
 
B. Wiper Pixel Masking and In-painting  

Once the presence of a wiper is identified in an image, 
we would like to replace (or mask off) those wiper pixels with 
the corresponding non-wiper pixels from an adjacent non-wiper 
frame. This is a process called in-painting.  
 To replace blocked, wiper pixels in a wiper image with 
some unblocked, non-wiper pixels in an adjacent non-wiper 
image requires the determination of a pixel transfer function 
that maps pixels from one image to the other. Basically, the 



transfer function describes the physical pixel movement (or a 
2D flow field) in between these frames.  
 Computing the image flow field is a thoroughly 
studied area in computer vision [5]. However, to characterize a 
2D flow field resulting from the time recording of a general 3D 
scene with multiple, independently-moving 3D objects 
(vehicles and pedestrians) can be very challenging indeed. 
However, we have found that an elaborate analysis is not 
needed. Instead, we have developed a highly efficient and 
accurate global pixel transform model to use in in-painting. 
Characterizing the pixel flow field by a global motion pattern 
allows us to use a small number of corresponding unblocked 
pixels identified in a wiper and an adjacent non-wiper image to 
ascertain the transformation equation, and apply such a global 
transform to fill in the wiper pixels in a wiper frame using the 
corresponding non-wiper pixels in an adjacent non-wiper 
image. This formulation by-passes the task of finding the right 
pixels to replace the wiper pixels by a direct color comparison, 
which is not possible when a wiper pixel has a different color 
signature from its counterpart in an adjacent non-wiper image. 
 If we assume that the collective footprint of 
independently-moving objects (vehicles and pedestrians on the 
road) is small comparing to that of the stationary background, 
the dominant pixel flow - induced by the vehicle's ego-motion 
- is of the pixels on the background. If the background pixels 
are sufficiently far away, such a flow field can be characterized 
mathematically by a homography, or an even simpler affine 
transformation.  
 Furthermore, most of the time a vehicle's heading 
should change negligibly in between two adjacent video 
frames  separated by 1/30-th second. So the optical axes of the 
two neighboring camera shots should align reasonably well. In 
that case, the pixel movement in-between is well approximated 
by a zoom. Using a reasonable assumption that the camera's 
optical axis goes through the center of the image plane (Cx, Cy), 
then the pixel coordinates in the two adjacent frames should be 
related by  


ݔߙ 0 ሺ1 െ ݔܥሻݔߙ
0 ݕߙ ൫1 െ ݕܥ൯ݕߙ
0 0 1

 

where 's are the unknown zoom factors. A small number of 
feature correspondences in the two frames (one wiper and the 
other non-wiper) then can be used to solve for x and y (in 
fact, as a first order approximation, x and y should be the 
same). Note that this is an affine transform with a special form 
of only 4 DOFs (x, y, Cx, and Cy) instead of a general affine 
with 6 DOFs.   

Certainly, the image features used in solving these 
parameters may come from independently moving objects in 
the scene. We use the standard RANSAC algorithm [5] to rid 
the computation of such outliers. That is, we randomly select 
enough feature correspondences in the wiper and adjacent non-
wiper frames to compute (x, y, Cx, and Cy) and observe how 
well the computed parameters can explain the feature 
correspondences of other features. This process is repeated a 

number of times, and the best zoom parameters from these trials 
are used.  
 We smooth over the color difference between a wiper 
image and its non-wiper neighbor by interpolation. The process 
is quite straightforward: We first copy over the wiper image to 
the output (blended) image. We then replace the wiper pixels in 
the output with the corresponding pixels in the non-wiper 
neighbor using the estimated pixel zoom model. For a pixel in 
the output that is not in the wiper region, we compute its 
distance to the nearest wiper pixel (i.e., a distance transform). 
For non-wiper pixels in the output that are within a certain 
blending distance to the wiper region, we smoothly interpolate 
the colors of the original wiper image with its corresponding 
non-wiper neighbor (again, based on the zoom pixel motion 
model). This simple scheme hides the color difference between 
the two images (a wiper image and its non-wiper neighbor) 
pretty well.  

 III.  EXPERIMENTAL RESULTS 

 We have used two data sets, both 720 by 480, for 
training and validation: a black wiper on gray background 
(BW) and a red wiper on blue background (RW). Each data set 
contained three video sequences with wiper speed set at fast, 
median, and slow. Some sample training images were shown in 
Figure 2. We had also available five videos taken in real-world 
driving scenarios for testing real-world deployment.  
 Individual image frames were extracted from these 
videos using public-domain programs (ffmpeg and virtualdub). 
For BW, 517 sample wiper frames from among the first 3,000 
frames in the fast sequence were manually selected for training. 
The K-mean segmentation results of 21 out of the 517 selected 
frames were visually poor, and hence, these 21 frames were 
excluded from the process of building the eigen wipers. This 
corresponds to a failure rate of 4%.The same procedure was 
used for the RW data set and 425 wiper frames were extracted 
from the fast sequence. Of these 425 frames, 74 had bad 
segmentation results by a visual inspection, or a 17% failure 
rate. 
 In building the eigen space, we have used an area 
threshold of 10%, i.e., the detected wiper region must contain 
at least 10% of the image pixels. Furthermore, we have used an 
accuracy threshold of 1%, or the singular value of a eigen wiper 
must be at least 1% of the average of the top 3 singular values 
to be deemed significant and used for model building. For the 
BW data set, 465 out of 517 images survived the area 
thresholding and 330 of the 465 remained were deemed 
significant and used for building the eigen space. For the RW 
data set, 344 out of 425 images survived the area thresholding 
and 297 of the 344 remained were used for building the eigen 
space 
 In the validation stage, we manually selected from all 
three BW sequences both positive and negative samples (for the 
fast sequence, we made sure that the test images were from 
frames 3,001 onward with no overlap with the training images). 
For RW sequence, as the training set exhausted all wiper 
images from the fast sequence, we used only the median and 



slow sequences for validation. We have used the Euclidean 
distance in our computation. 
 Some preliminary results are summarized in the 
following tables. Table 1 shows the histograms of the second 
matching score of the three video sequences in the BW data set. 
Histograms of the second matching scores of both the labeled 
wiper images (red) and labeled non-wiper images (blue) are 
shown. The best threshold to separate the wiper from the non-
wiper images are listed below the plots. In Table 1, we 
summarize the misclassification rates of the three sequences for 
wiper images, non-wiper images, and their averages. The 
corresponding results of the RW data set are shown in Table 2. 
The results show excellent separation of wiper and non-wiper 
classes using our eigen representation. 
 The processing flow of in-painting is to first classify a 
video frame as either a wiper or a non-wiper frame. For a wiper 
frame, we search for the closest non-wiper frame either before 
or after in the onboard video (as shown in Figure 3, such a 
neighboring non-wiper frame is always found within a few 
frames away). We detect and match SIFT features in these two 
frames to identify a number of feature correspondences (i.e., 2D 
points resulting from the projection of the same 3D point). We 
then solve the zoom pixel-flow equation using these 
correspondences. Applying the pixel mapping equation thus 
obtained, we can map unblocked pixels from the non-wiper 
frame to replace the corresponding wiper pixels in the wiper 
frame.  
 Figure 4 presents a few examples where the left 
figures show localized wiper region in red (with the 
corresponding pixels used in computing the zoom model 
marked in some of these examples). The right figures show the 
in-painting results (with pixels in the red wiper region replaced 
by the corresponding unblocked pixels in the adjacent non-
wiper frame).   
 It is important to note that the program can choose a 
non-wiper frame either before or after the wiper frame for in-
painting. Ideally, the neighboring in-painting photo should be 
BEFORE the wiper photo in the video to avoid seeing red 
blocks around the image periphery. Refer to Figure 5, if the in-
painting neighbor is AFTER the wiper image, the vehicle would 
have moved forward. Hence, the field of view (FoV) of the 
neighboring in-painting frame is smaller than that of the wiper 
frame. Therefore, wiper pixels around the periphery of the 
wiper frames have no counterpart in the neighboring in-painting 
frame and cannot be replaced. This behavior is mathematically 
correct and unavoidable. However, as the red pixels are around 
the frame boundaries as shown in Figure 5, the visual 
distraction is hopefully small. 

 IV. CONCLUDING REMARKS 

 As can be seen from the experimental results, one 
major deficiency of our current implementation is in wiper 
extraction. If a wiper is not completely and cleanly extracted 
from a wiper frame, darkened pixels around the wiper's 
periphery remained in the blended images and were quite 
noticeable. Improving wiper segmentation is therefore a topic 
to work on in the future. 

 
Table 1 BW training set results, wiper images in red and non-

wiper images in blue and the second table shows the 
misclassification rate 

 
Threshold: 0.6 Threshold: 0.3 Threshold: 0.6 
Fast Median Slow 

 
 

Validation data 
set 

Fast Median  Slow 

Size 127 
wipers, 70 
non-wipers 

167 wipers, 
57 non-
wipers 

145 
wipers, 53 
non-wipers 

Labeled wiper 
images 

0% 0% 0% 

Labeled non-
wiper images 

0% 7% 4% 

Average 
misclassification 

rate 

0% 2% 1% 

  
 

Table 2 RW training set results, wiper images in red and non-
wiper images in blue, the second table shows the 

misclassification rate 

Threshold: 0.5 Threshold: 0.6 
median slow 

 
Validation data 

set 
Median  Slow 

Size 64 wipers, 201 
non-wipers 

97 wipers, 19 
non-wipers 

Labeled wiper 
images 

2% 0% 

Labeled non-
wiper images 

0% 4% 

Average 
misclassification 

rate 

1% 0% 

 



Figure 4 Sample results of wiper region detection and 
localization (left) and in-painting (right) 

 
Figure 5 Cause of red border in in-painting images 
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