INVARIANT FEATURE EXTRACTION AND BIASED STATISTICAL INFERENCE
FOR VIDEO SURVEILLANCE

Yi W, Long Jiao, Gang WU, Edward Chang, Yuan-Fang Wang

Department of Electrical Engineering & Computer Science
University of California, Santa Barbara

ABSTRACT

Using cameras for detecting hazardous or suspicious events has
spurred new research for security concerns. To make such de-
tection reliable, researchers must overcome difficulties such as
variation in camera capabilities, environmental factors, imbal-
ances of positive and negative training data, and asymmetric
costs of misclassifying events of different classes. Following
up on the event-detection framework that we proposed in [12],
we present in this paper the framework’s two major compo-
nents: invariant feature extraction and biased statistical infer-
ence. We report results of our experiments using the framework
for detecting suspicious motion events in a parking lot.

1. INTRODUCTION

With the proliferation of inexpensive cameras and the deploy-
ment of high-speed, broad-band networks, it has become eco-
nomically and technically feasible to employ multiple cam-
eras for event detection [5, 6]. Mapping events to visual cues
collected from multiple cameras presents many research chal-
lenges. Specifically, this paper deals with two research prob-
lems: inconsistent visual features and biased statistical infer-
ence.
1. Inconsistent features.
We propose feature extraction strategies for alleviating the in-
consistent feature problem caused primarily by the following
two sources:
o Different camera views.
Different camera views of the same object may render dif-
ferent perceptual features. For instance, camera movements
(e.g., panning and zooming) can affect video features, as
can the distance between cameras and the areas of surveil-
lance.

¢ Variable environment factors.
External environment factors such as lighting conditions
(e.g., day or night) and weather (e.g., foggy or raining) also
affect video features.

2. Biased statistical inference.

We propose methods for statistical learning that deal with the

following two inference constraints:

o Classes of unequal importance. For suspicious event detec-
tion, misclassifying a positive event (false negative) incurs
more severe consequences than misclassifying a negative
one (false positive).

The research was supported in part by an NSF grant, 11S-:9908441. The
fourth author is supported by an NSF Career Award 11S-0133802.

e Imbalance in training data. Positive events (suspicious events)
are always significantly outnumbered by negative events in
the training data. In an imbalanced set of training data, the
class boundary tends to skew toward the minority class and
becomes very sensitive to noise. Hence the rate of false
negatives increases.

The rest of the paper is organized as follows: Section 2
describes our initial work on invariant-feature extraction. We
propose remedies to SVMs for detecting rare events in Sec-
tion 3. Section 4 presents the preliminary experimental results
of detecting suspicious events in a parking lot. Finally, we pro-
vide concluding remarks and put forward ideas for future work
in Section 5.

2. INVARIANT EVENT DESCRIPTORS

Feature extraction for event detection must fulfill two design
goals: adequate representation and efficient computation. Ad-
equate feature representation is the basis for modeling events
accurately. Low computational complexity is equally critical,
since multiple frames from multiple cameras may need to be
processed simultaneously. Here, we propose a framework of
efficient, invariant event descriptions to satisfy both design goals.

Invariant descriptions refer to those extracted high-level fea-
tures that are not affected by incidental change of environment
factors (e.g., lighting) and sensing configuration (e.g., camera
placement). The concept of invariancy is applicable at multi-
ple levels of event description. In our research, we distinguish
two types of invariancy: fine-grain invariancy and coarse-grain
invariancy.

Fine-grain invariancy captures the characteristics of an event
at a detailed, numeric level. Fine-grain invariant descriptors
are therefore suitable for “intra-class” discrimination of simi-
lar event patterns (e.g., locating a particular event among mul-
tiple events depicting the same circling behavior of vehicles
in a parking lot). Coarse-grain invariancy captures the mo-
tion traits at a concise, semantic level. Coarse-grain invariant
descriptions are thus suitable for “inter-class” discrimination,
e.g., discriminating a vehicle’s circling behavior from, say, its
parking behavior. Certainly, these two types of descriptors can
be used synergistically to accomplish a recognition task. E.g.,
we can use a coarse-grain descriptor to isolate circling events
from other events such as parking, and then pin-point a partic-
ular circling event using a fine-grain descriptor.

2.1. Fine-Grain Invariant Descriptors

Our aim is to design a family of descriptors that can be made
insensitive to some chosen combination of environmental fac-



tors, such as viewpoint and speed.

Let C(t) = [z(t),y(t), 2(t)]T be a 3D motion trajectory,
which is recorded in a video database as ¢(t) = PC(t) =
[(¢),y(¢)] (where P denotes the projection matrix and, to sim-
plify the math, we adopt the parallel projection model). A simi-
lar motion, executed potentially with a different speed and cap-
tured from a different viewpoint, is expressed as

¢(t) = PRC(—T

)+T) (1)

where R and T denote the rotation and translation resulting
from a different camera placement, « the change in speed, and
t, the change in the video-recording start time. The motion
curve ¢'(t) can be recognized as the same as c(¢) if we can
derive the same “motion signature” for both, in a way that is
insensitive to changes in R, T, «, and t,. Depending on the
application, we might want to make the signature invariant for
one such factor, or a combination of these factors. Below we
suggest some possibilities for designing invariant signatures.
Invariancy to time shift and partial occlusion Under the
parallel projection model and the far field assumption (where
the object size is small relative to the distance to the camera, an
assumption that is generally true for surveillance applications),
it can be shown that
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where A represents an affine transform, t the image position
shift. To derive a signature for a motion trajectory, we will
extend the 2D image trajectory into the space by appending a
third component, time, as [c, #]7 = [z,,#]T. One can imagine
that appending a third component ¢ is like placing a slinky toy
flatly on the ground (the  — y plane) and then pulling and
extending it up in the third (height) dimension. Now, it is well
known in differential geometry [7] that a 3D curve is uniquely
described (up to a rigid motion) by its curvature and torsion
vectors with respect to its intrinsic arc length, where curvature
and torsion vectors are defined as

(1) = $(C(0) x E1) @)

or curvature and torsion vectors form a locally defined signa-
ture of a space curve. In computer vision jargon, (k,7) forman
invariant parameter space—or a Hough transform space—and
local structures are “hashed” into such as a space independent
of variations in the object’s placement and rigid motion. Such a
mapping is also insensitive to variation in the video-recording
start time—as the same pattern will show up sooner or later.
It is also tolerant to occlusion, as the signature is computed
locally, and the signature for the part of the trajectory that is
not occluded will remain invariant. Hence, the recording using
(k,7) in Eq. 3 is then insensitive to time shifts or partial oc-
clusion. It is a simple invariant expression one can define on a
maotion trajectory.

Invariancy to change in camera pose  To make such a hash-
ing process invariant to difference in camera poses (A and t),
more processing of such trajectories is needed. In particular,

variation in speed has a tendency to change the magnitude of
vector quantities, while variation in camera parameters has a
tendency to change the magnitude of area quantities. In gen-
eral, we have
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By massaging the derivatives, we can derive many invariant
expressions that depend on speed («) but not on camera pose
(A and t). For example,
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which forms an invariant local expression insensitive to affine
pose change, as A and t do not appear in Eq. 5.
Invariancy to camera pose change and speed of motion For
invariancy to all the above factors and the speed of motion, con-
sider collapsing the [z,y,¢]T curve back into the image plane
[z,y]*. The embedding is done in such a way that we do not
look at how fast or slow the curve has traced out in the plane,
but only at the final, complete curve (or we lose the sense
of time). The problem is then reduced to matching two 2D
curves that can differ by an affine transform and travel start-
ing point. We have previously shown that this can be accom-
plished by re-parameterizing the 2D curve by its affine invari-
antarclength s = [ /Z§ — Zydt or its enclosed area parame-
ter s = [ \/zy — zydt and rewrite c(¢) as a function of ¢(s)
which is insensitive to speed, then
2 a0

K'(s) = d ;SES) = Ak(s —s,) (6)
and we can use an expression similar to Eq. 5 to obtain the
desired invariancy.
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Again, as the invariant expression is computed locally and we
use a hashing scheme to record the signature, change in starting
point s, does not matter. Hence, we develop a family of invari-
ant descriptions that can be used to describe object motion in
video.

2.2. Coarse-Grain Invariant Descriptors

Our coarse-grain invariant descriptors encompass a concise de-
scription of an event as the concatenation of the semantic labels
of the event’s components. For example, the event of a vehicle
circling a parking lot can be described as a sequence of inter-
spersed right (left) turns and straight line motions. Circling
behaviors executed by different vehicles most likely will have



quite distinct trajectories (slow vs. fast, tight turn vs. wide turn,
etc.). Hence, fine-grain invariant signatures will recognize such
patterns as different. However, these patterns are similar in that
they can all be described by the same sequence of semantic
labels. To generate such a concise, semantic description, we
follow these steps (please consult [11] for further details):

1. Sensor data fusion. We employ the Kalman filter as a

sensor-data-integration tool. The Kalman filter helped in smooth-

ing the trajectories, fusing the trajectories from different cam-
eras, and providing velocity and acceleration estimates from
the raw trajectories.

2. Event segmentation. We use an EM-based algorithm to
segment the fused trajectory from multiple cameras into seg-
ments. These segments are homogeneous in terms of their
acceleration characteristics, which are assumed to be either
constant or linear in the magnitude or direction.

3. Trajectory summarization. Based on the acceleration statis-
tics computed above, we assign each segment a semantic la-
bel. For example, the st op condition is identified as zero
acceleration and zero initial velocity. A hal f t ur nisiden-
tified when (a vehicle makes a turn of approximately 90°).

3. BIASED STATISTICAL INFERENCE

As discussed in Section 1, event detection presents two chal-
lenges to a classifier: unequal class importance, and imbal-
ance in training classes. The imbalanced training-data problem
arises when the negative instances are the norm and abundant,
but the positive instances are rare. This imbalance situation
causes the class boundary to skew toward the minority side,
and hence results in a high incidence of false negatives. While
the skewed boundary is Bayes optimal when a prior distribution
heavily favors the majority class, we must make adjustments to
correct the skew when the risk of mispredicting a positive event
far outweighs that of mispredicting a negative event.

In this section, we present alternatives to support biased sta-
tistical inference. We first provide a brief overview of SVMs to
set up sufficient context for discussions. (We use SVMs as our
classifier because of their superior performance in many appli-
cation domains.) We then explain the causes of misdetecting
rare events. Finally, we present three alternatives that we will
evaluate in Section 4.

3.1. SVM Overview

We consider SVMs in a binary classification setting. We are
given a set of training data {(x1,y1), (X2,¥2), --(Xn,¥n) }:
where x; is the 4t" training instance and y; its label, either —
for benign events or 1 for hazardous events. SVMs separate
these two classes by a hyperplane with maximum margin [2].
For nonlinearly separable cases, SVMs can project the train-
ing data onto a higher dimensional feature space via a Mercer
kernel operator K. In addition, Vapnik’s soft-margin theory [8]
introduces slack variables &; to permit training error. Given x;,
SVMs model class prediction as
yﬁ(wé(xl)+b)21_£l’ §1ZO,i=1:,n, (8)
where w is the norm to the hyperplane, |b|/||w]|| is the per-
pendicular distance from the hyperplane to the origin, and ® is
an input-space to feature-space mapping function. The optimal
solution of SVMs is formulated by maximizing the Lagrangian

Lp = Zaz - = Z a;a;y:y; K (%1, %5), ©

i,j=1
subject to the foIIowmg constralnts

0<a;<C and Zaiyi =0, (10)
i=1

where C'is a constant larger than zero used as penalty for soft-

margin SVMs. According to the KKT conditions [2], the value

of «; has three ranges:

e o; = 0: non-support vectors,

e 0 < o; < C': support vectors and &; = 0, and

e o; = C: support vectors and &; > 0.
By solving Equations 9 and 10, the class prediction func-
tion is formulated as

f(x) = sign(z a;yiK(x,x;) + b).

i=1

(11)

3.2. Causes of Misclassification

Let us use SVMs to explain the boundary-skew problem. As
the number of negative examples (the majority class) grows, so
does the number of negative support vectors that exert influ-
ence on an unlabeled instance. To illustrate this problem, we
use a 2D checkerboard example. The checkerboard divides a
200*200 square into four quadrants. The top-left and bottom-
right quadrants are occupied by negative instances and the top-
right and bottom-left quadrants by positive instances. The lines
between the classes are the “ideal” boundary that separates the
two classes.

Figure 1 exhibits the boundary distortion between the two
left quadrants of the checkerboard under two different nega-
tive/positive training-data ratios. Figure 1(a) shows the SVM
class boundary when the ratio is 10 : 1. Figure 1(b) shows the
boundary when the ratio is 1000 : 1. The boundary in Fig-
ure 1(b) is much more distorted compared to the boundary in
Figure 1(a), and hence causes more false negatives.

3.3. Proposed Remedies

We use two criteria for class-prediction evaluation: tradeoff be-
tween specificity and sensitivity, and overall classification ac-
curacy. We define sensitivity of a learning algorithm as the ratio
of the number of true positive (TP) predictions over the num-
ber of positive instances (TP+FN) in the test set, or Sensitivity
= TP /( TP+FN). The specificity is defined as the ratio of the
number of true negative (TN) predictions over the number of
negative instances (TN+FP) in the test set, or Specificity = TN
/ (TN+FP). Our design goal is to improve sensitivity and at the
same time maintain high specificity.

In what follows, we present three methods for achieving our
design goal. The first two methods, thresholding and penalty,
aim to tackle the problem of unequal class importance, making
a better tradeoff between specificity and sensitivity. The last
method, conformal transformation, helps alleviate the draw-
back of imbalanced training data.

3.3.1. Thresholding Method

A simple method for reducing false negatives is to change the
decision threshold b in Equation 11. This shift trades speci-
ficity for sensitivity. The new decision function is
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Fig. 1. Boundary Distortion.
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where b is the new threshold after boundary movement. We use
thresholding as the yardstick to measure how the other methods
perform.

(12)

3.3.2. Penalty Method

Veropoulos [9] uses a soft margin technique with SVMs for
controlling the trade-off between false positives and false neg-
atives. The basic idea is to introduce different penalty func-
tions for positively and negatively labeled instances, in which
a larger multiplier «; is assigned to the class in which misclas-
sification carries a heavier cost. The Lagrangian formulation in
Equation 9 is generalized with two penalty functions for false-
positive and false-negative errors as follows:

+(c* Z &)+ Z &)
ily;=+1 ily;=
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The dual fo?rzrllulation gives the same Lagranbzian but with dif-
ferent «; constrained by

Ct>a; >0
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(13)

if yi=+1, and (14)

C >a; >0 if yi=-1. (15)

C* and C~ are the penalty for the positive and negative
sides respectively. If CT is larger than C—, fewer positive data
would be misclassified as negative data; thus F'N is reduced,

and vice versa.

3.3.3. Adaptibe Conformal Transformation (ACT)

In [10], we proposed feature-space adaptive conformal trans-
formation (ACT) for imbalance-data learning. We showed that
by conducting conformal transformation adaptively to data dis-
tribution, and adjusting the degree of magnification based on
feature-space distance (rather than based on input-space dis-
tance proposed by [1]), we can remedy the imbalance-data learn-
ing problem.

A conformal transformation, also called a conformal map-
ping, is a transformation 7" which takes the elements X € D
to elements Y € T'(D) while preserving the local angles be-
tween the elements after the mapping, where D is the domain
in which the elements X reside [4].

Kernel-based methods, such as SVMs, introduce a mapping
function ® which embeds the the input space I into a high-
dimensional feature space F' as a curved Riemannian manifold
S where the mapped data reside [3]. A Riemannian metric
9ij(x) is then defined for S, which is associated with the kernel
function K (x,x").

182K (x,X) (62K(x,x (16)

9

900 = 5 50.0m; 004 )sz, '
The metric g;; shows how a local area around x in I is mag-
nified in F' under the mapping of ®. The idea of conformal
transformation in SVMs is to enlarge the margin by increas-
ing the magnification factor g;;(x) around the boundary (rep-
resented by support vectors) and to decrease it around the other
points. This could be implemented by a conformal transforma-
tion of the related kernel K (x,x") according to Eq. 16, so that
the spatial relationship between the data would not be affected
much [1]. Such a conformal transformation can be depicted as

K(x,X') = D(X)D(X)K (x,x'), (17)
where D(z) is a properly defined positive conformal function.
D(x) should be chosen in a way such that the new Reman-
nian metric g;;(x), associated with the new kernel function
K(x,x"), has larger values near the decision boundary. Further-
more, to deal with the skew of the class-boundary, we magnify
§ij(X) more in the boundary area close to the minority class.
Due to the space limitation, we cannot document the entire al-
gorithm in this paper. Please refer to [10, 11] for details.

4. EXPERIMENTAL RESULTS

We have conducted experiments on detecting suspicious events
in a parking-lot setting to validate the effectiveness of our pro-
posed methods. We report our results in two parts: the results
on invariant descriptors, and the results on learning-method
comparison.

4.1. Invariant Descriptors

For experiments on fine-grain and coarse-grain invariancy, two
cameras were used to record the activities in a parking lot.
Fig. 2 shows some sample results of computing numeric in-
variant signatures. Fig. 2 (a) and (b) show the same motion
sequence (a zig-zag or an M-pattern) captured from two dif-
ferent camera poses,! and (c) shows the invariant signatures,
computed using Eq. 7 (the dash-line curve for Fig. 2(a) and the

1To conserve space and to better illustrate the motion trajectories, we su-
perimposed multiple video frames into a single picture for display.
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Fig. 2. (a) and (b) the same motion event captured by two dif-
ferent cameras, (c) invariant signatures computed based on us-
ing Eq. 7 (dash-line for (a) and solid-line for (b)), and (d) in-
variant signatures computed for a circling trajectory.
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Fig. 3. Invariant descriptors for a zig-zag trajectory or an M-
Pattern. (a) and (b) the snapshots of two cars performing a
zig-zag motion in a parking lot; and (c) and (d) the computed
invariant trajectory descriptors.

solid-line curve for Fig. 2(b)). We employed a simple mecha-
nism for figure-background separation. Because in our current
experiment the camera aims were fixed, we detected the pres-
ence of moving objects by performing a simple difference op-
eration between adjacent video frames. We then extracted the
moving objects by another difference operation with an adja-
cent video frame having no motion. As can be seen from the
figure, the invariant signatures are very consistent even through
the trajectories were captured from different viewpoints, and
thus not directly comparable.

Fig. 2(d) shows the invariant features for a circling trajec-
tory. Again, the dash-line and solid-line curves represent the
invariant signatures computed for the same motion trajectory
recorded by the two cameras. From these results, we can see
that numeric invariant features capture the essential traits of
motion trajectories in a way that is not affected by the place-
ment of cameras.

The limitations of numeric invariant signatures are these:
First, because the signatures capture the fine detail of a mo-
tion curve, it is best used for fine-grain correlation of the same
motion trajectory imagined under varying conditions, such as
different camera poses. Second, its numeric nature is difficult
for a human operator to comprehend. Hence, for coarse-grain
correlation of motion events, we resort to semantic invariant
signatures that summarize motion events as a concatenation
of semantically meaningful patterns, such as “right turn,” “left
turn,” “constant speed,” “stop,” etc.

Sample images for two zig-zag patterns, this time executed
by two vehicles and recorded using two cameras placed at dif-

ferent locations, are shown in Fig. 3(a) and (b). The Kalman
filter was used to track the moving vehicles. Sample raw and
Kalman-filtered vehicle trajectories are shown in Fig. 3 (c) and
(d) for Fig. 3 (a) and (b) respectively, where the black (dark)
curve is the raw vehicle trajectory and the red (light) curve is
the Kalman filtered and fused trajectory.

In Fig. 4, we show the results of segmenting Kalman-filtered
trajectories and computing their semantic invariant signatures.
Fig. 4 depicts the magnitude |r| and direction 8 of the acceler-
ation curves of the motion trajectories, and (P x P), curves
(whose sign was used to determine the turning direction) used
in segmentation. The @ and |r| trajectories estimated from the
Kalman filter are shown in black, while the piecewise linear ap-
proximations of these curves using the EM algorithm described
before are shown in red. Vertical lines show the beginning and
end of each segment. For illustration, the boundaries between
adjacent segments and the segment labels are shown in Fig. 3(c)
and (d) as well. The results show that we can obtain similar se-
mantic descriptions even when the M-patterns were executed
by different vehicles and imaged by different cameras.

4.2. Learning Method Comparison

In this experiment, we compared the sensitivity and specificity
of three methods presented in Section 3.3. For surveillance ap-
plications, we care more about the sensitivity, and at the same
time, would like to keep the specificity high.

We recorded video at parking lot-20 on UCSB campus. We
collected trajectories depicting five motion patterns: circling
(30 instances), zigzag-pattern or M-pattern (22 instances), back-
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Fig. 4. Segmentation of motion trajectories using the accelera-
tion statistics shown here. (a), (b) corresponds to Fig. 3 (a) and
(b), respectively.

and-forth (40 instances), go-straight (200 instances), and park-
ing (3, 161 instances including additional synthetic data to sim-
ulate the skew effect). We divided these events into the benign
and suspicious categories. The benign-event category consists
of patterns go-straight and parking, and the suspicious-event
category consists of the other three patterns.

For each experiment, we chose 60% of the data as the train-
ing set, and the remaining 40% as our testing data. We em-
ployed the best kernel-parameter settings obtained through run-
ning a five-fold cross validation (see [11] for details), and report
here the average class-prediction accuracy. Figure 5(a) presents
the sensitivity of using SVMs, and of using the three improve-
ment methods. All three methods, thresholding, penalty, and
ACT improve sensitivity. Among the three, ACT achieves the
largest magnitude of improvement over SVMs, around 30 per-
centile. Figure 5(b) shows that all methods maintain high speci-
ficity. Notice that the thresholding method performs well for
detecting M-pattern and back-forth; however, it does not do
well consistently over all patterns. The performance of the
thresholding method can be highly dependent on the data distri-
bution. The penalty method does not work effectively. The rea-
son can be explained by the KTT condition presented in Sec-
tion 3.1, where the C' parameter imposes only an upper bound
on a;, not a lower bound. Changing C does not necessarily
affect a; after C' is increased to a certain degree; and conse-
quently, the penalty method does not work well with SVMs.

5. CONCLUSIONS AND FUTURE WORK

We have described our invariant feature extraction component
and improved statistical learning methods for dealing with the
challenges of detecting rare events. Our experimental results
showed that our proposed methods are effective. We plan to
extend our methods to tackle the problem of multiple camera
spatio-temporal data fusion. We will also conduct experiments
in other event-detection settings.
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