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Abstract

This paper reports a technique that improves the ro-
bustness and accuracy in computing dense optical-flow
fields. We propose a global formulation with a regu-
larization term. The regularization expressions are de-
rived based on tensor theory and complex analysis. It is
shown that while many regularizers have been proposed
(image-driven, flow-driven, homogeneous, inhomogeneous,
isotropic, anisotropic),they are all variations of a single
base expression∇u∇uT + ∇v∇vT . These regularizers,
strictly speaking, are valid for uniform2D translationalmo-
tion only, because what they do essentially is to penalize
changes in a flow field. However, many flow patterns—such
as rotation, zoom, and their combinations, induced by a 3D
rigid-body motion—arenot constant. The traditional reg-
ularizers then incorrectly penalize these legal flow patterns
and result in biased estimates. The purpose of this work is
then to derive a new suite of regularization expressions that
treat all valid flow patterns resulting from a 3D rigid-body
motion equally, without unfairly penalizing any of them.

1. INTRODUCTION
We address the problem of computing the optical-flow

fields induced by rigid-body motions in space. The formula-
tion uses regularization, with the regularization expressions
derived based on tensor theory and complex analysis. The
proposed framework is applicable to the scenarios where
a static scene (or a dynamic scene with independently, but
rigidly, moving objects) is viewed by a moving camera or
observer, such as in mobile robotic applications. .

2. METHODS
We propose to investigate the problem of designing flex-

ible and robust regularizers in a combined local-global
framework [1], using tensor theory and complex analy-
sis. As shown in Table1, while many regularizers have
been proposed (image-driven, flow-driven, homogeneous,
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inhomogeneous, isotropic, anisotropic), we argue thatthey
are all variations of a single base expression∇u∇uT +
∇v∇vT . However,∇u∇uT + ∇v∇vT and its variations
arevalid for uniform 2D translational motion only, because
what these regularizers do essentially is to penalizechanges
in the flow field. Some [5] will do it blindly, while others
will do it only at certain locations ([10]) or along certain
directions ([9]). Still others will use a robust norm to mini-
mize the influence of the outliers ([2, 8, 7]).

Should the legal flow fields be restricted to uniform
translational only? One can easily envision many other flow
patterns that are observed as a result of a 3D rigid-body mo-
tion. E.g., if the camera is advancing toward (or away from)
some object, the observed flow field shows a zoom (in or
out) pattern. If the camera is observing, say, a revolution in
a 2D plane head-on, the flow field will be a 2D rotation.In
both cases (and many others), the flow fields arenot con-
stant. The regularizers in Table1 then incorrectly penalize
these legal patterns and may result in biased estimates.

A more rigorous proof of this phenomenon is given be-
low: Consider an object undergoing a rigid-body motion
in space. Lett and t′ denote two time instants when the
object is imaged. The movement of a point on the object
P = [X, Y, Z]T at t to P′ = [X ′, Y ′, Z ′]T at t′ is given by
(assuming thatδt = t′ − t = 1)
P

′ = P+Ω×(P−Po)+T = P+Ω×P−Ω×Po+T , (1)

whereΩ = [ΩX , ΩY , ΩZ ]T represents the instantaneous
angular velocity, andT = [Tx, Ty, TZ]T the instantaneous
linear velocity of the object, andPo is any point on the
rotation axis. AsΩ× Po is a constant, we absorb this term
into the linear velocityT. At a slight abuse of notation, we
still useT to represent the combined quantityT−Ω×Po.

We assume an idealized pinhole camera model and the
perspective projection equationsx = X/Z andy = Y/Z.
Based on Eq.1, the flow velocityu = [x′ − x, y′ − y]T can
be shown [6] to decompose into six components in Table2,
induced by the six valid degrees-of-freedom (DOFs)—three
translational and three rotational—of a rigid 3D motion.
Using those definitions, we have

u = uTX
+ uTY

+ uTZ
+ uΩX

+ uΩY
+ uΩZ

(2)



Table 1. Different incarnations of the base regularizationexpression∇u∇uT +∇v∇vT , whereg is a decreasing, strictly positive function,
λ is a weighting factor, andh is a convex function representing a robust error norm.

Expression Citation Property

tr(∇u∇uT + ∇v∇vT ) [5] homogeneous and isotropic
g(∇I)(tr(∇u∇uT + ∇v∇vT )) [10] inhomogeneous and isotropic, image-driven

tr

(

1
|∇I|2+2λ2

[

∇uT

∇vT

]

([

∇I⊥∇IT
⊥

]

+ λ2I
)

[∇u | ∇v]

)

[9] inhomogeneous and anisotropic, image-driven

h(tr(∇u∇uT + ∇v∇vT )) [2, 8] inhomogeneous and isotropic, flow-driven
tr

(

h(∇u∇uT + ∇v∇vT )
)

[7] inhomogeneous and anisotropic, flow-driven

Table 2. The six flow components that are induced by the six DOFs
of a 3D rigid-body motion.

DOF Constraint u = [u, v]T

X trans T{Y,Z} = Ω{X,Y,Z} = 0 uTX
= [TX/Z, 0]

Y trans T{X,Z} = Ω{X,Y,Z} = 0 uTY
= [0, TY /Z]

Z trans T{X,Y } = Ω{X,Y,Z} = 0 uTZ
= −TZ [ x

Z
, y

Z
]

X rot T{X,Y,Z} = Ω{Y,Z} = 0 uΩX
= −ΩX [xy, 1 + y2]

Y rot T{X,Y,Z} = Ω{X,Z} = 0 uΩY
= ΩY [1 + x2, xy]

Z rot T{X,Y,Z} = Ω{X,Y } = 0 uΩZ
= ΩZ [−y, x]

What is significant about the decomposition in Eq.2 is that,
of the six valid image flow patterns resulting from a 3D
rigid-body motion, only two of them,uTX

anduTY
, can be

consideredroughlyconstant and translational—assuming a
small image patch and a constant object depthZ. Other
valid flow patterns include rotation (uΩZ

), zoom (uTZ
), and

more complicated patterns (uΩX
and uΩY

that represent
non-uniform translational fields), which arenot constant.
The regularizers in Table1 thus incorrectly penalize these
four valid flow patterns and their combinations.

Our goal is then to derive a new set of regularization ex-
pressions that treat all six valid flow patterns and their com-
binations equally, without unfairly penalizing any of them.1

Furthermore, we will show that our regularization expres-
sions have the following novel features:

• We demonstrate that the design of the new regularizers is
firmly rooted in tensor theory and complex analysis. The
validity can be proven mathematically.

• The new regularization expressions contain only the
quadratic terms of the unknown flow variables and their
derivatives. Because the variational derivatives of a
quadratic expression result in equations that are linear
in the unknowns [11, 3], this enables the resulting equa-
tions to be solved efficiently using linear algebra methods.
Hence,the new regularizers are not any more expensive
computationally but provide more accurate results.

• The regularization terms work readily with the combined
local-global technique [1] and can be used in both the
image-driven and the flow-driven formulations.

Our analysis is inspired by the stress-strain tensor analy-
sis in 2D continuum mechanics [4]. Continuum mechanics

1We demonstrate the design and use of the component regularizers in
this paper. How to use them together synergistically will bereported in
another forthcoming paper.

deal with the force (stress) applied to a solid and the result-
ing deformation (strain). We can draw an intuitive analogy
as follows: Consider the perspective projection of a 3D ob-
ject in two images at timet andt′. The corresponding im-
age pointsp = [x, y]T andp′ = [x′, y′]T are related by
p′ = p + u (assuming, again,t′ − t = 1). If we treatp and
p’ as the configurations of the object’s projection before and
after a 2D force is applied, theflow field u then describes
essentially the same phenomenon as thedisplacementfield
of a solid deformed by the presence of (2D) stress.

Many useful tensor expressions are available from
the stress-strain analysis to characterize the displacement
(hence the flow) fields. For example, it is known that for the
displacement to represent a rigid-body motion, it is neces-
sary and sufficient that the Lagrange strain tensor vanishes
everywhere in the body [4]

E =
1

2

»

2ux + uxux + vxvx uy + vx + uxuy + vxvy

uy + vx + uxuy + vxvy 2vy + uyuy + vyvy

–

(3)
While the Lagrange strain tensor is mathematically exact, it
contains product terms that make the expression nonlinear.
A simpler expression, called the engineering strain tensor,
drops the product terms to obtain

E =

[

ux
1
2 (uy + vx)

1
2 (uy + vx) vy

]

. (4)

The engineering strain tensor is an approximate expression
and is valid only for small deformations.2 Nonetheless,
we base our regularizers on the engineering strain to keep
the regularization expressions simple. Furthermore, expres-
sions in Table2 are approximations, closer in spirit to Eq.6
rather than Eq.5. Hence, using the full machinery of the La-
grange strain is not justified unless a correspondingly exact

2 The difference between Eq.3 and 4 can best be understood by an
example. A pure rotation (a rigid-body motion) should induce no strain
(deformation). An exact representation of a 2D rotation is

p
′ =

»

cosθ −sinθ
sinθ cosθ

–

p, u = p
′−p =

»

cosθ − 1 −sinθ
sinθ cosθ − 1

–

p

(5)
which, when the rotation angle is small, can be approximatedas

p′
≈

»

1 −θ
θ 1

–

p, u = p′
− p ≈

»

0 −θ
θ 0

–

p . (6)

It is then a simple exercise to show thatu in Eq. 5 satisfies the Lagrange
strain in Eq.3 exactly but not the engineering strain in Eq.4, while u in
Eq.6 satisfies the engineering strain in Eq.4 exactly but not the Lagrange
strain in Eq.3.



formulation is made in all other expressions. Finally, one
recalls that a regularization expression should begenerally
valid, but not necessarilyalwaysandexactlytrue. Hence, a
complicated expression is probably not justified, especially
if it incurs significant computational costs.

If the engineering strain tensor expression in Eq.4 is
used as the regularizer

R ≡ ‖E‖2
F (7)

where‖E‖F =
√

∑

i

∑

j E2
ij is the Frobenius norm of a

matrix, one can immediately verify that it helps in prop-
erly handling not only the pure translational cases (uTX

anduTY
) but also the pure rotational case (uΩZ

, which the
regularizers in Table1 penalize incorrectly). This is be-
cause the traditional regularizertr(∇u∇uT + ∇v∇vT ) is
the same as the square of the Frobenius norm of the matrix
∇u = [∇u ∇v], which is called the deformation gradient
tensor [4]. ∇u can be decomposed as

∇u =
1

2
(∇u + ∇uT ) +

1

2
(∇u −∇uT ) (8)

into a symmetric part and an anti-symmetric part. It can
be easily verified that the symmetric part is identical to the
engineering strain tensorE in Eq. 4. The anti-symmetric
part actually captures the amount ofrotationexecuted at this
point by the image. If pure rotations (seeuΩZ

in Table2)
are not to be penalized by the regularizer, then clearly this
term must be suppressed. This leaves the engineering strain,
which is the expression we are advocating (due to its zero
value for this scenario).

We now turn to the problem of allowing another com-
monplace flow pattern: uniform rescaling (or “zoom” which
can result from an actual zoom operation or a forward cam-
era motion). To accomplish this and still retain the proper
handling of image rotations, the regularizer requires some
modification. Using the engineering strain tensor as our
“building block,” the new expression below allows (i.e.,
does not incorrectly penalize) flow fields that are composed
of any arbitrary combination of 2D translation, rotation,
and zoom movements,but it allows no others. This includes
all 2D rigid-body motions (with or without zoom) as well as
commonplace real-world motions involving some physical
rescaling (such as sequenced satellite images of a hurricane,
where all three of our listed modes—translation, rotation,
and rescaling—are simultaneously present).

The regularization expression is made up of two terms,
which require the following equations to be satisfied:

2tr(E2) − (trE)2 = 0 divE = 0 (9)

wherediv is the divergence operator[∂/∂x, ∂/∂y]. While it
may not be immediately apparent why such a regularization
expression is used, we prove in the following theorem that
the conditions stipulated in Eq.9 are exactly the ones that
are satisfied by the flows made of a combination of some 2D
translation, rotation, and zoom motions,but nothing else.

In more detail, if the pixel movements between two im-
ages are a combination of some 2D translation, rotation, and
zoom, we can relate the corresponding pixels as

p′ = ρRp + t (10)

whereR is a 2D rotation matrix,t a 2D translation vector,
andρ(6= 0) a scalar. Then the flow fieldu is

u = p′ − p = (ρR − I)p + t = ρ′R′p + t (11)

whereR′ is still a rotation andρ′ a scalar.3 We now proceed
with the following theorem.
Theorem: A flow field u = [u, v]T represents an arbi-
trary combination of some 2D translation, rotation, and uni-
form rescaling if and only if2tr(E2) − (trE)2 = 0 and
divE = 0, whenu is used as the displacement field in the
engineering tensor expressionE.
Proof: We first prove the “if” part. Ifu is defined by Eq.11
using a rotation angle ofθ′, then it is easily verified that the
resulting engineering strain tensor is given by

E =

[

ρ′cosθ′ 0
0 ρ′cosθ′

]

(12)

in this case2tr(E2)− (trE)2 = 4ρ′2cos2θ′−4ρ′2cos2θ′ =
0, anddivE = 0 sinceE is a constant tensor.

To prove the “only if” part, we note that
2tr(E2) − (trE)2 = 2(u2

x + 1

2
(uy + vx)2 + v2

y) − (ux + vy)2

= u2
x − 2uxvy + v2

y + (uy + vx)2

= (ux − vy)2 + (uy + vx)2 = 0
(13)

divE =
[

∂
∂x

∂
∂y

]

[

ux
1
2 (uy + vx)

1
2 (uy + vx) vy

]

=
[

uxx + 1
2 (uyy + vxy) 1

2 (uxy + vxx) + vyy

]

= 0
(14)

If Eq. 13 is true, we have

ux = vy uy = −vx. (15)

which leads to
uy = −vx =⇒ ∂uy/∂x = −∂vx/∂x =⇒ uxy + vxx = 0
uy = −vx =⇒ ∂uy/∂y = −∂vx/∂y =⇒ uyy + vxy = 0

(16)
Eq.14 is then simplified by means of Eq.16, yielding

divE = [uxx vyy] = 0. (17)

In Eq.17, uxx = 0 implies thatu = f1(y)x + f2(y). Sim-
ilarly vyy = 0 implies thatv = g1(x)y + g2(x). However,
ux = vy from Eq. 15 requiresf1(y) = g1(x) = a, and
uy = −vx from Eq.15 requires thatf ′

2(y) = −g′2(x) = b,
orf2(y) = by+c andg2(x) = −bx+d. Putting these terms
intou andv, we obtainu = ax+by+c andv = ay−bx+d.
Definingρ =

√
a2 + b2, we obtain

u =

»

a b
−b a

– »

x
y

–

+

»

c
d

–

= ρ

"

a
ρ

b
ρ

− b
ρ

a
ρ

#

»

x
y

–

+

»

c
d

–

(18)

3The proof that a unique orthogonalR′ satisfying Eq.11can always be
found is not derived here. It is fairly straightforward and depends mainly
on an application of the cosine rule [11].



This resulting matrix is indeed an orthogonal matrix, yield-
ing the desired combination of a translation (by[c, d]T ), a
rotation (byθ = −tan−1 b

a
), and a scaling (byρ). �

Several observations can be made about the new regu-
larization expressions in Eq.9. First, Eq.9 is equivalent
to Eqs.13 and17, whose enforcement requires an expres-
sion no higher than quadratic inu andv (and their deriva-
tives). Hence, the governing equations resulting from the
variational derivatives will be linear in these variables.Sec-
ond, the expressions state that the flow fields satisfying
ux = vy and uy = −vx should not be penalized. If
we think of a flow field as a complex functionf(z) =
u(x, y) + iv(x, y), z = x + iy, then the above requirement
corresponds to the well known Cauchy-Riemann Equations
from the field of complex analysis [14]. Complex func-
tions that satisfy the Cauchy-Riemann Equations are called
analytic or holomorphic, and holomorphic functions in the
complex domain have convergent Taylor series [14]

f(z) = f(zo) + f ′(zo)(z − zo) + f ′′(zo)
2 (z − zo)

2 · · · ,

f(z) = f(zo) + reiθ(z − zo) + f ′′(zo)
2 (z − zo)

2 + · · ·
(19)

In our context, the 0th-order term corresponds to a constant
translation (u(x, y) = u(xo, yo) andv(x, y) = v(xo, yo)),
and the 1st-order term corresponds to either a rotation (due
to nonzeroθ), a zoom (due to non-unityr), or some com-
bination of both. Hence, the Cauchy-Riemann equations
express the fact that a holomorphic complex function maps
a 2D space to a new space, such that alocal neighborhood
of points is acted upon by a translation, a rotation, and an
isotropic (or uniform) rescaling. However, this statementis
truelocally only, and as such still admits a large class of 2D
flows. To enforce the conditions in amore widespread man-
ner (i.e., beyond an infinitesimal neighborhood) requires
some additional constraint, which we now address.

We show in the following lemma thatdivE = 0 corre-
sponds tof ′′(z) = 0. Using the fact that

f (n) =
d(n−2)

dz(n−2)
f ′′ n > 2 , (20)

an identically vanishing second derivative implies that all
higher derivatives vanish as well. Hence,f is constrained
to be of the formf(zo) + reiθ(z − zo). The condition can
thus be seen to be equivalent to a narrowing of the available
pool of functions to only the linear ones. This corresponds
to flow fields that are some combination of translation, ro-
tation, and zoom componentsover an extended region(i.e.,
a non-infinitesimal neighborhood). The stated equivalency
is now proven in the lemma below.

Lemma: div E=0 if and only if f ′′(z) = 0, where
f(z) = u(x, y) + iv(x, y).

Proof: By definition, the derivatives of ananalyticcom-
plex function can be evaluated alonganydirection at a point
and always yield the same value [14]. In particular, taking
the derivatives along thex andiy directions gives

f ′′ = uxx + ivxx f ′′ = −uyy − ivyy (21)

The matching real and imaginary components can then be
equated and this fact then used to yield:

f ′′ = uxx − ivyy (22)

(This can also be verified by the fact that the components of
an analytic complex function must be harmonic [14], i.e.,
vxx + vyy = 0.) Assuming here that the Cauchy-Riemann
condition is true and also recalling that this condition im-
plies Eq.16, we can rewrite the above equation as:

f ′′ = uxx +
1

2
(uyy +vxy)− i(vyy +

1

2
(uxy +vxx)) . (23)

Comparing Eqs.14and23shows that they have identicalu
components and theirv components differ only by a sign.
Thus if one expression is zero, so must the other (and vice-
versa). This establishes the equivalence of the strain formu-
lation (Eq.9) and the complex function formulation. �

Table 3. Legal flow patterns induced by a 3D rigid-body motion
and their regularization expressions.

DOF Regularization expressions
X translation R1 = u2

x + u2
y + v2

x + v2
y

Y translation R2 = u2
x + u2

y + v2
x + v2

y

Z translation R3 = (ux − vy)2 + u2
y + v2

x

X rotation R4 = (2ux − vy)2 + v2
x + u2

yy

Y rotation R5 = (ux − 2vy)2 + u2
y + v2

xx

Z rotation R6 = (uy + vx)2 + u2
x + v2

y

2D motion (rot, R2D = (ux − vy)2 + (uy + vx)2

trans, and scale) +u2
xx + v2

yy

In Table3 we introduce a new suite of regularization ex-
pressions that specifically target the perspective-projection-
based flow patterns enumerated in Table2.4 The readers can
apply the new regularizers (R3 to R6) to the corresponding
flow fields uTZ

,uΩX
,uΩY

, anduΩZ
in Table2 to verify

that they vanish (do not penalize) for the particular type of
motion indicated but are nonzero (penalize) for the other
types. Note that all the new expressions admit a pure trans-
lational motion (∇u ≈ 0,∇v ≈ 0) as a special case.

One observes that all new regularizers contain no higher
than the quadratic (2nd-order) terms of the derivatives of the
flow variables. This is significant as we can show that the
variational derivatives of the cost expression then contain
only linear terms of the flow variables and their derivatives,
and hence, the resulting system of equations is linear and
can be solved using linear algebra methods.

3. EXPERIMENTAL RESULTS
We compare the proposed algorithm against the CLG

algorithm [1], which is considered one of the best avail-
able for computing the flow field [12]. We use the same

4Assume thatZ is roughly constant for a small patch, so both 3DX
andY translations result in constant flow fields andR1 andR2 are the
same. The proof ofR4 is given in the Appendix. The proofs of other
regularizers are similar and will not be repeated here.



(a) (b) (c)

(d) (e) (f)
Figure 1. (a) A zoom flow (uTZ

case 2), (b) A divergent trans-
lational flow (uΩX

case 4), (c) A divergent translational flow
(uΩY

case 6), (d) A rotational flow (uΩZ
case 9), (e) a 2D flow

fields (case 11) by combining rotation (uΩZ
), translation (uTX

anduTY
), and zoom (uTZ

), and (f) the texture pattern used.

advanced features in the CLG technique, but replace the
traditional regularizer with the new ones. More specifi-
cally, the iterative successive over-relaxation (SOR) method
is used [13] for numerical solution. Furthermore, we adopt
the multi-resolution technique to incrementally compute the
optical-flow field using a coarse-to-fine strategy [1]. The
flow fields are computed using an image pyramid. The
flows at the coarser scales are used to position (warp) the
image at the next finer scale so that only the motionin-
crementsneed to be computed. The final flow field is the
summation of all the flow increments.

Synthetic Data. We use twelve spatially-varying flow
patterns:uTZ

corresponds to a zoom-out pattern with the
focus-of-expansion (FOE) at the center (1) or a corner (2)
of the image. We also use a zoom-in pattern with the FOE at
the corner (3). uΩX

represents a non-uniform translational
flow field with the rotation axis aligned with the center (4)
or an edge (5) of the image. Similarly we have two cases,
6 and7, for uΩY

. uΩZ
represents a rotational field. Again,

two cases (8 and9) are used with the center of rotation at
the center and a corner of the image. We also generate a
number of 2D flow fields (10, 11, and12) by combining
rotation, translation, and zoom. Sample flow fields (ground
truth) are shown in Fig.1(a)-(e), and the texture pattern used
in simulating the flow patterns is shown in Fig.1(f).

We added different amounts of pixelwise-uncorrelated,
additive Gaussian noise to the images (up to 15% of
the maximum 255 gray levels per pixel) and charted the
performance of the twelve flows under three noise lev-
els in two different ways: (1) Average angular error
(AAE) in Fig. 2, where the angular error is defined as
cos−1 ((ûg · ûc)/(|ûg||ûc|)), û = [u, v, 1]T , and sub-
scriptsg andc denote the ground truth and the computed
flow fields, and (2) Average residual error (ARE) in Fig.3,

Figure 2.Average angular error (in degrees) for different noise levels.

Figure 3.Average residual error (in percentage) for different noiselevels.

where the residual error is defined as|ug − uc|/|ug|.
As can be seen in Fig.2 and3, the proposed regularizers

outperform the traditional ones for all test patterns and noise
levels. Table4 summarizes the average AAE and ARE
for all twelve cases and shows that the proposed method
achieves a three- to six-fold reduction in error.

Table 4. Average AAE and ARE for all test cases.
Figs.2 & 3

noise 0% 5% 15%
Trad New Trad New Trad New

AAE 4.89 0.76 4.31 1.25 6.51 2.04
ARE 11.51 2.19 10.46 3.36 15.17 4.98

Fig. 4
Pics Yosemite Office Street

Trad New Trad New Trad New
AAE 2.07 1.88 5.49 3.78 2.19 1.94
ARE 4.91 4.23 12.08 8.64 5.15 4.44

Standard Test Sequences.The results of applying our
2D regularizer to some standard test sequences are shown
in Fig. 4. From top to bottom: the Yosemite sequence com-
prises both “zoom” (mountain) and translation (sky) mo-
tions. In the Office sequence, the camera performed aZ
translation (a zoom). In the Street sequence, the camera was
panning right while the car was also moving right, but at a
faster speed. In the taxi sequence, the two black cars were
moving to the right while the white taxi was turning. Fig.4
shows that we correctly recover all these motion patterns.
Table4 show that the new regularizer achieved a significant
reduction in both AAE and ARE over the traditional one.



Figure 4. Left: a sample frame in the video sequence. Right: the
computed optical-flow field. From top to bottom: Yosemite, Of-
fice, Street, and Taxi sequences.
(The Taxi sequence does not have ground truth, and hence,
the result was presented in a graphical form only.) Again,
as shown in Table4, We achieved a reduction in AAE of at
least 10% (Yosemite) to as high as 40% (Office).
APPENDIX

Lemma: u = −Ωx[xy, 1 + y2]T + uo = uΩx
+ uo,

whereuo is an arbitrary constant flow field if and only if
(2ux − vy)2 + v2

x + u2
yy = 0.

Proof: The if part is trivially verified. Theonly if part
is proven as follows. Ifvx = 0, we must havev = g(y).
If uyy = 0, we must haveu = f1(x)y + fo(x). Now,
2ux−vy = 0 implies that2f ′

1(x)y+2f ′
o(x) = g′(y), which

means thatf1(x) = cx + d, fo(x) = ax + b, u = (cx +
d)y+(ax+b), g′(y) = 2cy+2a, andg(y) = cy2+2ay+e.

Rewriteu andv as
u = cxy + ax + dy + b

= c(x + d/c)(y + a/c) + b − (ad)/c = cx′y′ + uo

v = c(y2 + 2(a/c)y) + e
= c(y + a/c)2 + c + e − a2/c − c = c(y′2 + 1) + vo

(24)
We see thatu can indeed be expressed as−Ωx[xy, 1 +
y2]T + uo in a “canonical” system wherex′ = x + d/c
andy′ = y + a/c, if we choosec = −Ωx. While the flow
expression changes in different coordinate frames (Eq.24),
(2ux−vy)2 +v2

x +u2
yy is always zero regardless of the val-

ues of ofa, c, andd. Hence, the regularizer can be applied
in anycoordinate system with or without calibration. �
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