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Abstract inhomogeneous, isotropic, anisotropic), we argue they

. ) ) are all variations of a single base expressi®uVu! +
This paper reports a technique that improves the ro- v, v, 7 However VuVu! + vovoT and its variations
bustness and accuracy in computing dense optical-flowyreyaid for uniform 2D translational motion onjyecause
fields. ~We propose a global formulation with a regu- hat these regularizers do essentially is to penafiEnges
Igrlzat|on term. The regularization expressions are de.— in the flow field. Some] will do it blindly, while others
rived based on tensor theory and complex analysis. It is i do it only at certain locations ([0]) or along certain

shown that while many regularizers have been proposedgirections (p]). Still others will use a robust norm to mini-
(image-driven, flow-driven, homogeneous, inhomogeneous ize the influence of the outliersx([s, 7]).

isotropic, anis_otropic),:tphey are alrl variations of a single Should the legal flow fields be restricted to uniform
base expressioNuVu' + VoVu'. These regularizers,  angjational only? One can easily envision many other flow
strictly speaking, are valid for uniforD translationao-  yatems that are observed as a result of a 3D rigid-body mo-

tion only, because what they do essentially is to penalizé(q, £ g. if the camera is advancing toward (or away from)
changes in a flow field. However, many flow patterns—suchg,me opject, the observed flow field shows a zoom (in or
as rotation, zoom, and their combinations, induced by & 3D o1y hattern. If the camera is observing, say, a revolution i
rigid-body motion—arenot constant. The traditional reg- 5 op plane head-on, the flow field will be a 2D rotatidm.
ularizers then incorrectly penalize these legal flow patter  poih cases (and many others), the flow fieldsrecon-
and result in biased estimates. The purpose of this work iSgiant The regularizers in Tablethen incorrectly penalize
then to derive a new suite of regularization expressions tha {ace legal patterns and may result in biased estimates
treat all valid flow patterns resulting from a 3D rigid-body A more rigorous proof of this phenomenon is given be-

motion equally, without unfairly penalizing any of them. low: Consider an object undergoing a rigid-body motion
in space. Let andt¢’ denote two time instants when the
1. INTRODUCTION object is imaged. The movement of a point on the object

We address the problem of computing the optical-flow P = [X,Y, Z]T att to P’ = [ X', Y, Z/]T att’ is given by
fields induced by rigid-body motions in space. The formula- (assuming thait = ¢ — ¢t = 1)
tion uses regularization, with the regularization expi@ss "= P+OX(P-P,)+T=P+OxP-QxP,+T, (1)
derived based on tensor theory and complex analysis. Thewhere2 = [Qx,Qy, Q2|7 represents the instantaneous
proposed framework is applicable to the scenarios whereangular velocity, and@ = [T}, T, Tz|” the instantaneous
a static scene (or a dynamic scene with independently, bulinear velocity of the object, an#, is any point on the
rigidly, moving objects) is viewed by a moving camera or rotation axis. AS2 x P, is a constant, we absorb this term
observer, such as in mobile robotic applications. . into the linear velocityI'. At a slight abuse of notation, we
2 METHODS still useT to repres_ent the Combined quantity— Q@ x P,,.

. , L We assume an idealized pinhole camera model and the
b we pcgopobse to |nve|st|gate the problent;.of c(ijeflgnllnglflgxl- perspective projection equatioms= X/Z andy = Y/Z.
ible and robust regularizers in a combined local-globa ;
framework [1] usin% tensor theory and complex a%laly- Based on Eql, the flow velo_C|tyu — o'~y _y-]T ean
' be shown §] to decompose into six components in Table

Sis. As shown ir_1 Tabld, _vvhile many _regularizers have induced by the six valid degrees-of-freedom (DOFs)—three
been proposed (image-driven, flow-driven, homOgeneous’translational and three rotational—of a rigid 3D motion.

*The author's current address: STI Medical Systems, 733 dish Using those definitions, we have
Street, Suite 3100, Honolulu, HI 96813. u=ur, +up, +ur, +ug, +ug, +ugn, (2)




Table 1. Different incarnations of the base regularizaéirpressiolVuVu” + VoVu™, whereg is a decreasing, strictly positive function,
A is a weighting factor, andl is a convex function representing a robust error norm.

| Expression | Citation | Property |
tr(VuVuT + VovoT) [5] homogeneous and isotropic
g(VI)(tr(VuVuT + VoVoeT)) [10] inhomogeneous and isotropic, image-driver
-
tr (W ng ([VILVIT] 4+ X20) [Vu | Vv]) 9 inhomogeneous and anisotropic, image-driyen
h(tr(VuVuT + VoVoT)) [2,8] | inhomogeneous and isotropic, flow-driven
tr (h(VuVuT + VovoT)) K] inhomogeneous and anisotropic, flow-driven

Table 2. The six flow components that are induced by the six®OF
of a 3D rigid-body motion.

[ DOF ] Constraint [ u=[uT
X trans T{Y,Z} = Q{X,Y,Z} =0 ury = [Tx/Z7 0]
Y trans T{sz} = Q{X,Y,Z} =0 upy, = [O,Ty/Z}
Z trans T{X,Y} = Q{X,Y,Z} =0 ur, = _TZ[%7 %}
X rot T{X,Y,Z} = Q{Y,Z} =0 ug, = —Qx[ry,1+ y2]
Y rot T{X,Y,Z} = Q{X,Z} =0 | ug, = Qy 1+ 1’2,.’L'y}
Z rot T{X,Y,Z} = Q{X,Y} =0 ug, = QZ[—y,m]

What is significant about the decomposition in Edg that,

of the six valid image flow patterns resulting from a 3D
rigid-body motion, only two of themur,, andur,., can be
consideredoughly constant and translationalassuming a
small image patch and a constant object defth Other
valid flow patterns include rotatiom,, ), zoom fr, ), and
more complicated patternsi,, andug, that represent
non-uniform translational fields), which aret constant.
The regularizers in Tablé thus incorrectly penalize these
four valid flow patterns and their combinations.

Our goal is then to derive a new set of regularization ex-
pressions that treat all six valid flow patterns and their com
binations equally, without unfairly penalizing any of thém
Furthermore, we will show that our regularization expres-
sions have the following novel features:

e \We demonstrate that the design of the new regularizers is
firmly rooted in tensor theory and complex analysis. The

validity can be proven mathematically.

e The new regularization expressions contain only the

quadratic terms of the unknown flow variables and their
Because the variational derivatives of a
guadratic expression result in equations that are linear

derivatives.

in the unknowns 11, 3], this enables the resulting equa-

tions to be solved efficiently using linear algebra methods.
Hence,the new regularizers are not any more expensive

computationally but provide more accurate results.

e The regularization terms work readily with the combined
local-global techniquel] and can be used in both the
image-driven and the flow-driven formulations.

Our analysis is inspired by the stress-strain tensor analy-

sis in 2D continuum mechanicg][ Continuum mechanics

1we demonstrate the design and use of the component regutaiiz
this paper. How to use them together synergistically willreported in
another forthcoming paper.

deal with the force (stress) applied to a solid and the result
ing deformation (strain). We can draw an intuitive analogy
as follows: Consider the perspective projection of a 3D ob-
ject in two images at timé andt’. The corresponding im-
age pointsp = [z,y]T andp’ = [2/,y]T are related by
p’ = p + u (assuming, agait, — t = 1). If we treatp and
p’ as the configurations of the object’s projection before and
after a 2D force is applied, th#ow field u then describes
essentially the same phenomenon agdisplacementfield
of a solid deformed by the presence of (2D) stress

Many useful tensor expressions are available from
the stress-strain analysis to characterize the displaceme
(hence the flow) fields. For example, it is known that for the
displacement to represent a rigid-body motion, it is neces-
sary and sufficient that the Lagrange strain tensor vanishes
everywhere in the body/]

1
e=5 |

2Ug + UpUg + VzpUsg

Uy + Vg + Uy + Vg Uy
Uy + Vg + Ug Uy + VaVy

20y + UyUy + Vyvy

While the Lagrange strain tensor is mathematically e(%ct, i
contains product terms that make the expression nonlinear.
A simpler expression, called the engineering strain tensor
drops the product terms to obtain

_ Ug %(uu +vg) :|

E = [ Ly + v2) oy : (4)
The engineering strain tensor is an approximate expression
and is valid only for small deformatiorfs. Nonetheless,
we base our regularizers on the engineering strain to keep
the regularization expressions simple. Furthermore,es«pr
sions in Table are approximations, closer in spirit to Eg).
rather than Ecb. Hence, using the full machinery of the La-
grange strain is not justified unless a correspondinglytexac

2 The difference between E§.and4 can best be understood by an
example. A pure rotation (a rigid-body motion) should indum strain
(deformation). An exact representation of a 2D rotation is

E

5
which, when the rotation angle is small, can be approximaged ©)
I 1 -0 o - 0 -0
p~{01 }p, U—p—p~{90 }p~ (6)
It is then a simple exercise to show thatn Eq. 5 satisfies the Lagrange
strain in Eq.3 exactly but not the engineering strain in Eg.while u in
Eq. 6 satisfies the engineering strain in Egexactly but not the Lagrange
strain in Eq.3.

—sinb
cosf — 1

cosf — 1
sinf

—sinb
cost

’ cost M=Dp —b =
P sind p, u=p'-—p=



formulation is made in all other expressions. Finally, one
recalls that a regularization expression shouldybererally
valid, but not necessarilglwaysandexactlytrue. Hence, a
complicated expression is probably not justified, esphcial
if it incurs significant computational costs.

If the engineering strain tensor expression in Egs
used as the regularizer

R=|E|% (7)

— 2 i
where||E[|r = />, >, E7; is the Frobenius norm of a

matrix, one can immediately verify that it helps in prop-
erly handling not only the pure translational cases(
andur, ) but also the pure rotational case, , which the
regularizers in Tablel penalize incorrectly). This is be-
cause the traditional regularizer(VuVu® + VoVoT) is

In more detall, if the pixel movements between two im-
ages are a combination of some 2D translation, rotation, and
zoom, we can relate the corresponding pixels as

p' = pRp+t (10)

whereR is a 2D rotation matrixt a 2D translation vector,
andp(# 0) a scalar. Then the flow field is

u=p' —-p=(pR-Ip+t=pRp+t  (11)
whereR! is still a rotation angy’ a scalaf We now proceed
with the following theorem.
Theorem: A flow field u = [u,v]” represents an arbi-
trary combination of some 2D translation, rotation, and uni
form rescaling if and only i2¢tr(E?) — (trE)? = 0 and
divE = 0, whenu is used as the displacement field in the
engineering tensor expressian

the same as the square of the Frobenius norm of the matri)ﬁDroof: We first prove the “if* part. Ifu is defined by EqL1

Vu = [Vu Vv, which is called the deformation gradient
tensor f]. Vu can be decomposed as

1 1
Vu =2 (Vu+ vul) + 5 (Vu- vu®) (8)

into a symmetric part and an anti-symmetric part. It can
be easily verified that the symmetric part is identical to the
engineering strain tensd in Eq. 4. The anti-symmetric
part actually captures the amountofationexecuted at this
point by the image. If pure rotations (seg, in Table2)

are not to be penalized by the regularizer, then clearly this

term must be suppressed. This leaves the engineering,strain

which is the expression we are advocating (due to its zero
value for this scenario).

We now turn to the problem of allowing another com-
monplace flow pattern: uniform rescaling (or “zoom” which
can result from an actual zoom operation or a forward cam-
era motion). To accomplish this and still retain the proper
handling of image rotations, the regularizer requires some
modification. Using the engineering strain tensor as our
“building block,” the new expression below allows (i.e.,
does not incorrectly penalize) flow fields that are composed
of any arbitrary combination of 2D translation, rotation,
and zoom movementBut it allows no othersThis includes
all 2D rigid-body motions (with or without zoom) as well as
commonplace real-world motions involving some physical
rescaling (such as sequenced satellite images of a hugtican
where all three of our listed modes—translation, rotation,
and rescaling—are simultaneously present).

The regularization expression is made up of two terms,
which require the following equations to be satisfied:

2tr(E®) — (rE)> =0  divE =0 ©)
wherediv is the divergence operatfi/dz, 9/9y]. While it
may not be immediately apparent why such a regularization
expression is used, we prove in the following theorem that
the conditions stipulated in E§.are exactly the ones that
are satisfied by the flows made of a combination of some 2D
translation, rotation, and zoom motiotgit nothing else

using a rotation angle d@f, then it is easily verified that the
resulting engineering strain tensor is given by
| plcost’ 0
a 0 p'cost’
in this casetr(E2) — (trE)? = 4p'?cos?0’ — 4p'?cos?0’ =
0, anddivE = 0 sinceE is a constant tensor.

To prove the “only if” part, we note that
2tr(E?) — (trE)? 2(ul + 3 (uy +v2)” +v]) — (ue + vy)?
ul — 2ugvy +vp + (uy + vz)?

(uo — Uy)2 + (uy +U1‘)2 =0

E (12)

13)
WwE = |& 3] [ Ly + v2) %(u‘”vj ")
= [um + %(uyy + Vay) %(uwy + Vaa) + Uyy] =0
If Eq. 13is true, we have (14)
Uy =Vy Uy = —Vg. (15)

which leads to
= Ouy /0 = =0V, /0x = Uy + Vpx =0
= Ouy [0y = —0Vz /0y = Uyy + Voy =0

Uy = —Vg
Uy = —Vg

16
Eq.14is then simplified by means of Ef6, yielding (
divE = [ugy vyy] = 0. (17)

In EQ. 17, uy, = 0 implies thatu = fi(y)z + f2(y). Sim-
ilarly v,, = 0 implies thatv = g1(z)y + g2(z). However,
uy = v, from Eq. 15 requiresf,(y) = ¢i(z) = a, and
u, = —v, from Eq.15requires thaff;(y) = —g5(z) = b,
or f2(y) = by+candgs(z) = —bx+d. Putting these terms
intou andv, we obtain: = ax+by+candv = ay—bx+d.
Definingp = va? + b2, we obtain

[ 21l ] e[

3The proof that a unique orthogorR!’ satisfying Eq11 can always be
found is not derived here. It is fairly straightforward anep@nds mainly
on an application of the cosine rulél].

b

a

a
—b

T
Yy

(&

d

u=

dlevle

(18)




This resulting matrix is indeed an orthogonal matrix, yield I/ =g + 105z [ = —uyy — vy, (21)

: . D . T
ing the desired combination of a translation (byd["), a The matching real and imaginary components can then be

. T .
rotation (by? = tm? +)» and a scaling (by). - equated and this fact then used to yield:

Several observations can be made about the new regu-
larization expressions in EQ. First, Eq.9 is equivalent I = e —ivyy (22)

to Egs.13and17, whose enforcement requires an expres- (Thjs can also be verified by the fact that the components of
sion no higher than quadratic inandv (and their deriva- 5, analytic complex function must be harmonie]j i.e.,
tives). Hence, the governing equations resulting from the Uze + vyy = 0.) Assuming here that the Cauchy-Riemann
variational derivatives will be linear in these variabl€gc- condition is true and also recalling that this condition im-

ond, the expressions state that the flow fields_ satisfying plies Eq.16, we can rewrite the above equation as:

uy = vy andu, = —v, should not be penalized. If ] 1

we think of a flow field as a complex functioﬁ(z_«) = = upe + 5(uyijwy) —z’(uyy+§(umy+vm)) . (23)
u(z,y) + iv(z,y), z = x + 1y, then the above requirement . _ .
corresponds to the well known Cauchy-Riemann EquationsComparing Egs14and23 shows that they have identical
from the field of complex analysisif]. Complex func- ~ components and their components differ only by a sign.
tions that satisfy the Cauchy-Riemann Equations are calledThus if one expression is zero, so must the other (and vice-
analytic or holomorphic, and holomorphic functions in the versa). This establishes the equivalence of the strainderm

complex domain have convergent Taylor serie§ [ lation (Eq.9) and the complex function formulation. [
F(2) = Flzo)+ F(z0)(z — 20) + %(2 _ 20)2 o Table 3_. Legal fI_ow patterns ind_uced by a 3D rigid-body motion
B i 775 9 and their regularization expressions.
f(z) = f(zo) +7€"(2 — 20) + =5 (2 — 20)" + - - DOF Regularization expressions

X translation | Ry = u} +u, + v7 + v,
Y translation | Ry = u? + u; + vz + v,
Z translation Ry = (uz —vy)” +uy +07

19
In our context, the Oth-order term corresponds to a(cor%stant
translation ((z,y) = u(zo,y,) andu(z,y) = v(z0, o)),
and the 1st-order term corresponds to either a rotation (due

: — — P P P

to nonzera)), a zoom (due to non-unity), or some com- X rotation Ry = (2us Uy)z + Y + Yyy

bination of both. Hence, the Cauchy-Riemann equations Y rotation RBs = (ua = 2v,)" 1, + 15
. J y q Z rotation Re = (uy +v2)” +ul + Uﬁ

express the fact that a holomorphic complex function maps
a 2D space to a new space, such thiatcal neighborhood

of points is acted upon by a translation, a rotation, and an
isotropic (or uniform) rescaling. However, this statemisnt In Table3 we introduce a new suite of regularization ex-
truelocally only, and as such still admits a large class of 2D pressions that specifically target the perspective-ptiojee
flows. To enforce the conditions inmaore widespread man-  based flow patterns enumerated in TabfeThe readers can
ner (i.e., beyond an infinitesimal neighborhood) requires apply the new regularizersi; to Rs) to the corresponding

2D motion (rot, | Rap = (ue — vy)” + (uy + vz)”
trans, and scale) +u?, + v2,

some additional constraint, which we now address. flow fields ur,,ua,,uo,, andug, in Table2 to verify
We show in the following lemma thativE = 0 corre- that they vanish (do not penalize) for the particular type of
sponds tof”’(z) = 0. Using the fact that motion indicated but are nonzero (penalize) for the other
d(n—2) types. Note that all the new expressions admit a pure trans-
) = Wf” n>2, (20) lational motion ¥u ~ 0, Vv ~ 0) as a special case.

. . . TR One observes that all new regularizers contain no higher
an identically vanishing second derivative implies that al . S
. 7 . . . than the quadratic (2nd-order) terms of the derivativebef t
higher derivatives vanish as well. Henggjs constrained : A,
flow variables. This is significant as we can show that the

to be of the formf(z,) + re?® (2 — 2,). The condition can - I . :
. . . variational derivatives of the cost expression then contai

thus be seen to be equivalent to a narrowing of the available . . . T
only linear terms of the flow variables and their derivatives

pool of functions to only the linear ones. This corresponds ; . o
. L ; and hence, the resulting system of equations is linear and
to flow fields that are some combination of translation, ro- -
can be solved using linear algebra methods.

tation, and zoom componerdser an extended regigine.,
a non-infinitesimal neighborhood). The stated equivalency 3. EXPERIMENTAL RESULTS

is now proven in the lemma below. We compare the proposed algorithm against the CLG
Lemma: div E=0 if and only if f”(2) = 0, where  algorithm [1], which is considered one of the best avail-
f(2) = u(z,y) +iv(z, y). able for computing the flow field1}]. We use the same

Proof: By definition, the derivatives of aanalyticcom-
4Assume thatZ is roughly constant for a small patch, so both 3D

plex function can be evaluated aloagydlrectlon ata point andY translations result in constant flow fields aRd and R2 are the

and alVYay$ yield the same Vallﬂa‘q- m parti-cular, taking same. The proof o4 is given in the Appendix. The proofs of other
the derivatives along the andiy directions gives regularizers are similar and will not be repeated here.



Average Angular Error (%) [ 15% Noisc  pu—CT.G + New Regularizers
10 - [ 5% Noise
[ 0% Noise

CLG + Traditional Regularizers

Case #
Figure 2.Average angular error (in degrees) for different noise leve

Average Residual Error (%) I 5% Noisc  pu——CI.G + New Regularizers
24

E— 3, Nois
— CLG + Traditional Regularizers

Figure 1. (a) A zoom flowr, case 2), (b) A divergent trans-
lational flow (uq, case 4), (c) A divergent translational flow
(uq, case 6), (d) A rotational flowu,, case 9), (e) a 2D flow 12
fields (case 11) by combining rotatiom, ), translation Gz,

andur,. ), and zoom{r, ), and (f) the texture pattern used.
4

advanced features in the CLG technique, but replace the
traditional regularizer with the new ones. More specifi- 1 2 3 4 5 6 7 8 9 10 1 12

Case #

_CaHY: the iterative SUC_CeSSive Qver'relaxation (SORmEt  Figure 3.Average residual error (in percentage) for different ndésels.
is used [ 3] for numerical solution. Furthermore, we adopt

the multi-resolution technique to incrementally compbi&t  where the residual error is defined|ag — u.|/|u,|.
optical-flow field using a coarse-to-fine strategy.[ The As can be seen in Fig.and3, the proposed regularizers
flow fields are computed using an image pyramid. The outperform the traditional ones for all test patterns and@o
flows at the coarser scales are used to position (warp) thelevels. Table4 summarizes the average AAE and ARE

image at the next finer scale so that only the moiion  for all twelve cases and shows that the proposed method
crementneed to be computed. The final flow field is the gchieves a three- to six-fold reduction in error.

summatior? of all the flow increments. ) ) Table 4. Average AAE and ARE for all test cases.
Synthetic Data. We use twelve spatially-varying flow Figs.2& 3

patterns:ur, corresponds to a zoom-out pattern with the ["noise 0% 506 15%

focus-of-expansion (FOE) at the cent&) 0r a corner 2) Trad | New | Trad | New | Trad | New

of the image. We also use a zoom-in pattern withthe FOEatAAE [ 289 | 0.76 | 431 | 1.25 | 651 | 2.04
the corner 8). uq, represents a non-uniform translational "ARE T11.511 2.19 | 1046 | 3.36 | 15.17| 4.98
flow field with the rotation axis aligned with the centd) ( Fig.
or an edgeX) of the image. Similarly we have two cases,
6 and7, for ug, . ug, represents a rotational field. Again,
Ihe center and a cormer of the mage. We also generate j AE | 207 | L88| 549 378|219 | 194
number of 2D flow fields 10, 11, and12) by combining TARE 491]423]12.08] 864] 515 | 444
rotation, translation, and zoom. Sample flow fields (ground  Standard Test SequencesThe results of applying our
truth) are shown in Figl(a)-(e), and the texture pattern used 2D regularizer to some standard test sequences are shown
in simulating the flow patterns is shown in Fif). in Fig. 4. From top to bottom: the Yosemite sequence com-
We added different amounts of pixelwise-uncorrelated, prises both “zoom” (mountain) and translation (sky) mo-
additive Gaussian noise to the images (up to 15% oftions. In the Office sequence, the camera performed a
the maximum 255 gray levels per pixel) and charted the translation (a zoom). In the Street sequence, the camerawas
performance of the twelve flows under three noise lev- panning right while the car was also moving right, but at a
els in two different ways: (1) Average angular error faster speed. In the taxi sequence, the two black cars were
(AAE) in Fig. 2, where the angular error is defined as moving to the right while the white taxi was turning. Fig.
cos™t ((ty - 0.)/(|0,][0c])), @ = [u,v,1]T, and sub-  shows that we correctly recover all these motion patterns.
scriptsg and ¢ denote the ground truth and the computed Table4 show that the new regularizer achieved a significant
flow fields, and (2) Average residual error (ARE) in F&;. reduction in both AAE and ARE over the traditional one.

Pics Yosemite Office Street
Trad | New | Trad | New | Trad | New




Figure 4. Left: a sample frame in the video sequence. Ridat: t
computed optical-flow field. From top to bottom: Yosemite; Of

fice, Street, and Taxi sequences.

Rewriteu andv as
u = cry+axr+dy+b
= clx+d/e)(y+a/ec)+b—(ad)/c=cz'y + uo
vo= oy’ +2a/c)y) +e
= cly+afe)+ecte—d*/e—c=cy*+1)+v,
24)

We see thau can indeed be expressed a@z[:cy,{ +
y?4T + u, in a “canonical” system where’ = z + d/c
andy’ = y + a/c, if we chooser = —,.. While the flow
expression changes in different coordinate frames PEjj.

(2uy —vy)* 403 +ul, is always zero regardless of the val-
ues of ofa, ¢, andd. Hence, the regularizer can be applied
in anycoordinate system with or without calibration. [J
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