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Abstract

Video captioning is the task of automatically generat-

ing a textual description of the actions in a video. Al-

though previous work (e.g. sequence-to-sequence model)

has shown promising results in abstracting a coarse de-

scription of a short video, it is still very challenging to

caption a video containing multiple fine-grained actions

with a detailed description. This paper aims to address the

challenge by proposing a novel hierarchical reinforcement

learning framework for video captioning, where a high-

level Manager module learns to design sub-goals and a

low-level Worker module recognizes the primitive actions

to fulfill the sub-goal. With this compositional framework to

reinforce video captioning at different levels, our approach

significantly outperforms all the baseline methods on a

newly introduced large-scale dataset for fine-grained video

captioning. Furthermore, our non-ensemble model has al-

ready achieved the state-of-the-art results on the widely-

used MSR-VTT dataset.

1. Introduction

For most people, watching a brief video and describing

what happened (in words) is an easy task. For machines,

extracting the meaning from video pixels and generating

natural-sounding description is a very challenging prob-

lem. However, due to its wide range of applications such

as intelligent video surveillance and assistance to visually-

impaired people, video captioning has drawn increasing at-

tention from the computer vision community recently. Dif-

ferent from image captioning which aims at describing a

static scene, video captioning is more challenging in the

sense that a series of coherent scenes need to be understood

in order to jointly generate multiple description segments

(e.g., see Figure 1).

Current video captioning tasks can mainly be divided

into two families, single-sentence generation [38, 16] and

paragraph generation [24]. Single-sentence generation

tends to abstract a whole video to a simple and high-level

Caption: A person sits on a bed and puts a laptop into a bag. 

The person stands up, puts the bag on one shoulder, and 

walks out of the room.

Caption #1: A woman ofers her dog some food. 

Caption #2: A woman is eating and sharing food with her dog. 

Caption #3: A woman is sharing a snack with a dog.

Figure 1: Video captioning examples. Top row is an example

from MSR-VTT dataset [38], which is summarized by three single

captions. Bottom row is an example from Charades [28] dataset,

which consists of several dependent human activities and is de-

scribed by multiple long sentences of complex structure.

descriptive sentence, while paragraph generation tends to

grasp more detailed actions, and generates multiple sen-

tences of descriptions. However, even for paragraph gen-

eration, the paragraph is often split into multiple, single-

sentence generation scenarios associated with ground truth

temporal video intervals.

In many practical cases, human activities are too com-

plex to be described with short, simple sentences, and the

temporal intervals are hard to be predicted ahead of time

without a good understanding of the linguistic context. For

instance, in the bottom example of Figure 1, there are five

human actions in total: sit on a bed, put a laptop into a bag

are happening simultaneously, and then followed by stand

up, put the bag on one shoulder and walk out of the room

in order. Such fine-grained caption requires a subtle and

expressive mechanism to capture the temporal dynamics of

the video content and associate that with semantic represen-

tations in natural language.

In order to tackle this issue, we propose a “divide and

14213



conquer” solution, which first divides a long caption into

many small text segments (e.g. different segments are in

different colors as shown in Figure 1), and then employs a

sequence model to conquer each segment. Instead of forc-

ing the sequence model to generate the whole sequence in

one shot, we propose to guide the model to generate sen-

tences segment by segment. With a higher-level sequence

model designing the context of each segment, the low-level

sequence model follows the guidance to generate the seg-

ment word by word.

In this paper, we propose a novel hierarchical reinforce-

ment learning (HRL) framework to realize this two-level

mechanism. The textual and video context can be viewed as

the reinforcement learning environment. Our framework

is a fully-differentiable deep neural network (see Figure 2)

and consists of (1) the higher-level sequence model man-

ager that sets goals at a lower temporal resolution, (2) the

lower-level sequence model worker that selects primitive

actions at every time step by following the goals from the

Manager, and (3) an internal critic that determines whether

a goal is accomplished or not. More specifically, by ex-

ploiting the context from both the environment and finished

goals, the manager emits a new goal for a new segment,

and the worker receives the goal as guidance to generate the

segment by producing words sequentially. Moreover, the

internal critic is employed to evaluate whether the current

textual segment is accomplished.

Furthermore, we equip both the manager and worker

with an attention module over the video features (Sec 3.2) to

introduce hierarchical attention internally so that the man-

ager will focus on a wider range of temporal dynamics

while the worker’s attention is narrowed down to local dy-

namics conditioned on the goals. To the best of our knowl-

edge, this is the first work that strives to develop a hierar-

chical reinforcement learning approach to reinforce video

captioning at different levels. Our main contributions are

four-fold:

• We propose a hierarchical deep reinforcement learning

framework to efficiently learn the semantic dynamics

when captioning a video.

• We formulate an alternative, novel training approach

over stochastic and deterministic policy gradient.

• We introduce a new large-scale dataset for fine-grained

video captioning, Charades Captions1, and validate the

effectiveness of the proposed method in it.

• We further evaluate our approach on MSR-VTT

dataset and achieve the state-of-the-art results even

when training on a single type of features.

1Charades Captions was obtained by preprocessing the raw Cha-

rades dataset [28]. The processed Charades Captions dataset can

be downloaded here: http://www.cs.ucsb.edu/˜xwang/data/

CharadesCaptions.zip

2. Related Work

Video Captioning S2VT [33] first generalized LSTM

to video captioning and proposed a sequence-to-sequence

model for it. Since then, numerous improvements were

introduced, such as attention [39, 41], hierarchical re-

current neural network (RNN) [40, 15, 2, 30, 36], C3D

features [26], joint embedding space [20], language fu-

sion [5], multi-task learning [17], etc. But most of them

use the maximum-likelihood algorithm, which maximizes

the probability of current ground-truth output given previ-

ous ground-truth output, while the previous ground-truth is

in general unknown during test time. This inconsistency is-

sue known as exposure bias has largely hindered the system

performance.

In order to address the inconsistency issue, Ranzato et

al. [21] proposed to directly optimize non-differentiable

metric scores using the REINFORCE algorithm [37]. But

the problem persisted that the expected gradient computed

using policy gradient typically exhibited high variance and

was often unstable without proper context-dependent nor-

malization. Naturally, the variance could be reduced by

adding a baseline [13, 23] or even an actor-critic method

that trained an additional critic to estimate the value of each

generated word [1, 22, 43]. Pasunuru and Bansal [18] ap-

plied policy gradient with baseline on video captioning and

presented textual entailment loss to adjust the CIDEr re-

ward. Unfortunately, these previous work for image/video

captioning fail to grasp the high-level semantic flow. Our

HRL model aims to address this issue with a hierarchical

reinforcement learning framework.

Another line of work is dense video captioning [9],

which focuses on detecting multiple events that occur in

a video and describing each of them. But it does not aim

to solve the single-sentence generation scenario. While our

method aims to generate one or multiple sentences for a se-

quence of continuous actions (one or multiple).

Hierarchical Reinforcement Learning Recent work has

revealed the effectiveness of hierarchical reinforcement

learning frameworks on Atari games [11, 35]. Peng et

al. built a composite dialogue policy using hierarchical

Q-learning to fulfill complex dialogue tasks like traveling

plans [19]. In the typical HRL setting, there was a high-

level agent that operated at the lower temporal resolution

to set a sub-goal, and a low-level agent that selected prim-

itive actions by following the sub-goal from the high-level

agent. Our proposed HRL framework for video captioning

is aligned to these studies but has a key difference from the

typical HRL setting: instead of having the internal critic

to provide an intrinsic reward to encourage the low-level

agent to accomplish the sub-goal, we focus on exploiting

the extrinsic rewards in different time spans. Besides, we
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Figure 2: Overview of the HRL framework for video captioning. Please see Sec. 3.1 for explanation.

are the first to consider HRL in the intersection vision and

language.

3. Our Approach

3.1. Overview

Our proposed HRL framework follows the general

encoder-decoder framework (see Figure 2). In the encoding

stage, video frame features v = {vi} are first extracted by a

pretrained convolutional neural network (CNN) [10] model,

where i ∈ {1, ..., n} indexes the frames in the temporal or-

der. Then the frame features are passed through a low-level

Bi-LSTM2 encoder and a high-level LSTM3 encoder suc-

cessively to obtain low-level encoder output hEw = {hEw

i }
(Ew denotes the encoder associated with the Worker), and

high-level encoder output hEm = {hEm

i } (Em denoting the

encoder associated with the Manager), where i ∈ {1, ..., n}.

In the decoding stage, our HRL agent plays the role of a de-

coder, and outputs a language description a1a2...aT ∈ V T ,

where T is the length of the generated caption and V is the

vocabulary set.

The HRL agent is composed of three components: a low-

level worker, a high-level manager, and an internal critic.

The manager operates at a lower temporal resolution and

emits a goal when needed for the worker to accomplish, and

the worker generates a word for each time step by follow-

ing the goal proposed by the manager. In other words, the

manager asks the worker to generate a semantic segment,

and the worker generates the corresponding words in the

next few time steps in order to fulfill the job. The internal

critic determines if the worker has accomplished the goal

2Bidirectional long short-term memory [25]
3Long short-term memory [7]

and sends a binary segment signal to the manager to help it

update goals. The whole pipeline terminates once an end of

sentence token is reached.

3.2. Policy Network

Attention Module As mentioned above, the CNN-RNN

encoder receives the video inputs to generate a sequence

of vectors hEw = {hEw

i } and hEm = {hEm

i }. One may

directly take them as the inputs to the worker and the man-

ager. We instead adopt an attention mechanism to better

capture the temporal dynamics, and form the context vec-

tor for their use. In our model, both the manager and the

worker are equipped with an attention module.

The left-hand side of Figure 3 is a demo attention module

for the worker, at each time step t, the context vector cWt is

computed as a weighted sum over the encoder’s all hidden

states {hEw

i }

cWt =
∑

αW
t,ih

Ew

i (1)

These attention weights {αW
t,i} act as an alignment mech-

anism by giving higher weights to certain encoder hidden

states which match the worker’s current status, and are de-

fined as

αW
t,i =

exp(et,i)∑n
k=1

exp(et,k)
(2)

where

et,i = wT tanh(Wah
Ew

i + Uah
W
t−1 + ba) (3)

where w,Wa, Ua and ba are learned parameters; hW
t−1 is the

worker LSTM’s hidden state at previous step.

The manager’s attention module follows the same

paradigm as the worker’s, which can be described by re-

placing the corresponding terms in Equation 1, 2, and 3.
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Figure 3: An example of the unrolled HRL agent in the decod-

ing stage (from time step t to t + 5). The yellow region shows

how the attention module is incorporated into the encoder-decoder

framework.

Manager and Worker As is shown in Figure 3, the con-

catenation of [cMt , hW
t−1] is fed as the input to the manager

LSTM to produce the semantically meaningful goal. With

the help of the context and the sentence state at previous

time steps, the manager can obtain the knowledge of the en-

vironment status. The output of the manager LSTM hM
t is

then projected as a latent continuous goal vector gt. For-

mally,

hM
t = SM (hM

t−1, [c
M
t , hW

t−1]) (4)

gt = uM (hM
t ) (5)

where SM denotes the non-linear function of the manager

LSTM and uM is a function to project hidden states into

goal space.

The worker receives the goal gt, takes the concatenation

of [cWt , gt, at−1] as the input, and outputs the probabilities

πt over all actions at ∈ V after a series of computations:

hW
t = SW (hW

t−1, [c
W
t , gt, at−1]) (6)

xt = uW (hW
t ) (7)

πt = SoftMax(xt) (8)

where SW is the non-linear function of the worker LSTM

and uW is a also a function to project hidden states into the

input to softmax layer.

Internal Critic In order to determine whether the worker

has accomplished a goal gt, we employ an internal critic

to evaluate worker’s progress. The internal critic uses an

RNN structure, which takes a word sequence as the input

to discriminate whether an end has been reached. Let zt
denote the signal of internal critic and hI

t denote the hidden

state of the RNN at time step t, formally we describe the

probability p(zt) as follows:

hI
t = RNN(hI

t−1, at)

p(zt) = sigmoid(Wzh
I
t + bz)

(9)

where at is the action taken by the worker and Wz, bz de-

notes the parameters of the feed-forward neural network.

In order to train the parameters of the linear layer and re-

current network, we propose to maximize the likelihood of

given ground truth signal {z∗t }:

argmax
∑

t

log p(z∗t |a1, · · · , at−1) (10)

Once the critic model is optimized, we will fix it to service

the usage of the manager.

3.3. Learning

As described in Sec. 3.2, the manager policy is actu-

ally deterministic, which can be further denoted as gt =
µθm(st) with θm representing the parameters of the man-

ager, while the worker policy is a stochastic policy denoted

by at ∼ πθw(at; st, gt), where θw represents the parame-

ters of the worker. The reason why the worker policy is

stochastic is that its action at is selecting a word from the

vocabulary V . But for the manager, the generated goal is

latent, which cannot be directly supervised. Thus with a

deterministic manager policy, we can warm start both the

manager and worker simultaneously by viewing them as a

composite agent.

In this section, we first derive the mathematical reinforce

learning methods for the policies separately (Sec. 3.3.1 and

3.3.2), and then introduce the training algorithm of the pro-

posed HRL method (Sec. 3.3.4). We also discuss the reward

definitions (Sec. 3.3.3) and imitation learning of our HRL

policy (Sec. 3.3.5).

3.3.1 Stochastic Worker Policy Learning

We consider a standard reinforcement learning setup. At

each step t, the worker select an action at (at ∈ V ) condi-

tioned on gt from the manager. The environment responds

with a new state st+1 and a scalar reward rt. The pro-

cess continues until a <EOS> token is generated. The ob-

jective of the worker is to maximize the discounted return

Rt =
∑

∞

k=0
γkrt+k. Thus its loss function can be written

as

L(θw) = −Eat∼πθw
[R(at)] (11)

to minimize the negative expected reward function. Based

on REINFORCE algorithm [37], the gradient of non-

differentiable, reward-based loss function can be derived as

∇θwL(θw) = −Eat∼πθw
[R(at)∇θw log πθw(at)] (12)
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In practice L(θw) is typically estimated with a single sam-

ple from πθw :

∇θwL(θw) ≈ −R(at)∇θw log πθw(at) (13)

The policy gradient given by REINFORCE can be further

generalized to reduce the variance without changing the

expected gradient, by subtracting the reward with a base-

line [31]:

∇θwL(θw) ≈ −(R(at)− bwt )∇θw log πθw(at) (14)

where bwt is the estimated baseline, which can be a function

of θw or t [21]. In our case, the baseline is estimated by

a linear regressor with the worker’s hidden state hW
t as the

input. During back propagation, the gradient passing is cut

off between the worker LSTM and the baseline estimator.

For a better understanding of the policy gradient, we can

further derive the loss function using the chain rule

∇θwL(θw) =

T∑

t=1

∂L

∂xt

∂xt

∂θw
(15)

where xt is the input to the SoftMax layer (see Equation 7).

Using REINFORCE with baseline the estimation of ∂L
∂xt

is

given by [42]:

∂L

∂xt

= (R(at)− bwt )(πθw(at)− 1at
) (16)

which means if the reward R(at) of the sample word at
is greater than the baseline bt, the gradient is negative and

thus the model encourages the distribution by increasing the

probability of the word, otherwise, it discourages the distri-

bution accordingly.

3.3.2 Deterministic Manager Policy Learning

The key to our HRL framework is to effectively learn the

goal gt generated by the manager and then guides the

worker to achieve the latent objective. But the difficulty of

training the manager is that it does not directly interact with

the environment because the action it takes is to produce

a latent vector gt in a continuous high-dimensional space,

which indirectly influences the environment by directing the

Worker’s behavior. Therefore, we are especially interested

in coming up solutions to encourage the manager towards

more effective caption generation.

Inspired by the deterministic policy gradient algo-

rithms [29, 12], we propose to learn the deterministic pol-

icy µθm(st) from trajectories generated by the stochastic

worker policy πθw(at; st, gt). When training the target

manager policy, we fix the worker policy as an Oracle be-

havior policy. More specifically, the manager outputs a goal

gt at step t and the worker then runs c steps to generate

the expected segment et,c = atat+1...at+c−1 by following

the goal (c is length of the generated segment). Since the

worker is fixed as an Oracle behavior policy, we only need

to consider the training of the manager. Then the environ-

ment responds with an new state st+c and a scalar reward

r(et,c). Thus the objective becomes minimizing the nega-

tive discounted return Rt(et,c), in formula

L(θm) = −Egt [R(et)π(et,c; st, gt = µθm(st)] (17)

After applying the chain rule to the loss function with re-

spect to the manager’s parameters θm, the manager is up-

dated with

∇θmL(θm) = −Egt [R(et,c)∇gtπ(et,c; st, gt)∇θmµθm(st)]
(18)

The above gradients can be approximated from a single

sampled segment et,c and after adopting policy gradient on

the worker policy,

∇θmL(θm) = −R(et,c)∇gt log π(et,c)∇θmµθm(st) (19)

Since the worker LSTM is indeed a Markov decision pro-

cess and the probability of the current action at is con-

ditioned on the action at−1 at previous step (see Equa-

tion 6,7,8), we have

log π(et,c) = log π(at..at+c−1) =

t+c−1∑

i=t

log π(ai) (20)

Combining Equation 19 and 20, then the gradients become

∇θmL(θm) = −R(et,c)[

t+c−1∑

i=t

∇gt log π(ai)]∇θmµθm(st)

(21)

The final gradients for the manager training is obtained by

adding the baseline estimator to reduce the variance as fol-

lows:

∇θmL(θm) =

− (R(et,c)− bmt )[

t+c−1∑

i=t

∇gt log π(ai)]∇θmµθm(st)

(22)

where bmt is the baseline estimator, which is a linear regres-

sor with the manager’s hidden state hM
t as the input.

A major challenge of learning in continuous action

spaces is exploration. We follow the known DDPG [12]

to construct an exploration policy µ′ by adding perturbation

ǫ sampled from a Gaussian distribution N to our manager

policy

µ′(st) =µθm(st) + ǫ (23)

and the variance of Gaussian noise can be chosen to suit the

environment.
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3.3.3 Reward Definition

Recent work on image captioning [23] has shown that

CIDEr as a reward performs the best among the traditional

evaluation metrics (e.g. CIDEr, BLEU or METEOR) for

image/video captioning and can gain improvement on all

other metrics. In our model, we also use CIDEr score to

compute the reward. But instead of directly using the final

CIDEr score of the whole generated caption as the reward

for each word at, we adopt delta CIDEr score as the imme-

diate reward. Let f(x) = CIDEr(sent+x)−CIDEr(sent),
where sent is the previous generated caption. Then the dis-

counted return for the worker is

R(at) =

∞∑

k=0

γkf(at+k) (24)

where k denotes the time step of the worker’s temporal res-

olution, and the discounted return for the manager is

R(et) =

∞∑

n=0

γnf(et+n) (25)

where n is the time step of the manager’s lower temporal

resolution. Note that our approach is not limited to CIDEr

score, other reasonable rewards (e.g. deltaBLEU [4]) can

also be applied to the HRL framework.

3.3.4 Training Algorithm

Above we illustrate the learning methods to train the man-

ager and the worker. In Algorithm 1 we present the pseudo-

code of our HRL training algorithm for video captioning.

The manager policy and the worker policy are trained al-

ternately. Basically, when training the worker, we assume

the manager is well-posed, so we disable the goal explo-

ration and only update the worker policy according to Equa-

tion 14; when training the manager, we treat the worker as

the Oracle behavior policy, so we generate the caption by

greedy decoding and only update the manager policy fol-

lowing Equation 22.

During testing, goal exploration is disabled, and beam

search is employed to generate the results. Only one for-

ward pass is needed at test time.

3.3.5 Imitation Learning

A major challenge for a reinforcement learning agent to

have good convergence property is that the agent must start

with a good policy at the beginning stage. For our model,

we apply the cross-entropy loss optimization to warm start

both the worker and the manager simultaneously, where the

manager is completely treated as the latent parameters. θ be

the parameters of the whole model and a∗1, a
∗

2, ..., a
∗

T be the

Algorithm 1 HRL training algorithm

Require: Training pairs <video, GT caption>

1: Randomly initialize the model parameters θ

2: Load the pretrained CNN model and internal critic

3: for iteration=1,M do

4: Randomly sample a minibatch

5: if Train-Worker then

6: Disable the goal exploration

7: Run a forward pass to get the sampled caption

a1a2...aT
8: Calculate R(at) for each at
9: Freeze the manager

10: Update the worker policy using Equation 14

11: else if Train-Manager then

12: Initialize a random process N for goal explo-

ration

13: Run a forward pass to get the greedily decoded

caption e1e2...en
14: Calculate R(et) for each et
15: Freeze the worker

16: Update the manager policy using Equation 22

17: end if

18: end for

ground-truth word sequence, then the cross-entropy loss is

defined as

L(θ) = −
T∑

t=1

log(πθ(a
∗

t ; a
∗

1, ..., a
∗

t−1)) (26)

4. Experimental Results

4.1. Datasets

MSR-VTT MSR-VTT [38] is a dataset for general video

captioning, which is derived from a wide variety of video

categories (7,180 videos from 20 general categories), and

contains 10,000 video clips (6,513 for training, 497 for val-

idation, and the remaining 2,990 for testing). Each video

contains 20 human annotated reference captions collected

by Amazon Mechanical Turk (AMT).

Charades Captions Charades [28] is a large-scale dataset

composed of 9,848 videos of daily indoors activities col-

lected through AMT. 267 different users were presented

with a sentence script (e.g. a person fixes the bed then

throws pillow on it) that included objects and actions from

a fixed vocabulary, and the users recorded a video following

the script using provided objects and actions. The original

dataset contains 66,500 temporal annotations for 157 action

classes, 41,104 labels for 46 object classes, and 27,847 tex-

tual descriptions of the videos.
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Method BLEU@4 METEOR ROUGE-L CIDEr

Mean-Pooling 30.4 23.7 52.0 35.0

Soft-Attention 28.5 25.0 53.3 37.1

S2VT 31.4 25.7 55.9 35.2

v2t navigator 40.8 28.2 60.9 44.8

Aalto 39.8 26.9 59.8 45.7

VideoLAB 39.1 27.7 60.6 44.1

XE-baseline 41.3 27.6 59.9 44.7

RL-baseline 40.6 28.5 60.7 46.3

HRL (Ours) 41.3 28.7 61.7 48.0

Table 1: Comparison with state of the arts on MSR-VTT dataset.

While the Charades dataset is mainly used for action

recognition and segmentation, one should note that the col-

lected textual descriptions are very detailed and depict the

fine-grained human activities happening in long videos.

Thus, we preprocessed the raw Charades dataset by com-

bining the textual descriptions and sentence scripts verified

through AMT4, and built a new large-scale dataset for de-

tailed video captioning – Charades Captions, which consists

of 6,963 videos for training, 500 for validation and 1,760 for

testing. Each video clip is annotated by multiple (typically

2-5) captions. The captions are more detailed and longer

than those of MSR-VTT (average caption length: 24.13 vs

9.28 words), which is more suitable for fine-grained video

captioning.

Caption Segmentation In order to train the internal critic

that determines if a goal is accomplished, we prepro-

cessed the ground truth captions of the training sets of both

datasets by breaking each caption into multiple semantic

chunks. We segmented the captions mainly based on the

Noun Phrase (NP) and Verb Phrase (VP) labels provided

by the constituency parsing results (We utilized the open

source toolkits Stanford CoreNLP5 [14] and NLTK6 for

constituency parsing). For instance, the caption The person

then tidies his area after he is done eating was segmented

into three sub-phrases, The person, then tidies his area and

after he is done eating with labels NP, VP and VP respec-

tively. However, all we need to train the internal critic were

the chunks, and labels were not used.

4.2. Experimental Setup

Evaluation Metrics We adopted four diverse automatic

evaluation metrics: BLEU, METEOR, ROUGE-L, and

CIDEr-D. We used the standard evaluation code from MS-

COCO server [3] to obtain the results.

4For example, the sentence script of a video can be A person is taking

a picture of a light while sitting in a chair., and the textual description is A

person in a bedroom appears to use their phone to film or take a picture of

the light fixture on the ceiling. The latter is usually more detailed.
5https://stanfordnlp.github.io/CoreNLP/
6http://www.nltk.org

Method B@1 B@2 B@3 B@4 M R C

XE-baseline 55.0 36.4 23.6 15.0 18.7 39.0 16.7

RL-baseline 57.6 41.4 28.0 18.8 17.7 39.8 21.6

HRL-16 64.4 44.3 29.4 18.8 19.5 41.4 23.2

HRL-32 64.0 43.4 28.4 17.9 19.2 41.0 21.3

HRL-64 61.7 43.0 28.8 18.8 18.7 31.2 23.6

Table 2: Results on Charades Captions dataset. We reported

BLEU (B), METEOR (M), ROUGH-L (R) and CIDEr (C) scores

of our HRL method and two baselines for comparison.

Training Details All the hyperparameters were tuned on

the validation set. For both datasets, we sampled each video

at 3fps and extracted ResNet-152 features [6] from these

sampled frames without fine-tuning. More training details

can be found in the supplementary material.

4.3. Results and Analysis

Comparison with state of the arts on MSR-VTT In Ta-

ble 1, we compared our single-sentence captioning results

with the-state-of-the-art methods on MSR-VTT dataset. We

listed the results of Mean-Pooling [34], Soft-Attention [39]

and S2VT [33] as reported in previous work [26]. We also

compared with the top-3 results from MSR-VTT challenge,

including v2t navigator [8], Aalto [27], VideoLAB [20].

We implemented two baseline methods: an attention-

based sequence-to-sequence model trained with cross-

entropy loss (XE-baseline), and the same model trained with

policy gradient and CIDEr score as the RL reward (RL-

baseline). As shown in Table 1, our XE-baseline achieved

comparable results with the state-of-the-art results, and our

RL-baseline further improved on all metrics. Moreover, our

novel HRL method outperformed all the other algorithms

listed in the table, which proved the effectiveness of our

proposed method.

Result Analysis on Charades Captions Since there were

no other papers reporting results on Charades Captions, we

mainly compared our HRL model with our implementation

of XE-baseline and RL-baseline. Meanwhile, we explored

the dimension of the latent goal vector (We used HRL-X to

denote the HRL model with a goal dimension of X). As

can be observed from Table 2, all our HRL models out-

performed the baseline methods and brought significant im-

provements in different evaluation metrics. Note that our

HRL model achieved bigger improvement over the baseline

methods on Charades Captions dataset than on MSR-VTT.

Given that fact that the average cation length of Charades

Captions was much longer than that of MST-VTT (24.13

vs 9.28 words), the difference of the improvement gaps

demonstrated that our HRL model can gain better improve-

ment on detailed descriptions of longer videos.

Among the HRL models, HRL-16 achieved the best on
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XE-BASELINE: a person is standing in front of a 

mirror . the person is standing in the doorway . the 

person is standing in the doorway .

RL-BASELINE: a person is walking into a room . 

the person then walks into a room and picks up a 

towel .

HRL: a person | is standing in the room | and 

holding a bag of groceries on the door . | the 

person | then | walks out .

GROUND TRUTH: a person walks across a room 

and through a doorway while carrying a bag . the 

person then closes a door . 

XE-BASELINE: a person is standing in the doorway . 

the person is standing in the doorway . the person is 

standing in the doorway . the person is standing in 

the doorway .

RL-BASELINE: a person is sitting on a chair . the 

person opens the door and walks out .
HRL: a person | is sitting in a chair , | and takes a 

book . | the person | opens the window | and closes 

the door .

GROUND TRUTH: person walks in room holding 

phone , sits at table , looks at phone , smiles , put 

phone down gets up , looks out window and walks 

out of room . 

Figure 4: Qualitative comparison with the baseline methods. The given examples were from the test set of the Charades Caption dataset.

almost all metrics (CIDEr score was the second-best and

slightly worse than HRL-64). Even though HRL-64 ob-

tained better results on BLEU@4 and CIDEr, its results

on other metrics were worse than HRL-32 (the ROUGE-

L score was much lower than HRL-32). Thus, comparing

the results of different HRL models, we could conclude that

HRL-16 > HRL-32 ≥ HRL-64. This result accorded with

our speculation: higher dimension does not guarantee better

performance, conversely, the exploration space grows ex-

ponentially as the dimension increases, making the learning

even harder. A latent vector of small dimension like 16 is

able to represent the semantically meaningful goal well.

Qualitative Comparison with Baseline Methods In Fig-

ure 4, we illustrated two examples from Charades Captions

test set. According to the captions generated by differ-

ent models, it is obvious that the generated results of our

HRL model matched the ground truth captions better than

the baseline methods. Moreover, due to the segment-by-

segment generation manner, our HRL model was able to

output a sequence of semantically meaningful phases (dif-

ferent phases were in different colors and segmented by “|”
as in Figure 4).

Learning Curve For a more intuitive view of the models,

we drew the learning curves of the CIDEr scores on vali-

dation set (see Figure 5). Note that the RL-baseline model

was first warmed up with cross-entropy loss, and then im-

proved using the REINFORCE algorithm. Particularly, af-

ter we trained the XE-baseline model, we switched to policy

gradient and continued training the RL-baseline model on

it. HRL models were resumed training on a shorter warm-

start period. As is shown in Figure 5, the HRL models con-

verged faster and achieved better peak points than the base-

line methods. HRL-16 reached the highest point.

5. Conclusion

In this paper, we propose a hierarchical reinforcement

learning framework for video captioning, which aims at im-

Figure 5: Learning curves of the CIDEr scores of different caption-

ing models, including XE-baseline, RL-baseline and HRL models

with goal dimension of 16, 32 and 64.

proving the fine-grained generation of video descriptions

with rich activities. Our HRL model obtains the state-of-

the-art performance on both the widely used MSR-VTT

dataset and the newly introduced Charades Captions dataset

for fine-grained video captioning.

In the future, we plan to explore the attention space and

utilize features from multiple modalities to boost our HRL

agent. We believe that the results of our method can be fur-

ther improved by employing different types of features, i.e.

C3D features [32], optical flows, etc. Meanwhile, we will

investigate the HRL framework in other similar sequence

generation tasks like video/document summarization.
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