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Abstract. As large-scale sensor networks are being deployed with the objective of collecting
quality data to support user queries and decision-making, the role of a scalable query model
becomes increasingly critical. An effective query model should scale well with large network
deployments and address user queries at specified confidence while maximizing sensor resource
conservation. In this paper, we propose a group-query processing scheme using Bayesian Net-
works (BNs). When multiple sensors are queried, the queries can be processed collectively as
a single group-query that exploits inter-attribute dependencies for deriving cost-effective query
plans. We show that by taking advantage of the Markov-blanket property of BNs, we can gener-
ate resource-conserving group-query plans, and also address a new class of diagnostic queries.
Through empirical studies on synthetic and real-world datasets, we show the effectiveness of
our scheme over existing correlation-based models.

1 Introduction
Sensor network research is strategically positioned at the exciting confluence of sensing, computa-
tion, and communication. A sensor network can employ numerous small, inexpensive sensors of the
same or different modalities (e.g., biological, chemical, mechanical, and electrical) to perform many
useful tasks such as collecting seismic data, monitoring environment, measuring traffic flows, and
safeguarding security, to name just a few. These sensors must be carefully managed to achieve two
performance goals: 1) conserving power for prolonging useful life, and 2) collecting reliable data
for supporting user queries, despite transient noise, sensor failures, and malicious attacks.

A query engine for a typical sensor network supports multiple users, where each user may query
for probabilistic estimates of one or more sensor attribute values with some specified confidence
level. Recent research efforts have shown that correlations are prevalent between sensor attributes,
and queries on costly sensors can be answered efficiently by acquiring data from cheap sensors [9,
8]. In this paper, we advance the traditional correlation model in two directions. First, we employ
Bayesian Networks (BNs) for characterizing sensor networks. BNs provide a compact representa-
tion of dependencies and offer effective inferencing methodologies. Such a model captures both the
stochastic characteristics of, and the statistical relations between, sensor attributes. The use of BNs
can provide efficient query-plan generation for traditional aggregate queries, as well as for diag-
nostic queries. Second, we consider the problem of group-query processing. When multiple queries
are issued, instead of processing each query individually, we exploit inter-query relations to further
reduce the overall resource usage.

To illustrate the advantages of using the BN over the traditional correlation model [9, 8], we
present two simple examples generated using data from the National Data Buoy Center (NDBC) [25]
and the Intel Lab [3], respectively. Figure 1 shows that a correlation model must maintain all pairwise
correlations. In contrast, Figure 2(a) shows that the BN provides a much more compact representation
of essential relations between sensor nodes. In general, for n attributes, with an average in-degree
of d, the number of probability values required to represent the joint probability for a BN is O(nd),
in contrast to O(n2) required by the correlation model. Since d � n for typical real-world sensor
networks, the BN provides a much more succinct representation of a sensor network.

The work of [9, 8] successfully points out that a query on an expensive sensor can be answered
using other inexpensive and statistically correlated sensors. When n is large, however, generating a
good plan using such a correlation model can be time-consuming. The BN model can reduce the
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search space of a node (representing a sensor query) from O(n) to the nodes in its Markov blanket
[24], which consists only of the node’s immediate parents, its immediate children, and other parents
of its children. Let us revisit the example in Figure 2(a). Suppose a user queries “water temperature.”
Its Markov blanket tells us that an alternate plan should consider only “air temperature” or “wind
speed,” as they have the most direct and significant influence on “water temperature,” instead of all
attributes as shown in Figure 1. Moreover, a correlation model [9, 8] could make suboptimal choices
in the plan. For example, in Figure 2(b) even though “voltage” is highly correlated with “tempera-
ture,” “voltage” is conditionally independent of “temperature” given “humidity.” Hence, given the
value of “humidity”, “temperature” has no effect on “voltage.” More importantly, “humidity” could
be a cheaper source to query than “temperature.” The model of [9, 8] would miss this better choice in
its query-plan generation. Thanks to the Markov blanket property of the BN, our model can not only
efficiently reduce the search space for generating a query plan, but also generate a more effective
plan. We can take further advantage of the Markov-blanket property to conduct group-query pro-
cessing for making even more effective query plans. When the Markov blankets of multiple queries
overlap, we are provided with more inter-query relations to further reduce the overall resource us-
age. For instance, Figure 2(a) shows that when two queries arrive over “water temperature” and “air
temperature,” respectively, the BN can tell us that we can treat these two queries as one group query
because of their overlapping Markov blankets. The BN model thus can offer scalable performance to
a large number of queries, as well as a large number of sensors.

In addition to supporting traditional aggregate queries in a more efficient and effective way, the
employment of BN enjoys two additional benefits. First, a new class of diagnostic queries can be
supported. A BN can readily use the sensor dependencies to determine the cause of abnormality
in sensor data. This is because from the sensor-attribute relationships, we know the dependencies
between different attributes, which can be used to detect an exception and then determine its type.
Let us revisit Figure 2(a). The attribute “air temperature” is dependent on “water temperature.” When
readings of the “air temperature” sensor are out of its normal range, the BN tells us that we can query
the values of “water temperature” (i.e., the only node in its Markov Blanket) to determine whether the
“air temperature” is truly abnormal, or the air-temperature-sensor has malfunctioned. If the readings
of “water temperature” are also “abnormal,” but air- and water-temperature readings exhibit high
conditional probability, then we can say that the air-temperature-sensor is normal and that the air
temperature is abnormal. A traditional correlation-based scheme must verify the correlations with all
sensors, and thus does not scale well. Second, the intuitive BN representation can be used to identify
“hot spots” and replicate inexpensive and highly acquired sensors to improve both query efficiency
and network reliability. For example, a sensor attribute with a high node degree (say “wind speed” in
Figure 2(a)) in the BN and with low acquisition cost is likely to be acquired more often as it provides
information about many other nodes at a reduced cost. Since such a hot node is likely to experience
heavy network traffic, it should be replicated in the network.

In summary, this paper makes the following three important contributions:

1. We propose a compact and accurate abstraction of sensor networks based on the BN model. The
employment of BN also permits us to tap into the work of sequential BN update, which can
adapt BN structure and parameters to newly arrived data.



2. We devise a query plan generation algorithm that can save precious communication and com-
putation resources in answering group queries with desired accuracy. Our experimental results
show that our proposed scheme outperforms the correlation-based model for exploiting sensor
dependencies (thanks to the Markov-blanket property) to conserve resources.

3. In addition to traditional aggregate queries, our model can answer a new class of diagnostic
queries for fault detection and data inference, and can also assist sensor deployment and config-
uration.

The rest of the paper is organized as follows. We discuss related work in Section 2. In Section
3, we describe our sensor network architecture showing how a sensor network in its most general
form can be represented as a BN and can be used to address queries. Section 3.2 presents the details
of our query-plan-generation algorithm using the Markov-blanket property. We describe adaptations
of Bayesian inference mechanisms to address general user queries as well as diagnostic queries.
The experimental testbed and validations are described in Section 4. Section 5 presents concluding
remarks.

2 Related Work

Our work is most related to the research work proposed in [9, 10]. The authors propose to learn a
probabilistic model that captures the correlations that might exist between different sensor attributes.
The learned model then aids in generating plans for answering queries at a lower cost. Such a correla-
tion model builds one joint distribution table over all the sensor attributes and infers the probabilistic
value of an attribute by conditioning all the other attributes on it. This approach does not scale well,
as we have pointed out in Section 1. Our BN offers a compact representation, which not only makes
query-plan generation efficient and scalable, but also allows query grouping to conserve even more
resources.

Approximate query answering methods such as approximate caching [23] or DKF [17] can also
be used to predict the value of a queried variable within bounded thresholds using the temporal
dependencies. However, such schemes continuously monitor the streaming variable (to check if it is
within the bounds) making them less effective in terms of energy conservation.

The probabilistic approach of query answering has also been studied in the recent past for mov-
ing object databases in [4]. While these efforts can produce effective solutions for providing proba-
bilistic query results (typically object location) over imprecise data, their solutions are not directly
applicable to sensor networks that operate in a resource-constrained environment. Furthermore, these
solutions are limited to query inference, whereas we also present algorithms to generate query plans
using a confidence-driven principle.

Recent works in [20, 26] propose sensor-database query models for the declarative, SQL-like
query paradigm. The focus of these efforts is also to maximize in-network query processing to reduce
sensor resource usage while still meeting the query precision specifications. These query models do
not exploit sensor-attribute dependencies and hence cannot handle group-query-plan generation or
diagnostic queries efficiently.

BNs have been used in traditional database systems mainly for attribute-selectivity estimation
[13] and data-mining purposes. For sensor networks, BNs have primarily been used for sensor fusion
and estimation [21]. Recent work in [2] employs BNs for probabilistic inference in sensor networks
to determine if a sensor is surrounded by enemy agents. Our work, to the best of our knowledge, is
the first that employs BNs for sensor-query processing.

BNs have found applications in diverse fields like biology, computer vision, computer software
and decision support systems to name a few [22]. Since it interests a lot of different communities,
BN research has been looked into from the perspectives of structure learning [11, 16], parameter
estimation [12], efficient inference schemes [15, 19, 24], batch-mode and online updating of structure
and parameters [1, 11]. Due to space limitations we cannot have a detailed discussion of all of them
however we provide pointers to interested readers.
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3 Architecture and Model
Figure 3 presents a typical sensor-network architecture, which consists of sensors (on the right-hand
side), a query engine (in the middle), and queries issued by multiple users (on the left-hand side).
The queries are formulated into a group-query Q, which we define as follows:
Definition 1: Group Query. A group query Q, in a sensor network of n attributes can be represented
as:

Q = {(Xi, δi)|(Xi ∈ X) ∧ (0 ≤ δi ≤ 1) ∧ (1 ≤ i ≤ n)} s.t., δi < maxlP(Xi = xil) (1)
where X = {X1, X2, X3, · · · , Xn} is the set of sensor attributes, δi is the confidence requirement for
reporting the value of Xi and, P(Xi = xil) is the probability with which Xi assumes a value of xil.
(A variable Xi in the BN is discretized into ki bins. The subscript variable l takes values such that
1 ≤ l ≤ ki.)

For group-query Q, the query engine generates a query plan, and then acquires data from the
sensors. To generate a query plan for Q, the query engine consults the BN, which models the sensor
network as a graph G = (V,E). The vertex set V is a set of random variables {X i} (one for each
sensor), and the directional edge set E captures the statistical relations between sensors. E is a
subset of eXi ,Xj , where eXi ,Xj = {(Xi, Xj), 1 ≤ i, j ≤ n, i � j}, represents the influence relation between
(Xi, Xj). The cost set C = {c1, c2, c3, · · · , cn} holds the acquisition cost associated with each node.
The values in the cost set are functions of the routing and sensing costs. Changes to the BN and
the cost sets (though rare) are updated when necessary. Based on the BN and data-acquisition costs,
the query engine generates a query plan for group query Q such that the confidence requirement
(δi) in reporting the values of queried attributes (Xi) can be met while consuming minimum sensor
resources.

In the remainder of this section, we first briefly present the BN construction details. We then
present our approach to generate efficient query plans for addressing group-queries. Finally, we
present how BN can be used to answer traditional aggregate and diagnostic queries. Due to space
constraints, we present only the critical steps of our methods. Detailed descriptions can be found
in [18].

3.1 Bayesian Network Construction
A BN in its most general form consists of two parts: model structure and model parameters. The
model structure is a directed graph in which the vertices are random variables and the directed
edges represent the causal relationships between variables. To reduce the learning and inference
complexity on BNs [11], we restrict the graph structure to be a polytree, which is a Directed Acyclic
Graph (DAG) where an internal node can have any number of parents and children as long as there
is no cycle in the corresponding undirected graph. The model parameters are mainly the Conditional
Probability Tables (CPTs), where each CPT summarizes the conditional probability distribution of a
nodal variable given its parents. The CPT of a node without any parent is its prior.

Bayesian inference uses a likelihood definition which states that a good model is one that is
likely and can explain data well. Whether a model fits data well can usually be validated objectively
based on a cost function. In information theory [6], causality is measured by the reduction in the



uncertainty or entropy of a random variable, given others. Hence, a reasonable definition of a good
fit (a reasonable cost function) for a Bayesian network is the total entropy reduction (or the amount
of entropy left) given the set of chosen edges. For any variable X i, the entropy H(Xi) is defined as
follows:

H(Xi) = −
ki∑

l=1

P(Xi = xil) ∗ log(P(Xi = xil)). (2)

Structure learning is mathematically a constrained optimization problem: maximizing entropy re-
duction subject to the desire of using a simple network. We therefore construct our Bayesian tree
minimizing the total entropy in the network(

∑n
i=1 H(Xi|Parents(Xi))), where H(Xi|Parents(Xi)) mea-

sures the entropy of Xi given its parents. We first construct a completely connected digraph such that
wXi ,Xj = H(Xi|Xj) where wXi ,Xj is the weight of the edge eXi,Xj and then build a directed minimum
spanning tree in O(n2log(n)) time using the algorithm described in [5].

After the network structure has been learned, the remaining uncertainty lies only in specifying the
CPTs (parameter learning). We model conditional distributions in a CPT using probabilistic distribu-
tions in the exponential family (e.g., binomial, multinomial, and beta distributions for discrete ran-
dom variables, or Gaussian and multivariate-Gaussian distributions for continuous variables) [16].
The advantage of using distributions in the exponential family is that a closed-form solution to pa-
rameter learning problem can be obtained using either maximum-likelihood or Bayesian learning.

There have been many independent research efforts on algorithm development for learning a BN
model (e.g., [11]), and for conducting Bayesian inference (e.g., [7, 16, 24]). Since the focus of this
work is to use the BN to conduct sensor queries, but not to devise new BN-related algorithms, we
employ representative algorithms for BN generation [5] and inference 4.

3.2 Query Plan Generation
We now present our approach for generating group-query plans, and our techniques for addressing
diagnostic queries. One of the most important properties of the BN that forms the theoretical foun-
dation of our proposed algorithms is the conditional independence on the Markov blanket [24] (also
called Markov Condition), which is defined as follows:
Definition 2: Markov Blanket. Given a BN G, the Markov blanket MB(X j) of a node X j in G is the
set of nodes that are made up of X ′j s parents, its children and other parents of its children.

Given MB(X j), Xj is conditionally independent of all other variables in G. This can be mathe-
matically represented as shown in Equation 3:

P(X j|G) = P(X j|MB(Xj)) =
P(X j,MB(Xj))

P(MB(X j))
. (3)

A straight result from Definition 2 is that variables outside the Markov blanket of a variable are not
directly relevant for inferring its state once the values of all the Market-blanket variables are known.
However, the influence of one node on any other node in a BN monotonically decreases (entropy
monotonically increases) as the node distance between them increases. This observation is formally
stated in the following lemma: Lemma 1: Given a node Xi and a set of arbitrary nodes Y in a BN s.t.
MB(Xi) � {Y ∪ Xi}, the conditional entropy of Xi given Y is at least as high as that given its Markov
blanket or H(Xi|Y) ≥ H(Xi|MB(Xi)).
Proof: We exploit the property of conditional entropy which states that any additional informa-
tion about a variable cannot cause an increase in its entropy [14], i.e. H(X i|Xj, Xk) ≤ H(Xi|Xj) or
H(Xi|Xk). Further, separating MB(Xi) into two parts: MB1 = MB(Xi)∩Y and MB2 = MB(Xi)−MB1,
and denoting Z= Y − MB(Xi), we have:

H(Xi|Y) = H(Xi|Z,MB1) ∵ Y = Z ∪MB1

≥ H(Xi|Z,MB1,MB2) ∵ Additional information cannot increase entropy
= H(Xi|Z,MB(Xi)) ∵ MB(Xi) =MB1 ∪MB2

= H(Xi|MB(Xi)). ∵ Markov-blanket definition
Equipped with lemma 1 and the conditional independence property of the Markov blanket shown

in Equation 3, we can now present our group-query plan generation algorithm. A group-query plan

4 We employ Pearl’s message passing [24] algorithm for Bayesian inference.



replaces the original queries with queries on alternate sensors that can meet the specified query
confidence-levels at a reduced cost. Which sensors to query should depend on at least two factors:
how expensive it is to query a particular sensor, and how much information the new sensor data can
provide about the queried attributes. While the answer to the first question is readily available from
the cost set C, the answer to the second question derives from Lemma 1: For a query attribute X i

in G, its state is influenced directly by every variable in its Markov blanket. Thus, to improve the
confidence level of Xi, we analyze attributes from its Markov blanket. Since variables in the Markov
blanket can in turn be affected by variables in their Markov blankets we might need to analyze
Markov blankets recursively. However, since the confidence level typically dies out quickly beyond
the immediate Markov blanket of the query object, recursive attribute-analysis rarely takes place in
practice.

We consider a confidence-driven query paradigm where a group-query Q may query several at-
tributes, each with some minimum confidence requirement. The amount of information that sensor
Xi (in the Markov Blanket of a queried sensor) can provide about another sensor X j ∈ Q, is quanti-
tatively available as the conditional entropy reduction i.e. H(X j) − H(X j|Xi). Thus, we decide upon
which sensors to query, by selecting them in a greedy fashion so to maximize the overall entropy
reduction at least possible acquisition cost, such that the confidence requirement of all queried at-
tributes are met. The details of this sensor selection algorithm can be found in [18]. Once the states
of the variables (or sensor attributes) to be acquired are available, we can use that information to
answer a wide variety of queries. The ability to answer a variety of queries will hinge upon one
critical element: the ability to determine the likely state of a BN. As the BN description is essentially
a probabilistic one, the state descriptions will also be expressed in terms of a likelihood function
conditioned upon prior, current state, and sensor data.

We partition the set of nodes in a BN into three classes: the set of queried attributes (denoted
as Xq), the set of attributes whose values are known (denoted as Xe), and the rest of the attributes
(denoted as Xh). Both Xe and Xh can be empty. In the case that Xe is empty, we do not have any
sensor data, so the inference will rely completely on the prior (or historical data and trend). In the
case that Xh is empty, all sensors are to be queried, and we obtain very detailed knowledge of the
network to make inferences. In other cases (which are the typical cases), X q is obtained from user
query Q, and Xe is obtained from Υ. The probability of a queried variable X i ∈ Xq can then be
obtained as:

P(Xi|Xe,G) =
P(Xe|Xi,G)P(Xi|G)

P(Xe|G)
, (4)

where P(Xi|G) is the prior probability of the queried variable, P(X e|G) is the marginal probability of
the evidence, and P(Xe|Xi,G) is likelihood5.

The pdfs of the queried attributes obtained in Equation 4 (as a result of Bayesian inference) can
then be used to answer a variety value and aggregate queries (refer [8] for details). For example,
a range query to compute the probability of X i lying in range [li, ui] can be computed as: P(Xi ∈
[li, ui]) =

∫ ui

li
p(xi)dxi.

3.3 Answering Diagnostic Queries

We perceive data abnormality as an event whose likelihood is suspiciously small, given the historical
trends and current network state. For example, in the NDBC datasets, if the historical trends suggest
that “sea temperature” is always 5 − 10% lower than the “air temperature,” then situations would be
abnormal when the temperature difference between the two sensors exceeds the threshold. The two
main reasons for such abnormality are:
• Failures: A fault in the sensor or communication mechanism causes arbitrary values to be reported

at the server, or
• Emergence or dissolution of statistical relations: New attribute dependencies may have evolved

affecting the historical likelihood of events.

5 A variety of real-time Bayesian inference algorithms are available [15], and the choice of a particular infer-
ence algorithm is beyond the scope of this paper.



Suppose the BN topology and the CPTs do not change. A naive method for detecting abnormality
is to bound the expected sensor values or attribute correlations, and reporting abnormalities if the
observed measures fall out of bounds. This approach does not work well for at least three reasons.
First, this method is not scalable in large networks where an attribute is dependent on many other
attributes. Second, historical data can reveal that high temperature differences might occur. Third,
an abnormal reading on one sensor in an extreme weather condition can be an accurate reading,
not necessarily resulting from the sensor’s failure or a communication fault. Therefore, abnormality
depends on the joint likelihood of several events under a given BN state.

We propose a trigger & verify approach to detect abnormalities in our sensor network architec-
ture. Each time a value from a sensor is received at the query evaluator, it checks to see whether such
a value is likely to be seen under the current BN state. This likelihood measure is available at no
extra cost from the Bayesian inference engine (shown in Equation 4). If the likelihood measure for
any attribute Xi is suspiciously small, the query evaluator triggers a request for abnormality diagno-
sis at each of the nodes in MB(Xi). All nodes receiving a request for abnormality diagnosis capture
a continuous sequence of data values and compute the likelihood of observing such a sequence as
follows:

Suppose sensor X j, discretized into bins {b j1, b j1, b j3, · · · , b jk j}, is serving an abnormality di-
agnosis request. It first captures a sequence S j of continuous observation6 and then obtains the
event counts, i.e., the number of times X j falls in bin b j1 and so on. Let the counts be denoted by
{α j1, α j2, α j3, · · · , α jk j }, then the likelihood of observing sequence S j given G is

L(S j|G) = (
k j∑

i=1

α ji)!
k j∏

i=1

(p ji)α ji

α ji!
, (5)

where, p ji = P(x j = b ji) and
∑k j

i=1 αi j = |S j|. If L(S j|G) is small enough then the event is verified as
abnormal and is reported back to the server. A direct consequence of such a trigger & verify approach
is that 1) a trigger generated due to transient communication breakdown will not be verified as an
abnormality, 2) broken sensors (those with a faulty sensing device) will verify abnormalities, and 3)
sensors in the Markov blanket of the broken sensor will not verify the abnormality.

If an abnormality is detected in some sensor readings, the next logical questions to ask are “What
caused the abnormality?” and “How will the abnormality affect other sensor readings?” While we
already addressed the first question, the second question can be addressed using the model structure
on the BN. When an X j sensor is detected as broken, we infer its value from its Markov blanket in
the BN graph. Furthermore, X j is no longer used to infer values of variables that contain X j in their
Markov blankets.

4 Experimental Validation
We evaluated the performance of our query engine using BN on three datasets (depicted in Sec-
tion 4.1). In this paper, our experimental analysis is organized into four parts, we have a more de-
tailed analysis available in [18]. The first experiment examined the effect of group query size and
confidence requirements respectively, on resource conservation (Section 4.2). We also compared
the resource savings against those obtained using correlation model under varying query-confidence
levels (Section 4.2). In the second experiment we analyzed the query answer quality achieved using
our proposed approach (Section 4.3). The third experiment analyzed the abnormality detection abil-
ity of our proposed model (Section 4.4). The last experiment studied selectivity of attributes under
different query conditions (Section 4.5).

4.1 Experiment Setup

We used two real datasets and one synthetically generated, as described below:

6 Here, we make two simplified assumptions on S j. First, S j is a sequence of independent, identically dis-
tributed random variables forming a multinomial distribution. Second, the state of the network shows little
or no variation for the duration of collecting S j.



NDBC Data
Attribute WP AP SP WT AT WH DR
Rel. Cost (C) 0.14 0.08 0.22 0.27 0.09 0.10 0.10

Intel Data
Attribute T H L V
Rel. Cost (C) 0.328 0.328 0.344 0.001

Table 1. Relative Costs of Sensors for Real Datasets• NDBC Dataset – This real-world dataset was obtained from the National Data Buoy Center (NDBC)
[25]. The sensor network consists of numerous ocean buoys streaming data of different modalities
every hour to a base station. The data have seven attributes: “average wave period” (WP), “air pres-
sure at sea level” (AP), “wind speed” (SP) , “water temperature” (WT), “air temperature” (AT),
“wave height” (WH) and “wind direction” (DR) with relative costs shown in Table 1. We used data
from three buoys in the San Francisco area (Station IDs 46012, 46013, 46026) in all our experi-
ments. Historical data dating from year 1981 to 2003 were used for learning (with discretization
into 4 bins), and segments of year 2004 data were used for testing.
• Intel Data – This real dataset (also used in [9][8]) was obtained from the Intel Research, Berkeley

Lab [3]. The data were collected using 54 sensors providing “temperature” (T), “humidity” (H),
“light” (L) and “voltage” (V) measurements (relative costs are shown in Table 1). We used 50% of
the data for testing after discretizing each attribute into 8 bins.
• Synthetic Data – The synthetic datasets were constructed for the purposes of rigorous testing

and for evaluating the performance under ideal conditions. We tested the system on several such
datasets; but due to space constraints we report results on one which had the following properties:
The BN was generated with 50 nodes having a maximum node degree of eight. Each node was
discretized into five bins, and the CPTs were generated according to the Dirichlet distribution 7

with λ = 0.01.
Cost functions associated with different attributes were available for the real-world datasets. For

synthetic data we tested the performance for randomly generated cost functions.
Our testbed consisted of 1, 500 group queries for NDBC data, 5, 000 group queries for Intel data,

and 2, 500 for synthetic data; all were selected randomly from the testing data such that no two
successive queries were separated by more than 10 units of time. The random selection ensures that
the results are not biased toward particular temporal query patterns. Once a sensor value is available
at the central server, we let its uncertainty value grow exponentially with time, which is taken into
account using Bayesian inference.

We first define a few parameters that were used in the experimental setup to evaluate the perfor-
mance of the system:
• Group-query size (|Q|) – The number of sensor attributes whose values are required by one or more

users at a time. The maximum value of |Q| is the number of nodes in the BN (e.g. max(|Q|) = 7 for
NDBC data).
• Confidence requirement – (δmin) – The confidence required in reporting the values of the attributes

in |Q|8.

4.2 Resource Conservation
We define resource conservation as the percentage of the total resources saved in the sensor network
to address all queries over the resource consumption if all the queried attributes in Q were to be
acquired directly.
Effect of Grouping Queries In Figure 4, we compare the resource conservation achieved in ad-
dressing group queries using our group-query plan algorithm (the upper plane with solid lines) as
opposed to processing them individually (the lower plane with dotted lines). We show the results for

7 If pi is the probability of choosing a collection of items of size i from an item-set of size n, then
{p1, p2, · · · , pn} are the parameters of the multinomial distribution. The Dirichlet distribution with parameter
λ is the conjugate prior on the parameters of the multinomial distribution. λ� 1 encourages “deterministic”
CPTs (one entry near 1, the rest near 0), λ = 1 causes entries to be drawn from U[0, 1] and λ 
 1 causes all
entries to near 1/k where k, is the discretization size [12].

8 To maintain uniformity we always choose to query |Q| costliest attributes when the group-query size is less
than its maximum value. We query all attributes in Q with the same value of δmin. For example, for |Q| = 2
in NDBC data, we always choose WT and SP and query both of them with 90% confidence for δmin = 0.90



0
5
10
15
20
25
30
35
40
45
50

0.8
0.84

0.88
0.92

0.96
1

1 2 3 4

0
5

10
15
20
25
30
35
40
45
50

With Grouping (Bordered upper-plane)
No Grouping (Lower-plane)

Confidence Requirement (δmin
)

R
es

ou
rc

e
C

on
se

rv
at

io
n

(%
)

Group query size (|Q|)

(a) Intel Data

0
10
20
30
40
50
60

0.8
0.84

0.88
0.92

0.96
1

1 2 3 4 5 6 7

0
5

10
15
20
25
30
35
40
45
50
55
60

Confidence Requirement (δmin
)

R
es

ou
rc

e
C

on
se

rv
at

io
n

(%
)

Group query size (|Q|)

With Grouping (Bordered upper-plane)
No Grouping (Lower-plane)

(b) NDBC Data

Fig. 4. Resource conservation as a function of δmin and |Q|
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Fig. 6. Resource conservation
with δmin = 0.90

both real datasets as we vary both |Q| (from 1 to max(|Q|) and δmin (from 0.80 to 0.98). In the figure,
the vertical axis shows the resource conservation; the lighter the shaded color on the plane, the higher
the resource conservation achieved. Note that even when issuing queries individually (group-query
size |Q| = 1, along the left-edge of the figure), using BN inferencing can already save significant re-
sources. (We will present 2D figures shortly to highlight some results.) When queries were grouped
using our group-query algorithm, the resource conservation was more significant.

To facilitate a better view, Figure 5 provides a 2D view on the resource conservation with dif-
ferent group sizes. Figure 5(a) shows that when |Q| = 4 for the Intel dataset, the savings at various
confidence levels are consistently achieve above 30%. This is because a larger group size provides
the algorithm with more room to use the inter-attribute dependencies more effectively. On the NDBC
data, Figure 5(b) shows that the savings can be above 50% when |Q| = 7 and δ min ≤ 0.96.

BN vs. Correlation Model An important question to answer is “how does resource conservation of
using BN compare with not using BN (or using the traditional correlation model)?” It is evident that
using the correlation model incurs higher computational cost due to the model’s larger search space
for alternate sources. We were curious to find out whether the employment of BN could improve
resource conservation; and if so, what factors contributed to the improvement.

We compared the resource conservation obtained for group-queries using our proposed approach
against the one that uses a joint probability distribution over all the variables. This is similar to one
proposed in [8] (which is equivalent to having completely connected graph structures as shown
in Figure 1). Figure 6 shows the percentage of resource conservation on the two reallife datasets
for δmin = 0.90. For Intel data, at |Q| = 1 (i.e. when there is no possibility of grouping queries),
using BN conserves about 3% more resources than the correlation model. When we increase the
group size, the conservation increases (at |Q| = 4, using BN achieves 12 additional percentile of
conservation). A similar pattern is obtained from the NDBC dataset. The additional conservation
achieved by BN is due to the fact that two correlated attributes might be conditionally independent
on a cheaper attribute, a property that the Markov blanket decodes successfully, but the correlation-
based model fails to decode. (Setting δmin at different levels achieves the same result: BN outperforms
the correlation model in resource conservation.)
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Fig. 7. Quality loss

4.3 Query Answer Quality-Loss
Our BN framework provides query answers based on probabilistic estimates. Therefore, as with the
correlation model proposed in [8], 100% query precision cannot be attained. An effective query plan
is one that conserves resources and meets the confidence values of the queries most of the time. We
define loss as an event when the confidence of a queried attribute has not met the requirement after
the execution of the query plan. For a particular Q, we calculated the quality-loss as the per-attribute
mean loss percentage (or the percentage of the total losses over all attributes to the total number of
times they were queried). Quality-loss depends on how tightly the data distribution fits the one used
in the BN. If the data dependencies are modeled accurately in the CPTs, the quality-loss should not
be affected adversely by |Q| and δmin.

We show the quality-loss observed for different datasets in Figure 7 for δmin = .90. All other test-
ing parameters were the same as described for the earlier experiments. Since real-data distribution
can be modeled only to a certain degree of accuracy, we observe slight variations in quality-loss as
we increase |Q|. However, as seen in Figure 7(a), the loss always stays well under 7% in all cases. For
the synthetic dataset (Figure 7(b)) we observe much less variation (always less than 1%), because
the data distribution was modeled accurately. As discussed earlier, large |Q| allows our group-query
algorithm to exploit sensor dependencies more effectively for producing stronger probabilistic esti-
mates, and hence achieving lower quality-loss.

There is a trade-off between the quality-loss and the confidence requirement. High-confidence
queries would cause the quality-loss to rise, though graceful degradation is desired. In another ex-
periment, we studied the effect on quality-loss of increasing δmin. The results obtained for all three
datasets as we increased the confidence requirement from 0.80 to 0.98 are shown in Figure 7(c). The
slow degradation shows the effectiveness of our approach, with a loss of less than 8% even at 98%
confidence requirement for real datasets. The quality-loss for synthetic data always remains under
1%.

4.4 Abnormality
We tested the abnormality-detection ability of our model as proposed in Section 3.3. This abnor-
mality experiment required domain knowledge on the data. We tested our proposed approach on the
NDBC real-world dataset as follows: The NDBC facilitates the search for extreme weather condi-
tions over its entire historical database. Since these extreme weather conditions are so classified by
domain experts, we can safely tag them as “abnormal events.” We searched for extreme “high wind”
conditions over the entire historical dataset in San Francisco County and corrupted a normal testing
dataset (used in the experiments described earlier) with 12 extreme conditions at randomly selected
locations. We then modified the query-plan generation algorithm such that the “wind speed” attribute
was always selected to be acquired by the query plan. We validated our approach by observing if (1)
our algorithm could detect all the abnormal events, and (2) if it would correctly detect the time at
which the abnormality occurred. Figure 8(a) shows the abnormality detection behavior of our algo-
rithm with |S j| = 10. The horizontal line shows the threshold for the discretization used for “wind
speed” such that all values above it would fall in the same discretization bin. As seen in the figure,
our model catches all the abnormal events except for one (the sixth from left) and reports one normal
event (the second from left) as an abnormality.

Though there are many locations in the graph where the wind speed exceeds the threshold, our
algorithm detects only those that were corrupted manually. Thus, our model is quite effective in de-
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tecting abnormalities and in reducing false positives. Abnormality-detection results for the synthetic
dataset are shown in Figure 8. We generated a BN similar to the one used in testing but with a dif-
ferent Dirichlet distribution (λ = 1) for the CPTs. We corrupted the normal testing data with data
sampled from the new BN for a randomly selected attribute at 15 different locations. Verification
sequence was set to |S j| = 10. As seen in the figure, our algorithm captures all the abnormalities
except for one (the last one).

4.5 Selectivity
The selectivity of an attribute is the ratio of the number of times it is acquired to the total number of
times it appeared in some query. The selectivity pattern can be extremely useful in improving net-
work reliability and identifying “hot-spots” as discussed in Section 1. Sensors with high selectivity
attributes should be replicated more in the network, and the communication overlay network could
be adjusted so that energy consumption is reduced. A cheap attribute, with a high node degree in
the BN graph is likely to show high selectivity since it lies in the Markov blanket of many other
nodes and thus provides information about other nodes at a low cost. On the other hand, a costly
attribute (with a high node degree) is likely to show low selectivity if there are other less inexpensive
nodes lying in its Markov blanket. We show the selectivity behavior of the two real-world datasets
in Figure 9. The experiment parameters were the same as those used in the resource conservation
experiments. We expect to reduce the selectivity as we increase |Q|, since as it allows scope for
better optimization. As seen in Figure 9(b) the selectivity of “temperature” and “humidity”(having
node degree 2) drop significantly as compared to “voltage”. This is due to the fact the relative ac-
quisition cost of “voltage” was very low, making its acquisition more frequent than costly attributes.
Selectivity for “light” does not drop because it does not have any low cost attribute in its Markov
blanket. Figure 9(a) shows the selectivity graph for the NDBC dataset. We observe that the selectiv-
ity of “speed” and “wave period” (costly attributes) drops significantly with the increase in |Q|, as
they have high node degrees. The node degree of “speed”, being the highest (Figure 2(a)), shows the
sharpest fall.

5 Conclusions and Future Work
In this paper, we have proposed using BNs for characterizing sensor networks for probabilistic query
answering and sensor diagnosis. We proposed a greedy algorithm for saving sensor resources by
grouping individual queries into one group-query. Our approach uses a Bayesian inferencing scheme
which, in addition to providing probabilistic estimates of the queried variables, also provides effec-
tive methods for the sensor network diagnosis. The pdf ’s of the queried variable can be used to
address a wide range of value and aggregate queries. The BN structure also helps in improving the
sensor network infrastructure by providing an intuitive model of the inter-attribute dependencies.
Through examples and experiments on both real and synthetic datasets, we demonstrated that the
BN is more effective in saving sensor resources than the previously proposed simplistic probabilistic
models using correlations. Our model provides significant improvement in resource conservation
of 15 − 20% over traditional models. We also showed the effectiveness of our model in capturing
abnormalities and predicting attribute selectivity.

We plan to extend our work to address what-if queries. Bayesian inference allows us to reason
about hypothetical scenarios given some counterfactual evidence. Such queries are called what-
if queries. Such queries can be extremely useful predicting state of the network in hypothetical
conditions to trigger alarms and issue warnings.
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