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Abstract

This paper addresses 3D shape recovery and mo-

tion estimation using a realistic camera model with an

aperture and a shutter. The spatial blur and tem-

poral smear e�ects induced by the camera's �nite

aperture and shutter speed are used for inferring both

the shape and motion of the imaged objects.

1 Introduction
In this paper, we address the problem of 3D shape

recovery and motion estimation using a realistic cam-
era model. Even though the pin-hole camera model
has been prevalent in computer vision and graphics
for its simplicity and mathematical tractability, this
model hides certain shape cues that can be very pow-
erful in 3D analysis. For example, if a more realis-
tic camera model is used|which takes into consider-
ation the aperture and shutter speed settings of the
camera|the depth of �eld and motion blur e�ects be-
come signi�cant in the image formation. Depth of �eld
induces spatial blur, where the amount of image blur is
e�ected by the imaged object's apparent depth. Mo-
tion blur induces temporal smear, the e�ect of which
is a�ected by the speed of the imaged object.

Traditional shape and motion analysis utilizing a
pin-hole camera model does not consider the image
blur and smear e�ects induced by a �nite aperture
and/or shutter speed. However, these e�ects often
times cannot be ignored. Unless the imaged object
is at a known distance to be sharply focused or the
sensor is truly a pin-hole camera, spatial blur due to
a �nite aperture and depth of �eld will occur. Fur-
thermore, unless the shutter speed is such that dur-
ing the time the shutter opens the scene object's mo-
tion is negligible, temporal smear due to object motion
need be considered. These degradation e�ects do ex-
ist in practical applications. For examples, often times
in navigation an obstacle's location (depth) may not
be known in advance (hence the object may not be

focused correctly). A camera may not be equipped
with a motorized lens with computer-controlled zoom
or focus rings, hence, adaptation to objects at di�er-
ent depths might not be possible. The illumination
level might be low, which requires extended exposure.
These e�ects should be considered in designing robust
depth inference and motion estimation algorithms.

Algorithms that utilize image blur for image anal-
ysis have recently been proposed. Most notable are
the \shape-from-focus" and \shape-from-defocus" ap-
proaches [2, 4, 5, 6] for 3D shape recovery. In \shape-
from-defocus," a single camera, or a pair of cameras
with a specially-designed beam-splitter placed in front
of them [5] used to produce a pair of identical images
except for the aperture size and therefore the depth of
�eld. The amount of image blur in the two images can
be shown to be a simple function of one variable: the
distance between the viewer and the imaged point.
Hence, to estimate the depth of an object, we need
only compare the corresponding points in the two im-
ages and measure the change in the image blur.

Image motion estimation can be roughly classi�ed
into gradient-based, feature-matching, and spatial-
temporal �ltering approaches. Recently, a \motion-
from-smear" framework [1] was proposed as another
alternative. [1] studies motion estimation from the
smear e�ect in an image sequence, but does not con-
sider possible image blur due to defocusing. The
proposed algorithm uni�es these two approaches and
takes into account both �nite-aperture spatial blur-

ring and �nite-shutter-speed temporal smear e�ects for
shape and motion computation.

It is nontrivial to extend shape and motion analy-
sis to allow both spatial blur and temporal smear. As
shown later in Sec. 2, indistinguishable visual e�ects

can be produced non-incidentally by an object which

is out of focus but otherwise stationary, or by a mov-

ing object which is in focus, or by objects with dif-

ferent combinations of the degree of out-of-focusness



Dd

r

r

00

1

2

σ

σ
1

2

X

d D

V

v

Figure 1: Image con�guration with spatial blur and
temporal smear

and speed of motion in between. Hence, image inter-

pretation in the presence of spatial blur and temporal

smear can be highly ambiguous. This ambiguity in a
sense is similar to the \aperture problem" well known
in the optical 
ow analysis [3]. However, the problem
is much more severe in a general shape and motion
analysis allowing blur and smear, as it may not be

possible to uniquely identify the source of the image

blur even at image locations with a multitude of gradi-

ent directions (e.g., a corner). Hence, it is important
to isolate the image blur induced by a �nite aperture
and shutter speed to enable shape and motion analy-
sis, respectively.

2 Technical Description

Fig. 1 depicts the image con�guration where blur
due to �nite aperture size and smear due to non-zero
exposure time are shown. D0 and d0 denote the ob-
ject and image distances that achieve a perfect focus,
assuming that all lens aberration e�ects are ignored.
For objects located at a distance D other than D0,
image blur is induced by a spatial \spillage" of pixel
values into adjacent pixels, and the amount of image
blur is a�ected by the lens aperture and the object's
distance. Furthermore, we assume that an imaged ob-
ject can undergo a general motion, denoted by V in
Fig. 1. Object motion performs a temporal \integra-
tion" of pixel values along the trajectory when the
shutter opens and induces image smear as a result.

The problem we address in this paper is this: Given
that the camera is modeled as a �nite aperture sen-
sor instead of a pin-hole model, and that the shutter
may be open long enough for the imaged object's mo-
tion to be registered (e.g., in a low light scenario),
the recorded images are subject to both spatial blur
and temporal smear degradation. How can we reliably
estimate the shape and motion of the imaged object
from both image blur and smear? In the next section,
we will �rst review the \shape-from-focus" approach
for shape recovery using static, �nite-aperture images.
Then we will discuss the di�culty in analyzing both

blurred and smeared images, and present our formula-
tion for deducing shape and motion from such images.

2.1 Shape-from-Defocus using Static,
Finite-Aperture Images

To simplify the analysis, we assume that the point
spread function of the optical system is approximated
by a Gaussian function of standard deviation �.1 As
shown in Fig. 1, two images, taken of the same object
but with di�erent aperture opening r1 and r2 will show
di�erent degrees of blurring denoted by �1 and �2. It
can be shown that the amount of image blur is related
to the object's perceived distance D by [5]

D =
Fd0

d0 � F � k�f
; (1)

where F is the focal length and f the f-number of
the lens. k is a proportionality constant which can be
determined through camera calibration. The blurred
image, g(x; y), can be represented as the convolution
of an un-blurred image, f(x; y) (taken using a pin-hole
camera), and a Gaussian kernel of variance �:

g(x; y) =

Z
x0

Z
y0
f(x�x0; y�y0) 1p

2��
e�

x02+y02
2�2 dx0dy0 :

Fourier transform of the above equation is

G(!x; !y) =
1p
2�

F (!x; !y)e
�

�2(!2x+!
2
y)

2 :

If two images are taken of the same scene using di�er-
ent aperture settings of �1 and �2, then the ratio of
their Fourier coe�cients reveals the relative blurring:

G1(!x; !y)

G2(!x; !y)
=

e�
�2
1
(!2x+!

2
y)

2

e�
�2
2
(!2x+!

2
y)

2

; or

ln
G1(!x; !y)

G2(!x; !y)
=

1

2
(�22 � �21)(!

2
x + !2y) ; (2)

which provides one constraint on �1 and �2. Further-
more, observe that the two aperture settings are con-
strained by the perceived depth as shown in Eq. 1,
hence, we have:

ln
G1(!x; !y)

G2(!x; !y)
=

1

2k2
((
Fd0

f2D
�

d0 � F

f2

)
2 � (

Fd0

f1D
�

d0 � F

f1

)
2
)(!

2
x + !

2
y) :

If the camera parameters are known, the only un-
known in the above equation is D. After D is solved
for, we can recover �1 and �2 using Eq. 1. In some
implementations [5], one of the cameras is assumed
to be a pin-hole camera and produces images with a
negligible blur (or � = 0). Eq. 2 can then be used to
derive the other �.

1Researchers have used di�erent approximations to the PSF,

such as Gaussian [5] and pillbox functions [6].



2.2 Shape and Motion using Blurred and
Smeared Images

A more complicated scenario is when the shutter is
open long enough for object motion to be registered.
The images thus produced su�er from both spatial blur

and temporal smear degradation. We establish the fol-
lowing fact:
Proposition: For a single blurred and smeared im-

age, the same visual image blur e�ects can be non-

incidentally produced by a multitude of combinations

of �nite-aperture blur and motion smear, with di�erent

degrees of out-of-focusness and object motions. This

is true for image areas with a single gradient direction

(e.g., an edge) and multiple gradient directions (e.g.,

a corner).

The proposition leads to the following observations:
� It is not bene�cial to analyze a single blurred and
smeared image by itself. Multiple images, or multiple
sequences of images will be needed.
� The aperture problem in optical 
ow [3] is exac-
erbated by the presence of blur and smear. As the
presence of multiple gradient directions (e.g., a cor-
ner) in a small neighborhood theoretically allows the
recovery of local motion using the local 
ow analysis,
which is not the case for blurred and smeared images.
� Mechanisms probably will be needed to isolate the
image blur e�ects induced by a �nite aperture and
shutter speed. This will lead to a more robust esti-
mation of shape (based on the �nite-aperture blur ef-
fect) and motion (based on the nonzero-exposure-time
smear e�ect).

To illustrate, we will assume that the e�ect of ob-
ject motion, if any, over a small image neighborhood
and a short time period can be characterized by a con-
stant, nonzero 
ow velocity denoted by (u; v). Now
consider two extreme scenarios: degradation in one
comes entirely from �nite aperture blur (i.e., no object
motion) and in the other entirely from nonzero expo-
sure time smear (i.e., a pin-hole camera is used with
in�nite depth-of-�eld). Denote the images in these
two cases as gb (blur only) and gs (smear only). Then
these two images can be related to the un-blurred and
un-smeared image (f) by:

gb(x; y) =
R
0

x

R
0

y
f(x� x0; y � y0)B(x0; y0)dx0dy0 and

gs(x; y) =
R
t
f(x� ut; y � vt)S(t)dt

(3)
where B and S denote the blurring and smear mech-
anisms. The proposition above suggests that gb and
gs can be indistinguishable even at places with a high
information content (e.g., edges and corners). We will

illustrate �rst for the case where the the image neigh-
borhood contains a single step edge.

Without loss of generality, we will assume the step
edge aligns with the y-axis, or

f(x; y) =

�
a x < 0
b x � 0

:

Then we can simplify the expressions of gs and gb into

gb(x) =

Z
x

f(x� x0) �B(x0)dx0; and

gs(x) =

Z
t

f(x� ut)S(t)dt where

�B(x0) =
Z
y

B(x0; y0)dy0 :

We consider the following B and S functions: B can be
either a 2D Gaussian (e.g., in [5]) or a pillbox function
(e.g., in [6]), and S can either a box (a fast shutter with
negligible open and close times) or a trapezoid func-
tion (a slow shutter with nonzero rising and trailing
edges). Their expressions are

B or S �B

Gaussian 1p
2��

e
� x2+y2

2�2 e
� x2

2�2

pillbox 1

�r2
�(

p
x2+y2

r
) 2

�r2

p
r2 � x2

box �( t
T
)

trapezoid �( t
R
) + �(

t�R
T�R�F ) + �(� t�T

F
)

where � denotes the variance of the Gaussian function,
r denotes the radius of the pillbox function, T is the
length of time the shutter opens, and R and F are the
rise and fall times in a trapezoid function, respectively.
� is the unit-length rectangular function (1 between 0
and 1 and 0 otherwise) and � is the unit-length ramp
function (� =

R
�dt).

Sample 1D Gaussian, pillbox, box, and trapezoid
functions are plotted in Fig. 2(a) and edge pro�les re-
sult from Gaussian or pillbox blurring, and from box
or trapezoid smear are shown in Fig. 2(b). As can
been seen that the four edge pro�les are extremely
alike. The reason for the similarity is that both out-
of-focus blur and motion smear induce an \accumula-
tion" of neighboring pixel values. The accumulation
results from either a spatial \spillage" by blurring or
a temporal \integration" by smear. The degradation
�lters have very similar shapes as shown in Fig 2(a)
and produce similar accumulation e�ects.

Even in a neighborhood with multiple gradients, it
can still be impossible to make such an assertion. The
reason is that consider, for example, a 90o corner with
edges aligned with the coordinate axes. A 2D motion
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Figure 2: (a) Di�erent image blur and smear �lters,
and (b) blurred and smeared 1D edge pro�les. Solid:
box, dashdot: trapezoid, dot: pillbox, and dashed:
Gaussian.

in a 45o direction in between the x and y axes will
induce the same smear e�ect along both the x and y

edges, which in turn can be attributed to out-of-focus
blur. Furthermore, many combinations of out-of-focus
blur and motion smear along the bisecting direction of
the corner can explain the phenomenon equally well.
Hence, unlike in an optical 
ow analysis, a reliable
estimate of motion is not possible even in the presence
of multiple gradient directions in a neighborhood.

To enable a robust shape and motion estimation in
the presence of both blur and smear, it is important
that the degradation e�ects induced by out-of-focus
blur and motion smear be identi�ed and isolated. We
present such a framework below.

2.3 Mathematical Formulation
Combining the two expressions in Eq. 3 taken into

consideration both blur and smear, a blurred and
smeared image (g) is related to the un-blurred and
un-smeared one (f) by:

g(x; y) =

Z
T+�t

T

Z
x0

Z
y0

f(x�ut�x0 ; y�vt�y0 )
1

p
2��

e
� x02+y02

2�2 dx
0
dy
0
dt ;

where (u; v) denote an object pixel's image velocity
and �t denote the length of time the shutter opens.
Fourier transform of the above equation is

G(!x; !y)

=

R
x

R
y
f
R
T+�t

T

R
x0

R
y0

f(x � ut � x0; y � vt � y0)

1p
2��

e
� x02+y02

2�2 dx0dy0dtge�i(!xx+!yy)dxdy

=

R
T+�t

T

R
x0

R
y0

R
x

R
y
f(x � ut � x0; y � vt � y0)e�i(!xx+!yy) dxdy

1p
2��

e
� x02+y02

2�2 dx0dy0dt

= F (!x; !y)

R
T+�t

T

R
x0

R
y0

1p
2��

e
� x02+y02

2�2 e
�i(!xx0+!yy0) dx0dy0

e
�i(!xu+!yv)t dt

= F (!x; !y)
1p
2�

e
�
�2(!2x+!

2
y)

2

R
T+�t

T
e
�i(!xu+!yv)tdt

= F (!x; !y)
1p
2�

e
�
�2(!2x+!

2
y)

2 e
�i(!xu+!yv)(T+�t

2
)

sinc((!xu + !yv)
�t
2
)�t :

(4)

As shown in the above equation, two degradation
mechanisms due to both spatial blur and temporal

smear are present. Suppose that two image sequences
are recorded of the same scene using two di�erent
aperture settings. Then we can identify four di�erent
combinations: (I) images taken over the same time
interval with the same aperture setting, (II) images
taken over the same time interval with di�erent aper-
ture settings, (III) images taken over di�erent time
intervals with the same aperture setting, and (IV) im-
ages taken over di�erent time intervals with di�erent
aperture settings. (I) produces only a single image and
is not very interesting. (II) has been shown to facili-
tate 3D shape inference. It will be shown below that
(III) and (IV) can be used to recover object motion
from blurred and smeared images.

Taking the ratio of the Fourier transform of two
images taken with (possibly) di�erent apertures over
(possibly) di�erent times using Eq. 4, we have

G1(!x;!y)

G2(!x;!y)
=

e
�
�2
1
(!2x+!

2
y)

2 e
�i(!xu+!yv)(T1+

�t1
2

)
sinc((!xu+!yv)

�t1
2

)�t1

e
�
�2
2
(!2x+!

2
y)

2 e
�i(!xu+!yv)(T2+

�t2
2

)
sinc((!xu+!yv)

�t2
2

)�t2

:

(5)

For scenario (iii) above, if two images are taken
with the same aperture setting but over di�erent time
periods then the ratio is simpli�ed to

G1(!x; !y)

G2(!x; !y)
=

e�i(!xu+!yv)(T1+
�t1
2

)sinc((!xu+ !yv)
�t1
2
)

e�i(!xu+!yv)(T2+
�t2
2

)sinc((!xu+ !yv)
�t2
2
)
:

Assume that the shutter speed is the same and the
image velocity stays constant over adjacent image
frames, we have:

ln
G1(!x; !y)

G2(!x; !y)
= i(!xu+ !yv)(T2 � T1) :

The blurring e�ect is canceled out and (u; v) can be
recovered from the above equation.

For the scenario (iv) above, observe from Eq. 4 that
blurring a�ects only the magnitude of the system im-
pulse response, while smear a�ects both the magni-
tude and the phase. Hence, if only the phase compo-
nent is considered, again with the same shutter speed
�t, the ratio in Eq. 5 is simpli�ed and di�erent image
blur � is eliminated, or

phasefG1(!x; !y)

G2(!x; !y)
g = (!xu+ !yv)(T2 � T1) :

In either case, (u; v) can be isolated and estimated
from the image sequence.

2.4 Theoretical Analysis

If an image is subject to both spatial blur and tem-
poral smear, how accurate can we recover the shape



and motion of the imaged objects? As will be shown in
this section that these degradation mechanisms have a
detrimental e�ect in the shape and motion estimation.
Even though their e�ects can be isolated as shown in
the previous subsection, in reality, the degradation ef-
fects can not be completely eliminated even with a
suitable windowing operation. Our analysis is for a
1D image using the algorithm outlined above.

Consider an ideal (not yet blurred or smeared) 1D
signal f(x) of length n. To generate smeared signals,
assume that the motion vector is u pixel/sec and the
shutter opens for �t second. Two 1D images g1(x)
and g2(x) are taken at time 0 and T � �t, then

g1(x) =

Z �t

0

f(x� ut)dt

g2(x) =

Z T+�t

T

f(x� ut)dt :

It is easily shown that

g2(x+ uT ) =

Z T+�t

T

f(x+ uT � ut)dt

=

Z �t

0

f(x+ uT � u(t0 + T ))dt0 t
0 = t� T

=

Z �t

0

f(x� ut
0)dt0 = g1(x) :

Denote uT as s. Without loss of generality, assume
that u � 0 and s � 0, then we have:

g2(x) =

�
�(x) 0 � x < s

g1(x� s) s � x < n
;

where �(x) denotes the (extraneous) signal included
in g2(x) through motion. We can rewrite the above
equation as

g2(x) = g1((x � s)%n) + '(x) ;

where

'(x) =

�
�(x) � g1((x � s)%n) 0 � x < s

0 s � x < n
;

and % denotes the modular operator. Then taking the
Fourier transform of the above equation, we get:

G2(!) = G1(!)e
�i!s +�(!) ;

where �(!) = F('(x)) is the Fourier transform, and

G2(!)

G1(!)
=

G1(!)e
�i!s +�(!)

G1(!)
= e�i!s +

�(!)

G1(!)
or;

ln(
G2(!)

G1(!)
) = �i!s+ ln(1 +

�(!)

G1(!)
ei!s)

� �i!s+ �(!)

G1(!)
ei!s :

Therefore,

imag(�
1

!
ln(

G2(!)

G1(!)
)) � s� imag(

1

!

�(!)

G1(!)
e
i!s)

jimag(�
1

!
ln(

G2(!)

G1(!)
))� sj � j

1

!
jj
�(!)

G1(!)
j :

Hence, the accuracy of the analysis depends on the
relative strength of the signal and the extraneous sig-
nal included through shift. Intuitively speaking, if the
extraneous signal is short relative to the signal itself
(or the amount of movement is small comparing to the
length of the processing window), the energy packed
in the extraneous signal is much smaller than that of
the signal and a reliable motion estimation is possible.
By Parseval's theorem we have

X
g21(x) =

1

2�

X
G2
1(!) :

Neglecting the constant term 1
2�
, we have

jG1(!)j =
p

G2
1
(!) �

q
1

n

X
G2
1
(!) =

q
1

n

X
g2
1
(x) �

p
E(g2

1
) :

Similarly,

j�(!)j �
r

s

n
E('2) :

We will assume that the signal is ergodic, under the
ergodic assumption, we have

Rn(�; x) =

n�1X
0

g1(x)g1(x + �) � Rn(�; x
0)

for all � , x, and x0. If the ergodic condition holds for
sample length of s or longer, it is easily shown that

Rs(�; x) =
s

n
Rn(�; x

0) :

Setting � = 0, we have:

jG1(!)j �
r

1

n
Rn(0; x) =

r
1

s
Rs(0; x) =

r
n

s
j�(!)j ; or

j�(!)j
jG1(!)j

=

r
s

n
:

Accuracy analysis with both blur and smear is simi-
lar and will not be repeated. Hence, to ensure that the



motion estimation is accurate, we need to ensure that
s << n. Furthermore, the actual energy distribution
of �(!) and G1(!) on di�erent ! can not be predicted
in advance. It is possible that the extraneous signal
' packs all its energy in a few frequency components
where the strength of the real signal f is low and hence
j�(!)j

jG1(!)j
>> 1. This means that s may not be reliably

estimated at all frequency components. The \outlier"

frequency components (where j�(!)j
jG1(!)j

>> 1) may to-

tally invalid the estimation process if a simple average
scheme is used to obtain the motion parameters by
averaging over all frequency components. Our solu-
tion is to (1) use Gaussian pre-�ltering to suppress
the strength of the extraneous signal at the edges of
a signal, and (2) employ a median type weighting of
all frequency components, which is much more reli-
able in getting rid of the outliers in a few frequency
components and arrives at a faithful estimation.

3 Experimental procedures
Since \shape-from-blurring" formulation has been

extensively studied in the literature, our experiments
instead concentrated on the \motion-from-smear" for-
mulation. To verify the correctness of the proposed
motion estimation algorithms, experiments using both
synthetic and real images were conducted. Due to the
page limitation, we will present here only the results
on real blurred and smeared images.

Our experimental setup comprised a stationary
camera viewing objects on a mobile platform. The ob-
jects were shifted to the right and downward slightly
at each position, and two images with two di�erent
aperture stops (f=1:8 and f=2:8) were taken at each
position. Three adjacent images from a single aper-
ture stop were added to simulate the smearing e�ect.

Figs. 3(a) and (b) show the two-image sequence
with f=1:8 aperture setting while Figs. 3(c) and (d)
the two-image sequence with f=2:8 setting. Four types
of combinations in motion computation are possible:
Using the pair of images from the f=1:8 sequence, us-
ing the pair of images from the f=2:8 sequence, using
the �rst image from the f=1:8 sequence and the sec-
ond image from the f=2:8 sequence, and using the �rst
image from the f=2:8 sequence and the second image
from the f=1:8 sequence. Because no ground truth was
available, we instead computed the histogram and ver-
i�ed the consistency. The combined results from the
four analysis are displayed in Fig. 4.

As seen from these �gures, motion estimation in
the regions occupied by the 3M box and the cylin-
der was fairly consistent and correctly predicted the
right and downward motion. The motion estimation
in the upper right corner, which imaged a far-away

(a) (b)

(c) (d)

Figure 3: Real spatially-blurred and temporally-
smeared image sequences used in the analysis

wall, was less consistent. The inconsistency was prob-
ably caused by that the wall lacked any discernible
features and was at a large distance that its motion
relative to the camera was small. Motion estimation
could easily be fooled by background noise and varying
lighting condition.

4 The Concluding Remarks
In this paper, we broaden the scope of \shape-from-

blurring" to allow the camera to have not only a �nite
aperture but also a non-zero exposure time. Hence
both spatial blur and temporal smear were used for
inferring the shape and motion of objects.
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Figure 4: Final results by combining those from four
di�erent estimation procedures


