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Abstract. Recognizing instances at different scales simultaneously is a
fundamental challenge in visual detection problems. While spatial multi-
scale modeling has been well studied in object detection, how to effec-
tively apply a multi-scale architecture to temporal models for activity
detection is still under-explored. In this paper, we identify three unique
challenges that need to be specifically handled for temporal activity de-
tection compared to its spatial counterpart. To address all these issues,
we propose Dynamic Temporal Pyramid Network (DTPN), a new activ-
ity detection framework with a multi-scale pyramidal architecture featur-
ing three novel designs: (1) We sample input video frames dynamically
with varying frame per seconds (FPS) to construct a natural pyramidal
input for video of an arbitrary length. (2) We design a two-branch multi-
scale temporal feature hierarchy to deal with the inherent temporal scale
variation of activity instances. (3) We further exploit the temporal con-
text of activities by appropriately fusing multi-scale feature maps, and
demonstrate that both local and global temporal contexts are impor-
tant. By combining all these components into a uniform network, we end
up with a single-shot activity detector involving single-pass inferencing
and end-to-end training. Extensive experiments show that the proposed
DTPN achieves state-of-the-art performance on the challenging Actvi-
tyNet dataset.

1 Introduction

Temporal activity detection has drawn increasing interests in both academic and
industry communities due to its vast potential applications in security surveil-
lance, behavior analytics, videography and so on. Different from activity recog-
nition, which only aims at classifying the categories of manually trimmed video
clips, activity detection is localizing and recognizing activity instances from long,
untrimmed video streams. This makes the task substantially more interesting
and challenging. With recent advances in deep learning, there has been fruit-
ful progress in video analysis. While the performance of activity recognition has
improved a lot [1–5], the detection performance still remains unsatisfactory [6–9].
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One major obstacle that people are facing in temporal activity detection, is
how to effectively model activities with various temporal length and frequency.
Especially, the challenge of localizing precise temporal boundaries among activ-
ities of varying scales has been demonstrated as one major factor behind the
difference in performance [7]. Luckily, the problem of scale variation is not new
in computer vision researches, as it has been well studied in object detection
in images [10]. In order to alleviate the problems arising from scale variation
and successfully detect objects at multiple scales, extensive analysis has been
conducted in recent years. Multi-scale pyramidal architecture has been widely
adopted and become a general structure in many state-of-the-art object detec-
tion frameworks [11, 12].

How to effectively model the temporal structure for activity detection using
a multi-scale pyramidal network then? To answer this question, we first identify
three unique problems that need to be specifically handled for temporal activity
detection: (1) The duration of the input video is arbitrary (usually ranges from
few seconds to few minutes). A naive subsampling method (resize the video) or
sliding window (crop the video) will fail to fully exploit the temporal relations.
(2) The temporal extent of activities varies dramatically compared to the size
of objects in an image, posing a challenge to deal with large instance scale
variation. (3) The spatial context of a bounding box is important to correctly
classify and localize an object, and the temporal context is arguably more so
than the spatial context. Thus, cross-scale analysis becomes much more crucial in
temporal domain. In this work, we propose a multi-scale pyramidal deep-learning
architecture with three novel elements designed to solve the above problems
accordingly.

1. How to effectively extract a feature representation for input video
of arbitrary length? A common practice in most existing works [13, 9, 7]
is to use a high-quality video classification network for extracting a feature
representation from raw frame sequence. However, when dealing with input
video of arbitrary length, they only decode the video at a fixed FPS and
extract features with a single resolution. To fully exploit temporal relations
at multiple scales and effectively construct a feature representation, we pro-
pose to use dynamic sampling to decode the video at varying frame rates
and construct a pyramidal feature representation. Thus, we are able to parse
an input video of arbitrary length into a fixed-size feature pyramid without
losing short-range and long-range temporal structures. Nevertheless, our ex-
traction method is very general and can be applied to any framework and
compatible with a wide range of network architectures.

2. How to build better temporal modeling architectures for activity
detection? In dealing with the large instance scale variation, we draw in-
spirations from SSD [11] to build a multi-scale feature hierarchy allowing
predictions at different scales by appropriately assigning default spans. This
multi-scale architecture enforces the alignment between the temporal scope
of the feature and the duration of the default span. Besides, we also draw in-
spirations from Faster-RCNN [14] to use separate features for classification
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and localization since features for localization should be sensitive to pose
variation while those for classification should not. We propose a new archi-
tecture to leverage the efficiency and accuracy from both frameworks while
still maintaining a single shot design. In our work, we use separate tem-
poral convolution and temporal pooling branches with matched temporal
dimension at each scale, and use a late fusion scheme for final prediction.

3. How to utilize local and global temporal contexts? We claim both
local temporal context (i.e., moments immediately preceding and following
an activity) and global temporal context (i.e., what happens during the
whole video duration) are crucial. We propose to explicitly encode local
and global temporal contexts by fusing features at appropriate scales in the
feature hierarchy.

Our contributions are: (1) We take a closer look at multi-scale modeling for
temporal activity detection and identify three unique challenges compared to its
spatial counterpart. (2) To address all these issues in a single network, we intro-
duce the Dynamic Temporal Pyramid Network (DTPN), which is a single shot
activity detector featuring a novel multi-scale pyramidal architecture design. (3)
Our DTPN achieves state-of-the-art performance on temporal activity detection
task on ActivityNet benchmark [15].

2 Related Work

Here, we review relevant works in activity recognition, multi-scale pyramidal
modeling, and temporal activity detection. Note that besides temporal activity
detection, there also exists a large body of work on spatial-temporal activity
detection which is beyond the scope of this paper.
Activity Recognition. Activity recognition is an important research topic and
has been extensively studied for a long time. In the past few years, tremendous
progress has been made due to the introduction of large datasets [15, 16] and the
developments on deep neural networks [1–5]. Two-stream network [3] learned
both spatial and temporal features by operating 2D ConvNet on single frames
and stacked optical flows. C3D [1] used Conv3D filters to capture both spatial
and temporal information directly from raw video frames. More recently, im-
provements on top of the C3D architecture [2, 4, 5] as well as advanced temporal
building blocks such as non-local modules [17] were proposed to further boost
the performance. However, the assumption of well-trimmed videos limits the ap-
plication of these approaches in real scenarios, where the videos are usually long
and untrimmed. Although they do not consider the difficult task of localizing
activity instances, these methods are widely used as the backbone network for
the detection task.
Multi-scale Pyramidal Modeling. Recognizing objects at vastly different
scales is a fundamental challenge in computer vision. To alleviate the problems
arising from scale variation, multi-scale pyramidal modeling forms the basis of
a standard solution [18] and has been extensively studied in the spatial domain.
For example, independent predictions at layers of different resolutions are used
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to capture objects of different sizes [19], training is performed over multiple
scales [20], inference is performed on multiple scales of an image pyramid [21],
feature pyramid is directly constructed from the input image [12].

Meanwhile, the multi-scale modeling for temporal activity detection is still
under-explored: Shou et al. [22] used a multi-scale sliding window to generate
snippets of different length, however, such method is often inefficient during
runtime due to the nature of sliding window; Zhao et al. [23] used temporal
pyramid pooling for modeling multi-scale structures without considering complex
motion dynamics, since those features were directly pooled at different levels. In
this paper, we provide a comprehensive study on temporal multi-scale modeling
and propose an efficient end-to-end solution.

Temporal Activity Detection. Unlike activity recognition, the detection task
focuses on learning how to detect activity instances in untrimmed videos with
annotated temporal boundaries and instance category. The problem has recently
received significant research attention due to its potential application in video
data analysis.

Previous works on activity detection mainly use sliding windows as candi-
dates and classify video clips inside the window with activity classifiers trained on
multiple features [24, 25]. Many recent works adopt a proposal-plus-classification
framework [26–28, 6, 22, 23] by generating segment proposals and classifying ac-
tivity categories for each proposal: some of them focus on designing better pro-
posal schemes [26–28, 23], while others focus on building more accurate activity
classifiers [6, 22, 23]. Along this line of attack, Xu et al. [13] proposed an end-
to-end trainable activity detector based on Faster-RCNN [14]. Buch et al. [29]
investigated the use of gated recurrent memory module in a single-stream tempo-
ral detection framework. However, all these methods rely on feature maps with a
fixed temporal resolution and fail to utilize a multi-scale pyramidal architecture
for handling instances with varying temporal scales.

A few very recent works [9, 8, 7] have started to model temporal scales with
a multi-tower network [9] or a multi-scale feature hierarchy [8], and incorpo-
rated temporal contextual information [7, 9]. Our method differs from all these
approaches in that we identify three unique modeling problems specific to tem-
poral activity detection and propose to solve them in one single multi-scale
pyramidal network. We demonstrate our contributions in the following sections
and provide a detailed analysis on our approach.

3 Approach

We present a Dynamic Temporal Pyramid Network (DTPN), a novel approach
for temporal activity detection in long untrimmed videos. DTPN is dedicatedly
designed to address the temporal modeling challenges as discussed in the intro-
duction with a multi-scale pyramidal architecture. The overall DTPN framework
is a single-shot, end-to-end activity detector featuring three novel architectural
designs: pyramidal input feature extraction with dynamic sampling, multi-scale



Dynamic Temporal Pyramid Network 5

Dynamic Input Sampling(F, H, W, 3)

3D ConvNet

3D ConvNet

3D ConvNet

3D ConvNet

3D ConvNet

(!", d)

(!#, d)

(!$, d)

(!%, d)

(!&, d)

Pyramidal Input Feature Extraction

'&

'%

'$

'#

'"
("

(#

($

(%

(&

Fig. 1. An illustration of pyramidal input feature extraction with 5 sampling rates.
Left: input video is sampled at different FPS to capture motion dynamics at different
temporal resolutions; Right: a shared 3D ConvNet is used to extract the input feature
at each resolution.

feature hierarchy with two-branch network, and local and global temporal con-
texts (Sec. 3.1 to 3.3).

3.1 Pyramidal Input Feature Extraction with Dynamic Sampling

The input of our network is an untrimmed video with an arbitrary length. We
denote a video ν as a series of RGB frames ν = {Ii}Fi=1, where Ii ∈ RH×W×3 is
the i-th input frame and F is the total number of frames. A common practice
is to use a high-quality video classification network to extract a 1D feature rep-
resentation on top of the input frame sequence [13, 9, 8]. This feature extraction
step is beneficial for summarizing spatial-temporal patterns from raw videos into
high-level semantics. The backbone classification network can be of any typical
architectures, including the two-stream network [3], C3D [1], I3D [4], Res3D [2],
P3D [5], etc. However, an obvious problem of the classification ConvNet in their
current form is their inability in modeling long-range temporal structure. This
is mainly due to their limited temporal receptive field as they are designed to
operate only on a single stack of frames in a short snippet.

To tackle this issue, we propose to extract pyramidal input feature with dy-
namic sampling, a video-level framework to model multi-level dynamics through-
out the whole video. Sparse sampling has already been proven very successful
when solving the video classification problem [30], where preliminary prediction
results from short snippets sparsely sampled from the video are aggregated to
generate the video-level prediction. Following similar ideas, we propose a gen-
eral feature extraction framework specifically for the temporal activity detection
task.

Formally, given an input video ν with F frames and a sampling scale in-
dex s, we divide the entire frame sequence into Ks different segments of equal
duration. Suppose a classification network takes w frames as input and gen-
erates a d-dimensional 1D feature vector before any classification layers, we
uniformly sample w frames in each segment to construct a sequence of snippets
{T1, T2, ..., TKs

}, where each Ti, i ∈ [1,Ks] is a snippet of w frames which can be
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directly used as an input to the backbone network. Thus, we can extract features
for a specific sampling scale index s as

fs =

Ks⋃
i=1

F (Ti,W) ∈ RKs×d (1)

where F (Ti,W) is the function representing a ConvNet with parameter W which
operates on snippet Ti and generates a d-dimensional feature vector. Thus,
each single feature vector F (Ti,W) in fs covers a temporal span of F

Ks
frames.

Suppose the input frame sequence is decoded at r FPS, then the equivalent
feature-level sampling rate is given as r×Ks

F . Instead of only extracting features
at a single scale, we apply a set of different scales to construct a pyramidal
input feature, which can be considered as sampling the input frame sequence
with dynamic FPS. Technically, we use S different scales to sample the input
video with a base scale length K1 and an up sampling factor of 2. i.e. Ks =
2s−1×K1, s ∈ [1, S] different feature vectors will be extracted given a scale index
s. This dynamic sampling procedure allows us to directly summarize both short-
range and long-range temporal relations while being efficient during runtime.
Finally, a pyramidal feature is constructed as

fpymd =

S⋃
s=1

fs, fs ∈ RKs×d (2)

which will be used as the input to the two-branch network (Sec. 3.2).

The overall procedure is illustrated in Fig. 1. Note that our approach is differ-
ent from temporal pyramid pooling [23] where higher-level features are directly
pooled, and multi-scale sliding window [22] where a window size is pre-defined.
Our dynamic sampling approach fixes the number of sampling windows and
computes independent features by directly looking at input frames with differ-
ent receptive fields. We find that both sparse and dense sampling are important
for temporal detection task: sparse sampling is able to model long-range tem-
poral relations though lacking precise localization cues. Dense sampling, on the
other hand, provides high-resolution short-range temporal features. By using an
off-the-shelf video classification network and a dynamic frame sampling strategy,
we are able to construct a pyramidal input feature that naturally encodes the
video at varying temporal resolutions.

Comparison with previous works. When extracting features from the input
video, previous works [8, 7, 9, 13] decode the input video with a fixed FPS (usually
small for computational efficiency) and extract features using a non-overlapping
sliding window, which corresponds to a fixed FPS single-scale sampling in our
schema. Although complicated networks are applied to model temporal relation-
ships, their feature extraction component fails to fully exploit the multi-scale mo-
tion context in an input video stream. More importantly, our extraction strategy
is very general thus can be applied to any framework and compatible with a wide
range of network architectures.
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Fig. 2. An illustration of the two-branch multi-scale network with S = N = 5. The
network combines a temporal convolution branch and a temporal pooling branch, where
the features are concatenated and down sampled. Late fusion scheme is applied to build
the multi-scale feature hierarchy.

3.2 Multi-scale Feature Hierarchy with Two-branch Network

To allow the model to predict variable scale temporal spans, we follow the design
of SSD to build a multi-scale feature hierarchy consisting of feature maps at
several scales with a scaling step of 2. We then assign default temporal spans
at each layer to get temporal predictions at multiple scales. More specifically, a
multi-scale feature hierarchy is created which we denote as {Ci}Ni=1, Ci ∈ RLi×df

where N is the total number of features each with a temporal dimension Li and
feature dimension df . For a simple and efficient design, we set L1 = K1 and
LN = 1, and the temporal dimension in between follows Li = 2Li+1.

The next question is: how do we combine the pyramidal input feature and
build the multi-scale network? As illustrated in Fig. 2, we propose to use a two-
branch network, i.e., a temporal convolution branch and a temporal pooling
branch to fuse the pyramidal input feature and aggregate these branches at the
end. This design choice is inspired by the fact that pooling features contain
more translation-invariant semantic information which is classification-friendly
and convolutional features better model temporal dynamics which are helpful
for localization [14, 12].

In more detail, both branches take as input the pyramidal feature fpymd.
For the temporal convolution branch, a Conv1D layer with temporal kernel size
Ks

L1
+ 1, stride Ks

L1
is applied to each input feature fs ∈ fpymd, s ∈ [1, S] to

increase the temporal receptive field and decrease the temporal dimension to L1

(temporal stride is set to 1 for f1 since no down sampling is needed). We use
channel-wise concatenation to combine the resulting features into a single feature
map Ct

1 ∈ RL1×dt . Based on Ct
1, we stack Conv1D layers with kernel size 3 and

stride 2 for progressively decreasing the temporal dimension by a factor 2 to
construct Ct

2 through Ct
N . For the temporal pooling branch, a non-overlapping

temporal max pooling with window size Ks

L1
is used on top of each input feature

fs ∈ fpymd, s ∈ [1, S] to match with the temporal dimension L1. Similar to
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the temporal convolution branch, channel-wise concatenation is applied here to
construct Cp

1 ∈ RL1×dp . Then, we use temporal max pooling with a scaling
step of 2 to construct the feature hierarchy {Cp

i }Ni=1. Finally, features from the
two branches are aggregated together on each scale to generate the final feature
hierarchy {Ci}Ni=1, which will be used to further model the temporal context
(Sec. 3.3).

Simplicity is central to our design and we have found that our model is robust
to many design choices. We have experimented with other feature fusion blocks
such as element-wise product, average pooling, etc., and more enhanced building
blocks such as dilated convolution [31] and observed marginally better results.
Designing better network blocks is not the focus of this paper, so we opt for the
simple design described above.
Comparison with previous works. Previous works based on SSD frame-
work [8] only use a single convolutional branch and don’t apply feature fusion
since only a single-scale input is applied. Our design uses two separate branches
with slightly different feature designs at multiple scales. The localization branch
uses temporal convolution for better localization while the classification branch
uses maximum pooling to record the most prominent features for recognition.
We show experimentally that our two-branch design achieves much better results
compared to single-branch (Sec. 4.4).

3.3 Local and Global Temporal Contexts

Temporal contextual information has been shown to be critical for temporal ac-
tivity detection [7, 9]. There are mainly two reasons: First, it enables more precise
localization of temporal boundaries. Second, it provides strong semantic cues for
identifying the activity class. In order to fully utilize the temporal contextual
information, we propose to use both local temporal context (i.e., what happens
immediately before and after an activity instance) and global temporal context
(i.e., what happens during the whole video duration). Both contexts help with
localization and classification subtasks but with different focuses: local context
focuses more on localization with immediate cues to guide temporal regression,
while global context tends to look much wider at the whole video to provide
classification guidance. Below, we detail our approach.

Our multi-scale feature hierarchy can easily incorporate contextual informa-
tion since it naturally summarizes temporal information at different scales. To
exploit the local temporal context for a specific layer Ci, we combine each tem-
poral feature cell at Ci with a corresponding feature cell at Ci+1. Specifically,
we first duplicate each feature cell at Ci+1 twice to match with the temporal
dimension of Ci and concatenate the feature maps together. Thus, at each fea-
ture cell location in Ci, it not only contains feature at its original location but
also a local context feature at the next scale. To exploit the global temporal
context, instead of looking at the feature map in the next scale, we combine the
feature with the last feature map CN which summarizes the whole video con-
tent. Similar to the local temporal context, we duplicate CN to have the same
temporal dimension with Ci. We exploit local and global contexts at all layers in
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to produce the final detection results.

our network, thus, each temporal feature cell is enhanced by its local and global
temporal information. We illustrate this mechanism in Fig. 3.

Each temporal feature map can produce a fixed set of detection predictions
using a set of Conv1D layers. These are indicated on top of the feature network
in Fig. 3. The basic operation for predicting parameters of a potential temporal
detection is a Conv1D filter that produces scores for activity presence (cact) and
categories (c1 to cM , where M is the total number of classes), and temporal
offsets (∆ct,∆lt) relative to the default temporal location. The temporal detec-
tions at all scales are combined through temporal non-maximum suppression for
generating the final detection results. We provide more inference details in our
Supplementary Material.
Comparison with previous works. Neither Xu et al. [13] nor Lin et al. [8]
exploited any context features in their network. Dai et al. [7] included context
features in the proposal stage, but they pooled features from different scales.
Chao et al. [9] only exploited the local temporal context. Our work considers
both local and global temporal contexts and inherently extract contexts from a
multi-scale temporal feature hierarchy.

4 Experiments

We evaluate the proposed framework on the ActivityNet [15] large-scale temporal
activity detection benchmark. As shown in the experiments, our DTPN achieves
state-of-the-art performance. We also perform a set of ablation studies to analyze
the impact of different components in our network.

4.1 Experimental Settings

Dataset. ActivityNet [15] is a recently released dataset which contains 200
different types of activities and a total of 849 hours of videos collected from
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YouTube. ActivityNet is the largest benchmark for temporal activity detection
to date in terms of both the number of activity categories and number of videos,
making the task particularly challenging. There are two versions, and we use
the latest version 1.3 which contains 19994 untrimmed videos in total and is
divided into three disjoint subsets, training, validation, and testing by a ratio
of 2 : 1 : 1. On average, each activity category has 137 untrimmed videos. Each
video on average has 1.41 activities which are annotated with starting and ending
times. Since the ground-truth annotations of test videos are not public, following
traditional evaluation practices on this dataset, we use the validation subset for
ablation studies.

Evaluation Metrics. ActivityNet dataset has its own convention of reporting
performance metrics. We follow their conventions, reporting mean average pre-
cision (mAP) at different IoU thresholds 0.5, 0.75 and 0.95. The average of mAP
values with IoU thresholds [0.5 : 0.05 : 0.95] is used to compare the performance
between different methods.

4.2 Implementation Details

Feature Extractor. To extract the feature maps, we first train a Residual 3D
ConvNet (Res3D) model [2] on the Kinetics activity classification dataset [4].
The Res3D model builds upon state-of-the-art image classification architectures
(i.e. ResNet [20]), but inflates their filters and pooling kernels into 3D, leading to
very deep, naturally spatial-temporal video classifiers. The model takes as input
a stack of 8 RGB frames with spatial size 256× 256, performs 3D convolutions,
and extracts a feature vector with d = 2048 as the output of an average pooling
layer. We decode each video at 30 FPS to take enough temporal information
into account, and each frame is resized to 256× 256. We set K1 = L1 = 16 and
S = 5 for dynamic sampling, thus, we divide the input frame sequence into a set
of {16, 32, 64, 128, 256} segments and a snippet of window size w = 8 is sampled
in each segment. Each snippet is then fed into our Res3D model to extract a
pyramidal input feature. Note that feature extraction can be done very efficiently
with a single forward pass in batches.

Temporal Anchors. In our design, we associate a set of temporal anchors with
each temporal feature map cell in the multi-scale feature hierarchy {Ci}5i=1. As
described in Sec. 3.2, the temporal dimension of Ci is given as Li = 25−i, i ∈
[1, 5]. Regarding a feature map Ci, we set the length of each temporal anchor to
be 1

Li
(as the input video length is normalized to 1), and the centers are uniformly

distributed with a temporal interval of 1
Li

in between. Thus, we assign a set of
{16, 8, 4, 2, 1} temporal anchors in our network which correspond to anchors of
duration between 1

16 and the whole video length. This allows us to detect activity
instances with varying scales.

Network Configurations. Our system is implemented in TensorFlow [32] and
its source code will be made publicly available. All evaluation experiments are
performed on a work station with NVIDIA GTX 1080 Ti GPUs. For multi-
scale feature hierarchy, we generate a set of features with temporal dimension
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{16, 8, 4, 2, 1} through both temporal convolution branch and temporal pooling
branch as described in Sec. 3.2. In temporal convolution branch, we set the
number of filters to 64 for five different input features, and dt = 320 for all con-
volutional layers after concatenation. When training the network, we randomly
flip the pyramidal input feature along temporal dimension to further augment
the training data. The whole network is trained for 20 epochs with the learning
rate set to 10−4 for the first 12 epochs and 10−5 for the last 8 epochs. We also use
a momentum of 0.9 and a weight decay of 5×10−4. The network is trained with
multi-task end-to-end loss functions involving a regression loss, a classification
loss and a localization loss. We provide further details of our training objective
in the Supplementary Material.

4.3 Comparison with State-of-the-art

Table 1 shows our activity detection results on the ActivityNet v1.3 validation
subset along with state-of-the-art methods [33, 34, 6, 13, 7, 9] published recently.
The proposed framework, using a single model instead of an ensemble, is able
to achieve an average mAP of 25.72 that tops all other methods and perform
well at high IoU thresholds, i.e., 0.75 and 0.95. This clearly demonstrates the
superiority of our method.

Table 1. Activity detection results on ActivityNet v1.3 validation subset. The perfor-
mances are measured by mean average precision (mAP) for different IoU thresholds
and the average mAP of IoU thresholds from 0.5 : 0.05 : 0.95.

IoU threshold 0.5 0.75 0.95 Average

Singh and Cuzzolin [33] (2016) 34.47 - - -
Wang and Tao [34] (2016) 45.10 4.10 0.00 16.40

Shou et al. [6] (2017) 45.30 26.00 0.20 23.80

Xu et al. [13] (2017) 26.80 - - 12.70
Dai et al. [7] (2017) 36.44 21.15 3.90 -

Chao et al. [9] (2018) 38.23 18.30 1.30 20.22

DTPN (ours) 41.44 25.49 3.26 25.72

Note that the top half in Table 1 are top entries for challenge submission: our
method is worse than [34] at IoU threshold 0.5 but their method is optimized for
0.5 overlap and its performance degrades significantly at high IoU thresholds,
while our method achieves much better results (25.49 vs. 4.10 at IoU threshold
0.75); Shou et al. [6] builds a refinement network based on the result of [34],
although they are able to improve the accuracy our method is still better when
measured by the average mAP (25.72 vs. 23.80). We believe the performance gain
comes from our advanced temporal modeling design for both feature extraction
and feature fusion, as well as rich temporal contextual information.
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4.4 Ablation Study

To understand DTPN better, we evaluate our network with different variants on
ActivityNet dataset to study their effects. For all experiments, we only change
a certain part of our model and use the same evaluation settings. We compare
the result of different variants using the mAP at 0.5, 0.75, 0.95 and the average
mAP. For a fair comparison, we don’t concatenate contextual features in all
experiments unless explicitly noted.

Table 2. Results for using a single-resolution feature map as the network input.

IoU threshold 0.5 0.75 0.95 Average

Single-256 36.75 22.09 1.94 22.18
Single-128 36.93 21.93 2.86 22.32
Single-64 35.47 21.39 2.56 21.63
Single-32 35.62 21.78 2.57 21.66
Single-16 33.64 20.69 1.82 20.63

Pyramidal Input 38.89 23.82 3.25 24.07

Dynamic Sampling vs. Single-resolution Sampling. A major contribution
of DTPN is using dynamic sampling to extract a pyramidal input feature as
the network input. However, as a general SSD based temporal activity detector,
single-resolution feature can also be applied as the input to our network. We
validate the design for dynamic sampling pyramidal input by comparing with
single-resolution sampling input: we keep the multi-scale feature network with 5
temporal dimensions from 16 to 1 and the two-branch architecture, but instead
of taking the pyramidal feature as input we only input a separate feature map
of temporal size 256, 128, 64, 32 and 16 independently. The hidden dimension
for each layer is kept the same for a fair comparison. The results are reported
in Table 2. Pyramidal input performs uniformly the best compared to single
input, despite the network design, this clearly demonstrates the importance of
multi-scale pyramidal feature extraction.

Table 3. Results for combing multiple feature maps as the network input.

256 128 64 32 16 Average mAP

X X 22.52
X X 22.01

X X X 23.11
X X X X X 24.07

Multi-scale Feature Fusion. We further validate our design to combine multi-
ple features as our network input. Instead of just using a single-resolution feature
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as input, we investigate the effects of combining different input features. We also
keep the same hidden dimension for each layer for a fair comparison. Table 3
compares different combination schemes: we observe that only dense sampling
(256+128) or sparse sampling (32+16) leads to inferior performance compared to
sampling both densely and sparsely (256+64+16); By adding more fine-grained
details (128 and 32), our pyramidal input achieves the best result.

Table 4. Results for the impact of the two-branch network architecture.

IoU threshold 0.5 0.75 0.95 Average

TConv 27.12 14.70 1.34 15.12
TPool 29.77 17.24 2.16 17.12

TConv+TPool (two-branch) 38.89 23.82 3.25 24.07

Two-branch vs. Single-branch. Here, we evaluate the impact of the two-
branch network architecture. In our design, We propose to use a separate tem-
poral convolution branch and temporal pooling branch and fuse the two feature
hierarchies at the end. However, either branch can be used independently to
predict the final detection results. Table 4 lists the performance of models with
temporal convolution branch only (TConv) and temporal pooling branch only
(TPool). We conclude that two-branch architecture can significantly improve the
detection performance (more than 5% in comparison with single-branch).

Table 5. Results for incorporating local and global temporal contexts.

IoU threshold 0.5 0.75 0.95 Average

w/o Context 38.89 23.82 3.25 24.07
w/ Local Context 40.01 24.50 3.24 24.70
w/ Global Context 40.17 24.20 3.54 24.62

w/ Local+Global Contexts 41.44 25.49 3.26 25.72

Local and Global Temporal Contexts. We contend that temporal contexts
both locally and globally are crucial for temporal activity detection. Since local
and global contextual features are extracted from different layers and combined
through concatenation, we can easily separate each component and see its effect.
As reported in Table 5, We compare four different models: (1) model without
temporal context (w/o Context); (2) model only incorporating local context (w/
Local Context); (3) model only incorporating global context (w/ Global Con-
text); (4) model incorporating both local and global contexts (w/ Local+Global
Contexts). We achieve higher mAP nearly at all IoU thresholds when incorpo-
rating either local or global context, and we can further boost the performance
by combining both contexts at the same time.
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High Jump [29.2 – 52.9s]

High Jump [30.9 – 52.6s]

Windsurfing [3.1 – 129.8s]

Windsurfing [4.0 – 128.3s]

Curling [0.3 – 52.0s]

Curling [4.6 – 56.2s]

Ice fishing [22.7 – 63.5s]

Ice fishing [19.0 – 58.4s]

Ice fishing [73.5 – 87.4s]

Ice fishing [72.3 – 92.9s]

Fig. 4. Qualitative visualization of the top detected activities on ActivityNet. Each
sequence consists of the ground-truth (blue) and predicted (green) activity segments
and class labels.

4.5 Qualitative Results

We provide qualitative detection results on ActivityNet to demonstrate the ef-
fectiveness and robustness of our proposed DTPN. As shown in Fig. 4, different
video streams contain very diversified background context and different activity
instances vary a lot in temporal location and scale. DTPN is able to predict the
accurate temporal span as well as the correct activity category, and it is also
robust to detect multiple instances with various length in a single video.

5 Conclusions

In this paper, we introduce DTPN, a novel network architecture specifically de-
signed to address three key challenges arising from the scale variation problem
for temporal activity detection. DTPN employs a multi-scale pyramidal struc-
ture with three novel architectural designs: 1) pyramidal input feature extraction
with dynamic sampling; (2) multi-scale feature hierarchy with two-branch net-
work; and (3) local and global temporal contexts. We achieve state-of-the-art
performance on the challenging ActivityNet dataset, while maintaining an effi-
cient single-shot, end-to-end design.
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