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Abstract

In this paper, we present a prototype video surveillance
system that uses stationary-dynamic (or master-slave) cam-
era assemblies to achieve wide-area surveillance and selec-
tive focus-of-attention. We address two critical issues in de-
ploying such camera assemblies in real-world applications:
off-line camera calibration and on-line selective focus-of-
attention. Our contributions over existing techniques are
twofold: (1) in terms of camera calibration, our technique
calibrates all degrees-of-freedom (DOFs) of both station-
ary and dynamic cameras, using a closed-form solution that
is both efficient and accurate, and (2) in terms of selective
focus-of-attention, our technique correctly handles dynamic
changes in the scene and varying object depths. This is a
significant improvement over existing techniques that use
an expensive and non-adaptable table-look-up process.

1. Introduction

To achieve effective surveillance, a large number of cam-
eras are often used for wide-area coverage. Once suspi-
cious persons/activities have been identified through video
analysis, selected cameras ought to be able to obtain close-
up views of these suspicious subjects for further scrutiny
and identification (e.g., to obtain a close-up view of the li-
cense plate of a car or the face of a person). These two
requirements, a large field-of-view and selective focus-of-
attention, place conflicting constraints on the system con-
figurations and camera parameters.

The proposed solution is to cover an extended surveil-
lance area by multiple stationary (or master) cameras with
wide fields-of-view. The stationary cameras perform a
global, wide field-of-view analysis of the motion patterns
in the surveillance zone. Based on some pre-specified crite-
ria, the stationary cameras identify suspicious behaviors or
subjects that need further attention. The stationary cameras
will guide the dynamic cameras to focus on the region of in-
terest (e.g., the license plate of a car or the face of a person)
for selective attention and analysis.

This paper addresses two specific problems that present
unique challenges to using stationary-dynamic cameras for
video surveillance: (1) off-line calibration of both stationary
and dynamic cameras, and (2) on-line selective focus-of-
attention by cooperative stationary-dynamic sensing.

2. Background and Contribution

We contrast our approaches with the state-of-the-
art in off-line calibration and on-line selective focus-of-
attention—issues that are critical to the use of stationary-
dynamic camera assemblies for video surveillance.

Davis and Chen [3], presented a technique for calibrat-
ing a pan-tilt camera off-line. This technique adopted a
general camera model that did not assume that the rota-
tional axes were orthogonal or that they were aligned with
the camera’s imaging optics. Furthermore, they argued that
the traditional methods of calibrating stationary cameras us-
ing a fixed calibration stand were impractical for calibrating
dynamic cameras, because a dynamic camera had a much
larger working volume. Instead, a novel technique was
adopted to generate virtual calibration landmarks using a
moving LED. The 3D positions of the LED were inferred,
via stereo triangulation, from multiple stationary cameras
placed in the environment. To solve for the camera param-
eters, an iterative minimization technique was proposed.

Zhou et al. [5], presented a technique to achieve selective
focus-of-attention on-line using a stationary-dynamic cam-
era pair. The procedure involved identifying, off-line, pixel
locations in the stationary camera where a surveillance sub-
ject could later appear. The dynamic camera was manually
moved to center on the subject. The pan and tilt angles of
the dynamic camera were recorded in a look-up table in-
dexed by the pixel coordinates in the stationary camera. The
pan and tilt angles needed for maneuvering the dynamic
camera to focus on objects that appeared at intermediate
pixels in the stationary camera were obtained by interpo-
lation. At run time, the centering maneuver of the dynamic
camera was accomplished by a simple table-look-up pro-
cess, based on the locations of the subject in the stationary
camera and the pre-recorded pan-and-tilt maneuvers.



Compared to the state-of-the-art methods surveyed
above, our contributions are twofold: In terms of off-line
camera calibration:
1. It is well known that three pieces of information are

needed to uniquely define a rotation (e.g., pan and tilt):
position of the rotation axis, orientation of the axis, and
rotation angle. Although [3] assumes this general model,
it explicitly calibrates only the position and orientation of
the axis. Our technique calibrates all these DOFs.

2. As will be shown in our experimental results (Section 4),
the technique of [3] uses an iterative minimization proce-
dure that is computationally expensive and does not guar-
antee convergence. Our technique solves for all intrinsic
and extrinsic camera parameters for both stationary and
dynamic cameras using a closed-form solution that is both
efficient and accurate.

3. While the virtual landmark approach is interesting, we
will show in Sec. IV that such a technique is less accurate
than the traditional techniques using a small calibration
pattern (e.g., a checkerboard). We will argue that tradi-
tional techniques can also provide large angular ranges for
calibrating pan and tilt DOFs effectively.

In terms of on-line selective focus-of-attention:
1. For the procedure proposed in [5] to work, surveillance

subjects must appear at the same depth each time they ap-
pear at a particular pixel location in the stationary cam-
era. This assumption is unrealistic in real-world applica-
tions. Our technique allows surveillance subjects to ap-
pear freely in the environment with varying depths.

2. Manually building a table of pan and tilt angles is a time-
consuming process. Furthermore, the process needs to be
repeated at each surveillance location, and it will fail if the
environmental layout changes later. Our technique adapts
automatically to different locales.

3. Our techniques are applicable even with high and varying
camera zoom settings and poorly aligned pan and tilt axes.

3. Technical Rationales
In this section, we present the technical details our math-

ematical formulations pertaining to (1) off-line PTZ camera
calibration and, (2) on-line selective focus of attention.

3.1. Off-line calibration

Stationary Cameras: Because the setting of a master
camera is held stationary, its calibration is performed only
once, off-line. Many calibration algorithms are available
and several public-domain packages and free software, such
as OpenCV [1] , have routines for calibration. We will not
discuss them here.

Dynamic Cameras: Calibrating a pan-tilt-zoom (PTZ)
camera is more difficult, as there are many DOFs, and the
choice of a certain DOF, e.g., zoom, affects the others.

The pan and tilt DOFs correspond to rotations, specified
by the location of the rotation axis, the axis direction, and
the angle of rotation. Some simplifications can make the
calibration problems slightly easier, but at the expense of
a less accurate solution. The simplifications are (1) collo-
cation of the optical center on the axes of pan and tilt, (2)
parallelism of the pan and tilt axes with the height (y) and
width (x) dimensions of the CCD, and (3) the requested and
realized angles of rotation match, or the angle of rotation
does not require calibration. For example, [3] assumes that
(3) is true and calibrates only the location and orientation
of the axes relative to the optical center. In contrast, we
adopt a general formulation that does not make any of the
above simplifications. We show that simplifications are un-
necessary, and that assuming a general configuration does
not unduly increase the solution complexity.

The equation relating a 3D world coordinate and a 2D
camera coordinate for a pan-tilt PTZ camera is [3]:

Pr =Mr←i( f )Mi←c

T−1
t ( f )Rnt (φ)Tt( f )T−1

p ( f )Rnp (θ)Tp( f )Mc←wPw

=Mr←w( f , θ, φ)Pw (1)

which projects a 3D point (Pw) into a 2D point (Pr), in the
camera’s CCD array. For stationary cameras, the projec-
tion can be decomposed into three parts: a world-to-camera
transform (Mc←w), an ideal projection (Mi←c ), and an ideal
image-to-real CCD transform (Mr←i). For dynamic cam-
eras, two more DOFs must be considered: pan and tilt. In
Eq. 1, θ denotes the pan angle and φ the tilt angle. np and nt

denote the orientations of the pan and tilt axes, respectively.
To execute the pan and tilt DOFs, a translation (Tp and Tt)
from the optical center to the respective center of rotation is
executed first, followed by a rotation around the respective
axis, and then followed by a translation back to the optical
center for the ensuing projection1. Tp and Tt are expressed
as functions of the camera zoom ( f ), because zoom moves
the optical center and alters the distances between the opti-
cal center and the rotation axes.

To calibrate a PTZ camera, two steps are needed: (1)
calibrating the location and orientation of the rotation axes,
and (2) calibrating the rotation angles so that the realized
angles of rotation (θ̂ and φ̂) are as close to the requested ones
(θ and φ). The procedure comprises two nested loops.
• In the inner loop, we execute a wide range of pan (or tilt)

movements with a fixed camera zoom. We determine how
faithfully these requested pan (or tilt) angles are realized
by the camera unit. We construct functions θ̂ = g(θ) and
φ̂ = h(φ) through interpolation. We also calibrate the ro-
tation axis’s location and orientation.

1Mathematically speaking, only the components of Tp and Tt that are
perpendicular to np and nt can be determined. The components parallel to
np and nt are not affected by the rotation, and hence will cancel out in the
back- and-forth translations.



• In the outer loop, we vary the zoom setting of the camera
and determine, for each selected zoom setting, the move-
ment of the optical center and hence, the relative positions
(Tp and Tt) between the optical center and the rotation
axes as functions of zoom. Again, we construct functions
Tp( f ) and Tt( f ) through interpolation.

The loop body comprises the following basic steps (illus-
trated here for calibrating the pan angles):
1. First, holding θ = φ = 0 (or some selected angles), cal-

ibrate the dynamic camera using any stationary camera
calibration procedure. Denote the world-to-camera matrix
thus obtained as Mc←w(0, f ).

2. Moving θ to some known angle (but keeping φ fixed), cal-
ibrate the dynamic camera again using the previous pro-
cedure. Denote the world-to-camera matrix thus obtained
as Mc←w(θ, f ). Then it is easily shown that:

Mc←w(θ̂, f ) = T−1
p ( f )Rnp (θ̂)Tp( f )Mc←w(0, f ) (2)

Inverting the world-to-camera matrix on the right hand side
of Eq. 2, we have [4]:

T−1
p ( f )Rnp (θ̂)Tp( f ) =Mc←w(θ̂, f )Mw←c(0, f ),

=
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Using Mc←w(θ̂, f )Mw←c(0, f ) =
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we have:

npx =
m32 − m23

4w
√

1 − w2
, npy =

m13 − m31

4w
√

1 − w2
, npz =

m21 − m12

4w
√

1 − w2
,

where, θ̂ = 2arccos(w) and w =

√

∑4
i=1 mii

4
. The transla-

tion matrix Tp can be solved using a system of three linear
equations −Tp · r1 + Tx = m14,−Tp · r2 + Ty = m24 and
−Tp · r3 + Tz = m34.

In general, this calibration procedure should be carried
out multiple times with different θ settings. The axis of ro-
tation and the center of location should be obtained by av-
eraging of multiple calibration trials. The relationship of
the requested angle of rotation and the executed angle of
rotation, i.e., θ̂ = g(θ) can be interpolated from multiple tri-
als using a suitable interpolation function f (e.g., a linear,
quadratic, or sigmoid function).

Figure 1. Computing the correct pan DOF (a)
if optical and pan centers are collocated, and
(b) if they are not.

3.2. On-line selective focus-of-attention

Once a potential suspect has been identified in a station-
ary camera, the next step is often to relay discriminative
visual traits of the suspect (RGB and texture statistics, po-
sition and trajectory, etc.) from the stationary camera to a
dynamic camera. The dynamic camera then uses its pan,
tilt, and zoom capabilities for a closer scrutiny.

To accomplish the selective focus-of-attention feat, we
must be able to (1) identify the suspect in the field-of-view
of the dynamic camera, and (2) manipulate the camera’s
pan, tilt, and zoom mechanisms to continuously center upon
and present a suitably sized image of the subject.

The first requirement is often treated as a correspondence
problem, solved by matching regions in the stationary and
dynamic cameras based on similarity of color and texture
traits, congruency of motion trajectory, and affirmation of
geometrical epipolar constraints. Inasmuch as solutions to
the problem are well known in the CV community, we will
not address that problem in this paper.

As to the second requirement, there is a trivial solution if
the optical center of the PTZ camera is located on the axes
of pan and tilt, and if the axes are aligned with the width
and height of the CCD. Figure 1(a) illustrates this trivial so-
lution for the pan DOF. Here, we show a cross section of
the 3D space that is perpendicular to the pan axis. Assume
that the pan axis is the y (vertical) axis. Then the cross sec-
tion corresponds to the z − x plane in the camera’s frame of
reference, with the optical center located at the origin. The
x-coordinate of the tracked object can then be used for cal-
culating the pan angle as θ = arctan((x − xc)/(kx f )), where
xc is the x-coordinate of the center of the image plane, and
kx is the scale factor to convert real-world unit into pixel. As
can be seen from Figure 1(a) the collocation of the optical
center and the pan axis ensures that the camera pan will not
move the optical center. In this case, we achieve the desired
centering effect without needing to know the depth of the
tracked object (a homography).



In reality, however, the optical center is not located on
the rotation axis. As illustrated in Figure 1(b), even when
the axes are aligned with the CCD, the pan angle we com-
puted above (θ) will not be the correct rotation angle (θ′). A
moment’s thought should reveal the impossibility of com-
puting the correct θ′ without knowing the depth of the sub-
ject. This is illustrated in Figure 1(b), where the pan angle
is shown to be a function of the depth of the subject.
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Figure 2. Error in centering assuming com-
putational collocation of the optical center on
the rotation axis.

In more detail, if we assume that the optical center and
the centers of pan and tilt are collocated, and the axes align
with the CCD as in Figure 1(a), we calculate the pan angle
as arctan((x− xc)/(kx f )) to center the object in the dynamic
camera. In reality, however, the optical center and the cen-
ters of pan and tilt may not be collocated, and if so, the angle
thus calculated will not be entirely correct as shown in Fig-
ure 1(b). Executing the rotation maneuver will therefore not
center the object. But how large can the error (θ − θ′) be,
and how does that translate into real-world pixel error?

Figure 2 shows the pixel centering error as a function of
the object distance for four different settings of focal length
( f ) and distance from the optical center to the pan (or tilt)
axis (Tp). In the simulation, we use real-world camera pa-
rameters of our Sony PTZ camera [2], where the CCD array
size is 1/3′′ with about 480 pixels per scan line. The object
can be as far as 10 meters, or as close as 1 meter (m), from
the camera. The focal length can be as short as 1 centimeter
(cm) (with > 50o wide fields-of-view) or as long as 15 cm
(with 5o narrow fields-of-view). Inasmuch as the location of
the CCD array is fixed, changing the focal length will dis-
place the optical center, thus altering the distance between
the optical center and the axes. We assume a fixed displace-
ment from the rotation axes to the CCD array to be about 4
cm, which corresponds to the real-world value for the Sony
PTZ cameras. As can be seen, the centering error is small
(less than 5 pixels but never zero) when the object is suffi-
ciently far away. The centering error becomes unacceptable

(> 20 pixels) when the object is getting closer (around 3 m)
even with a modest zoom setting. Obviously, a much more
accurate centering algorithm is needed.

It might seem that the centering problem could be solved
if we either (1) adopt a mechanical design that ensures col-
location of the optical center on the rotation axes, or failing
that, (2) infer the depth of the subject to compute the rota-
tion angle correctly. However, both solutions turn out to be
infeasible because:

• In reality, it is often impossible to design a pan-tilt plat-
form mechanically to ensure that the optical center falls
on the rotation axes. To name a few reasons: (1) The me-
chanical designs have separate pan and tilt mechanisms,
and the rotation axes are displaced with respect to each
other. The optical center cannot lie on both axes at the
same time. (2) A less accurate approach is to use a ball
(or a socket) joint. Ball joints are not very desirable, and
we are not aware of any commercial powered PTZ cam-
eras that adopts this particular design, because of potential
mechanical slippage and free play that degrade pan-and-
tilt accuracy. (3) Finally, even if it were possible to use
a ball joint and position the optical center optimally for a
particular zoom setting, different zoom settings could dis-
place the optical center.
• Depth information is critical for computing the correct

pan- and-tilt angles. However, such information is only
a necessary, not a sufficient condition. Although the pan
angle can be uniquely determined from the x displace-
ment and object depth in the simple configuration in Fig-
ure 1(b), generally nonzero pan- and tilt-angles will affect
both x and y image coordinates. This is because when
a pan-tilt camera is assembled, some non-zero deviation
is likely in the orientation of the axes with respect to the
camera’s CCD. Mathematically, one can verify this cou-
pling by multiplying the terms in Eq 1 and noting that θ
and φ have each appeared in both of the (decidedly non-
linear) expressions for x and y coordinates.

Figure 3. Selective focus-of-attention as a vi-
sual servo problem.
Instead, we formulate this selective, purposeful focus-of-

attention problem as one of visual servo. Our visual servo



framework is modeled as a feedback control loop shown in
Figure 3. This servo loop is repeated over time. As men-
tioned, the stationary cameras perform visual analysis to
identify the current state (RGB, texture, position, and veloc-
ity) of the suspicious persons/vehicles. A similar analysis is
performed by the dynamic cameras under the guidance of
the stationary camera. Image features of the subjects (e.g.,
position and size of a car license plate or the face of a per-
son) are computed and then serve as the input to the servo
algorithm (the real signals). The real signals are compared
with the reference signals, which specify the desired po-
sition (e.g., at the center of the image plane) and size (e.g.,
covering 80% of the image plane) of the image features. De-
viation between the real and reference signals generates an
error signal that is used to compute a camera control signal
(i.e., desired changes in the pan, tilt, and zoom DOFs). Ex-
ecuting these recommended changes to the camera’s DOFs
will train and zoom the camera to minimize the discrep-
ancy between the reference and real signals (i.e., to center
the subject with a good size). Finally, as we have no con-
trol over the movements of the surveillance subjects, such
movements must be considered external disturbance (noise)
in the system.

In this paper, we do not address the video analysis and
feature extraction processes, as there are many standard
video analysis, tracking, and localization algorithms that
can accomplish these. Instead, we discuss the detail of how
to generate the camera control signals below.

Visual servo is based on Eq. 1 that relates the image coor-
dinate to the world coordinate for the PTZ cameras. Assume
that we sample at the video frame rate (30 frames/second)
and at a particular instant we observe the tracked object at
a location in the dynamic camera. Then, the questions we
address here are:
1. Generally, what is the effect of changing the camera’s

DOF ( f , θ, φ) on the tracked object’s 2D image location?

2. Specifically, how can we manipulate the camera’s DOFs
to center the object?

One can expect, by a cursory examination of Eq. 1, that
the relationship between image coordinates and the cam-
era’s DOFs to be fairly complicated and highly nonlinear.
Hence, a closed-form solution to the above two questions is
not likely. Instead, we linearize the problem by rearrang-
ing terms in Eq. 1 and taking the partial derivative of the
resulting expressions with respect to the control variables
( f , θ, φ). Taking partial derivatives of xr = f kx

xi
zi
+ xo and

yr = f ky
yi

zi
+ yo, where xo and yo are the corresponding pro-

jection centers in the CCD we have:

dxr = kx
xi

zi
d f + f kx

(

∂(xi/zi)
∂θ

)

dθ + f kx

(

∂(xi/zi)
∂φ

)

dφ

dyr = ky
yi

zi
d f + f ky

(

∂(yi/zi)
∂θ

)

dθ + f ky

(

∂(yi/zi)
∂φ

)

dφ (3)

Eq. 3 can be represented in matrix form as follows:
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where kx and ky are the scale factors to convert real-world
units into pixel in the x and y directions respectively. The
expression of the Jacobian matrix J is a complicated and
is not presented due to space constraints. However, it is a
simple mathematic exercise to figure it out. The expression
in Eq. 4 answers the first question we posed above. The
answer to the second question is then obvious: we substitute
[xc − x, yc − y]T for [dxr, dyr]T in Eq. 4 because that is the
desired centering movement.

However, as Eq. 4 represents a linearized version of the
original nonlinear problem (or its first-order Taylor series
expansion), iterations are needed to converge to the true so-
lution. Actually, the need for iterations does not present a
problem, since computation is efficient and convergence is
fast even with the simple Newton’s method. In our exper-
iments, convergence is always achieved within four itera-
tions with ≈ 1/10, 000 of a pixel precision. Two final points
worth mentioning are:
1. First, there are two equations (in terms of x and y dis-

placements) and three ( f , θ, φ) variables. Hence, it is not
possible to obtain a unique solution. Our formulation ma-
nipulates (θ, φ) to control (x, y) to achieve the desired cen-
tering results. Once the object is centered, we use ( f ) to
control the change in the object’s size. That way, we have
two DOFs with two equations to center a tracked object:

[

dxr

dyr

]

=















f kx

(

∂(xi/zi)
∂θ

)

f kx

(

∂(xi/zi)
∂φ

)

f ky

(

∂(yi/zi))
∂θ

)

f ky

(

∂(yi/zi)
∂φ

)















[

dθ
dφ

]

,

= Jc

[

dθ
dφ

]

. (5)

It is easy to verify that Jacobian Jc is well conditioned and
invertible using an intuitive argument. This is because the
two columns of the Jacobian represent the instantaneous
image velocities of the tracked point due to a change in
the pan (θ) and tilt (φ) angles, respectively. As long as the
instantaneous velocities are not collinear, Jc has indepen-
dent columns and is therefore invertible. It is well known
that degeneracy can occur only if a “gimbal lock” condi-
tion [4] occurs that reduces one DOF. For pan-tilt cameras,
this occurs only when the camera is pointing straight up.
In that case, the pan DOF reduces to a self- rotation of the
camera body, which can make some image points move in
a way similar to that under a tilt maneuver. This condition
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Figure 4. Comparison of calibration accuracy
as a function of experimental setup (using a
CCD of 300 × 300 pixels).

rarely occurs; in fact, it is not even possible for Sony PTZ
cameras because the limited range of tilt does not allow
the camera to point straight up.

2. Second, to uniquely specify the Jacobian, it is necessary
to know the depth of the object. With the collaboration
of stationary and dynamic cameras, it is possible to use
standard stereo triangulation algorithms to obtain at least
a rough estimate of the object depth.

4. Experimental Results
Off-line calibration: We compare the performance of

our algorithm to that used in [3] to illustrate:
1. Theoretically, under the same simulation conditions, our

method produces more accurate results without failure,
while convergence cannot be guaranteed in [3].

2. Practically, our experimental set up using a traditional
calibration mark placed near to the camera produces more
reliable results than the virtual landmark approach of [3],
regardless of the calibration procedure used.

The second claim deserves some explanation. We adopt
the traditional method of using a planar checkerboard pat-
tern placed at different depths before the camera to supply
3D calibration landmarks. While [3] advocates a different
method of generating virtual 3D landmarks by moving an
LED around in the environment. The argument used in [3]
to support the virtual landmark approach is the need of a
large working space to fully calibrate the pan and tilt DOFs.
However, θ ≈ r/d, a large angular range can be achieved by
either (1) placing a small calibration stand (small r) nearby
(small d) or (2) using dispersed landmarks (large r) placed
far away (large d).

Our reason of using a small volume is that to calibrate Tp

and Tt accurately, we want their effects to be as pronounced
as possible in image coordinates. This makes a near-field
approach better than a far-field approach. As seen in Fig-
ure 2, when the object distance gets larger, whether or not
the optical center is collocated with the axes of pan and tilt

Measurement Metric Ref [3] Ours
Mean % error in axis positions 51.76% 35.48%
Mean error in axis orientation 1.54 rad 0.22 rad

Table 1. Comparison of calibration accuracy.
For [3], 51% simulation runs failed to converge.
If the simulation did converge, 85 iterations
were needed in average.

(Tp and Tt) becomes less consequential. Coupled with the
localization errors in 3D and 2D landmarks, this makes it
extremely difficult to calibrate Tp and Tt accurately using
the approach presented in [3].

Another reason is that to provide the same angular cali-
bration range, using the same focal length and CCD, would
imply that the CCD’s fixed and limited spatial resolution is
used to cover either a small spatial range (r) in a near field or
a large spatial range in a far field. Hence, the spatial resolu-
tion power necessarily becomes poorer when the calibration
markers are placed afar. Figure 4 verifies the calibration er-
ror as a function of the volume occupied by the 3D calibra-
tion marks. As we shrank down the volume in front of the
camera, the error in calibrating Tp and Tt dropped for both
techniques as expected.

We validated the first claim this way: We conducted 100
synthetic experiments. In each experiment, we generated
50 3D landmarks randomly in an volume (similar to the
one used in [3]). We projected these 50 landmarks using a
synthetic camera that closely mimicked the real-world Sony
EVI-D30 camera. We then applied both calibration proce-
dures to estimate the pan and tilt camera parameters using
these 50 2D and 3D coordinates. Because we did not have
the codes of [3], we used Matlab’s built-in nonlinear opti-
mization function fmincon instead. In all simulation runs,
we had chosen the initial guess of Tp and Tt to be zero,
and np and nt to be parallel to the CCD’s y and x axes. We
report the errors in calculating both the axis position and
orientation in Table 1, averaged over these 100 runs.

For [3], we also recorded the percentage of times the al-
gorithm failed to converge, and if it did converge, the num-
ber of iterations needed. As can be easily seen in Table 1
that under the same experimental conditions, our algorithm
obtained more accurate results and did not suffer from con-
vergence problem.

Experimental results using real images are summarized
in Figure 5. We use Sony EVI-D30 cameras in our exper-
iments [2]. The image size used is 768 × 480 pixels. Fig-
ure 5(a) shows the calibration results for θ̂ = g(θ) and the
best linear fit. As can be seen, the realized pan angles match
well with the requested angles even for large rotations. Sim-
ilar good results are obtained for φ̂ = g(φ) (not shown here).
To estimate Tp( f ) we repeat the calibration procedures for
a wide range of pan angles (θ = 5o to 40o in 5o increment).
The final Tp values are obtained by averaging the Tp values



(a) Relation between requested and realized angle of
rotation for Sony PTZ camera.

(b) Mean projection error as a function of pan angle (c) Mean projection error as a function of depth for
our model and naı̈ve models.

Figure 5. Off-line Calibration

(a) Centering error for non-zero dis-
placement of pan/tilt axis.

(b) Centering error as a function of dis-
placement of pan/tilt axis.

(c) Centering error as a function of
misalignment of pan/tilt axis.

(d) Effect of zoom on centering error.

Figure 6. Centering errors under various experimental conditions

for different pan angles. The values for Tt are obtained in a
similar fashion. For Sony cameras, our results show that the
axes are well aligned with the camera’s CCD. It enables the
use of less expensive and less accurate motorized mounts
for maneuvering dynamic cameras.

In Figures 5(c) and 5(b) we compare our model with
two naı̈ve models: one assuming collocated centers (i.e.,
the optical center is located on the pan and tilt axes) and
orthogonal axes (i.e., the axes are aligned with the CCD),
and the other assuming independent centers but orthogo-
nal axes. The mean projection errors in Figures 5(c) and
5(b) are obtained for all three models (ours and two naı̈ve
ones) by (1) mathematically projecting 3D calibration land-
marks onto the image plane using the camera parameters
computed based on these three models, and (2) comparing
the observed landmark positions with the mathematic pre-
dictions and averaging the deviations. Figure 5(c) shows the
mean projection error as a function of pan angle. As seen
in Figure 5(c), the performance of the naı̈ve models is much
worse than ours. Figure 5(c) suggests that the naı̈ve models
could completely lose track of an object at high zoom. At
a pan angle of 45o the projection error of the naı̈ve models
can be as large as 38 pixels at ∼ 1 m!

In Figure 5(b) we show the mean projection error as
the depth of the calibration landmarks from the camera
changes. As evident the projection error gets smaller as the
object moves further away from the camera. However even
at large distances the performance of our model is much

better than that of the naı̈ve one. It could be argued that a
correct model like ours is important only when the object is
close to the camera. However, surveillance cameras often
have to zoom at a high value (as high as 20x). In such cases
the object appears very close to the camera, and the projec-
tion error becomes unacceptable for the naı̈ve models.

On-line focus-of-attention: We conducted experiments
using both synthesized and real data. For synthesized data,
we compared the accuracy of our algorithm with that of a
naı̈ve centering algorithm. The naı̈ve algorithm makes the
following assumptions: (1) the optical center is collocated
on the axes of pan and tilt, and (2) the pan DOF affects only
the x coordinates whereas the tilt DOF affects only the y co-
ordinates. While those assumptions are not generally valid,
algorithms making those assumptions can and do serve as
good baselines because they are easy to implement, and give
reasonable approximations for far-field applications.

In more detail the naı̈ve algorithm works as follows: As-
sume that a tracked object appears in the dynamic cam-
era at location pi = [xi/zi, yi/zi, 1]T as defined in Eq. 3.
We apply pan rotation in the y direction as p′i = Ry(θ)pi,
and tilt rotation in the x direction as p′′i = Rx(φ)p′i , where
θ = arctan((x − xc)/(kx f )) and φ = arctan((y′ − yc)/(ky f )).
To make the simulation realistic, we use the parameters of
Sony PTZ cameras. Figure 6(a) compares the centering er-
ror (in pixels) of our method and the naı̈ve method with
different starting image positions. Here we assume that the
distances from the optical center to the panning and tilt axes



(a) Before Centering (Depth=50cm).

(b) After Centering (Depth=50cm).

(c) Before Centering (Depth=100cm).

(d) After Centering (Depth=100cm).

(e) Before Centering (Depth=200cm).

(f) After Centering (Depth=200cm).

(g) Before Centering (Depth=327cm).

(h) After Centering (Depth=327cm).

Figure 7. Focus-of-attention experiments using real video

are 5 cm (Tp) and 2.5 cm (Tt), respectively. These val-
ues are chosen to be similar to those of Sony cameras. A
depth of ∼ 1m is assumed. The error of our method is less
than 0.01 pixels for any starting point and convergence is al-
ways achieved in 4 iterations or less. By contrast, the naı̈ve
method, which does not take into account the displacement
of the pan/tilt axes from the optical center, can be seen to
center the point inaccurately, with errors as large as 14 pix-
els. Figure 6(b) shows similar results as 6(a), except that a
single starting location is assumed (the upper-left corner of
the image) and the centering error is displayed as a function
of the displacements of the pan and tilt axes.

Another source of error of the naı̈ve method involves the
possible misalignment of the pan/tilt axes. While the naı̈ve
method assumes that the axes are perfectly aligned with the
CCD, in reality some deviation should be expected. Fig-
ure 6(c) compares the accuracy of our method and the naı̈ve
method when axes are not perfectly aligned. We use a sin-
gle starting location and plots centering error as a function
of the misalignment of the pan and tilt axes. Again, our
method gives almost perfect results while the naı̈ve algo-
rithm’s results are sensitive to error in axes alignment.

Figure 6(d) exhibits the effect of introducing zoom. In-
tuitively, it makes sense that increasing zoom, for a given
object depth, will cause the error of the naı̈ve method to in-
crease. This can be understood as zoom causing an object’s
effective depth to decrease. A smaller effective depth means
that the effect of a non-zero pan/tilt axis displacement will
be more significant to the centering problem. In this graph,
the centering error is plotted as a function of zoom factor for
various depths, and, as anticipated, increasing zoom lowers
the accuracy of the naı̈ve centering algorithm. Thus, it is
clear that when the camera exploits its zoom capabilities
(as is typically the case for surveillance), the use of a pre-
cise centering algorithm becomes even more critical.

We test the performance of the centering algorithm on
real data as well. A person is made to stand in front of the
camera at an arbitrary position. The centering algorithm
then centers the tip of the nose of the person. Figure 7
shows the centering achieved using our proposed method.
The center of the screen has been marked by dotted white
lines and the nose tip by the white square, both before and
after centering. The centering error reduces as the object
gets farther away from the camera; however, the centering
results are good even when the object (the face) gets as close
as 50 cm to the camera.

5. Conclusions
We have presented algorithms for off-line calibration

and on-line selective focus-of-attention using stationary-
dynamic camera assemblies. We have supported our claims
of robustness and accuracy through extensive validation.
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