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ABSTRACT 
In this paper, we present a new method for content-based image 
retrieval and indexing. The context is for searching an image 
database containing objects of similar appearance for a query 
object in a way that is insensitive to incidental environmental 
factors such as change in viewpoints and slight, nonessential 
shape deformation. The scheme is well suited for discriminating 
among objects within the same class, with members that can 
appear very similar to each other (what we call a “homogeneous” 
database, e.g., the FishBase containing thousands of fish images). 
The scheme comprises a global alignment and a local matching 
process. Affine transform is used to model the different 
viewpoints associated with positioning the camera. Furthermore, 
multi-dimensional indexing techniques are used to make the 
global alignment scheme efficient. A local matching process 
based on dynamic programming allows optimal matching of local 
structures using cost metrics that may ignore nonessential local 
shape deformation. Results show the method's ability to cancel 
out visual distortions caused by a changing viewpoint, tolerance 
to noise, occlusion, and slight deformations of the object, as well 
as its ability to distinguish between similar, but different objects 
of the same class. 

1. INTRODUCTION 
Content-based image search engines can be very useful in today's 
explosion of available multimedia archives. Yet, one cannot deny 
that these tools have been largely underutilized. For example, 
scientific digital image libraries such as the FishBase [3] 
featuring thousands of images of fish and the Perseus Digital 
Library [2] which features images of historical objects like vases 
and sculptures, still provide only text-based queries. There is a 
clear lack of enthusiasm in embracing current image-based search 
technology, indicating that further research is needed to gain 
wider acceptance.  

In this paper, we present a new method for content-based image 
retrieval and indexing which address the problems involved in 
searching homogenous image databases such as [2][3]. These 
types of databases are composed of images of the same class of 
objects, thus appearing very similar to each other. While majority 
of image-retrieval systems are able to distinguish between 
different classes of objects (e.g., fish vs. airplanes, or what we 
call the “inter-class” retrieval problem), only a few are capable 
of discriminating among objects within the same class (e.g., trout 
vs. bass, or what we call the “intra-class” retrieval problem;). 
Clearly, it is desirable to have a system that succeeds at the more 
specific intra-class queries, such as retrieving pictures of 

rainbow trout (characterized by the shape of the body and fins) 
from an ensemble of fish images. However, current systems will 
likely fail with this query, generating lists of images containing 
various species of fish. The aggregate features adopted by many 
current systems (such as histograms and low-ordered moments 
surveyed in [6][7]) capture only the general shape of a class and 
are not descriptive enough to distinguish objects within a 
particular class.  

Moreover, only a handful of the current systems are able to 
accommodate the visual distortions caused by incidental 
environment changes, and slight and nonessential deformations 
of the query object. Allowing global viewpoint change and local 
deformation increases the complexity of the search. Query 
images, though belonging to the class of interest, can appear 
different due to several factors, such as a change in the camera's 
viewpoint, or local shape deformations attributed to noise, 
occlusion, or simply peculiarities of the individual objects.  It is 
this more challenging scenario (that of intra-class retrieval, with 
invariance to viewpoint change and nonessential shape 
deformation) that is the focus of this paper.   

Invariant, intra-class retrieval is important in many real-world 
applications. For example, a useful botanical image database 
application might be to help identify a leaf as belonging to a 
particular species. Children visiting an aquarium might produce 
an image of a fish (taken from an unknown viewpoint) and an 
automated search is performed to provide information about its 
particular species, along with other interesting facts such as 
migration patterns. Other applications include searching on-line 
catalogs of tools, trademarks, etc., for similar designs and 
patterns. Many real-world applications require intra-class 
retrieval, and in a manner that is immune to incidental 
environmental changes and slight deformations of the object. 

To achieve viewpoint invariance, the affine transform is used to 
model the different viewpoints associated with positioning the 
camera. In general, we extract representative feature points from 
the image (e.g., corner and inflection points from contours). The 
recovered affine parameters, derived from an efficient multi-
dimensional indexing process, will allow a best global alignment 
between the query object and a few good candidate objects from 
the database.  

The discrepancy between two object contours produced by such a 
global alignment process, in general, can be attributed to a 
number of factors: such as noise, and small local deformation 
(e.g., resulted from the flapping of tail and dorsal fins when a 
fish is swimming). To further refine the matching, we use a local 
matching process (based on dynamic programming) to determine 



the shape deformation. The cost in the match is used to indicate 
how much local deformation there is between the two objects. 
The cost metric can be designed in such a way (with domain 
specific knowledge) to discount nonessential or incidental local 
deformation. 

2. TECHNICAL DETAILS 
There are two major issues we must address: canceling out the 
effect of a changing viewpoint through global alignment, and 
obtaining accurate similarity measure through local matching. 

2.1 Global alignment 
To achieve viewpoint invariance, the affine transform is used to 
model the different viewpoints associated with positioning the 
camera. The affine transform model has the ability to account for 
an imaged object's rigid motion, as well as the camera's change in 
viewpoint and/or zoom. Using a combination of translation, 
rotation, scale, and shear, this model is often sufficient to explain 
the many different ways that an object can be posed (or 
conversely, the many different ways the camera can be 
positioned). It is also a generally accepted approximation to the 
more general perspective projection, as long as the perspective 
distortion is not too severe [4]. Mathematically, an affine 
transformation of a point [x,y]T is defined by 
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for some nonsingular matrix m, and mij, tx, ty ∈ ℜ. Such a 
transformation preserves a number of characteristics in an image. 
For instance, straight lines will remain straight and parallel lines 
remain parallel. On the other hand, many significant 
measurements are lost in the transformation. For example, 
distances are not preserved, nor are angles between line 
segments. This visual distortion in the image is primarily what 
makes it difficult to compare images with one another. 

At the heart of our global alignment algorithm is a well-known 
geometric property on affine transform, which states that the ratio 
of the area of two triangles is constant under an affine 
transformation [7]. That is, given any two triangles ∆1 and ∆2,  
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where α denotes the area and ∆' is some affine transformation of 
∆. Assuming that we can effectively decompose an image into a 
small set of representative feature points, we can use the fact that 
a correspondence of only three ordered points uniquely 
determines an affine transformation between images, thus 
allowing us to recover the pose of the object.  However, the 
number of possible triplet correspondences between two sets of n 
points is in the order of n6. Since only one correspondence is 
needed, the search space is reduced to n3. Therefore, assuming v 
is the time to verify a similarity match between two images, and 
there are m models in the database, the total search time for a 
given query will be in the order of n3*m*v, which can be 
prohibitively high, especially with very large databases. 

Therefore, we need to make the process efficient, achieved by 
employing ideas from multi-dimensional indexing [1] and 

geometric hashing [4] techniques that have gained popularity 
over the past decade. The main idea is to build a hash table that 
can be processed off-line without prior knowledge of the query 
image. A set of affine-invariant features (Eq.2) is extracted from 
each image in the database, and is used as indexes into the hash 
table to enter the same image code in the different bins. During 
the search phase, the same affine-invariant features are extracted 
from the query image, and used as indexes into the hash table, 
with the expectation that similar objects will index to the same 
set of bins in the hash table. Hence, by inspecting only relevant 
bins in the hash table during the search phase, and ranking the 
images based on the number of times they are retrieved from the 
hash table, huge numbers of unlikely candidates from the 
database are immediately filtered out, allowing for a closer 
inspection of only a small number of good candidates.  

Since the hash table is built only once and well in advance of any 
search task, the time needed to construct it becomes immaterial. 
As will be shown in Sec. 2.1.3, however, the actual search time 
can be reduced to the order of n*v, if we assume a negligible 
number of collisions in the bins. 

2.1.1 Pre-processing stage 
A multi-dimensional hash table is constructed, and is filled in 
with encoded information from each image in the database. Each 
image is reduced to a set of representative feature points, which 
are carefully chosen such that the same set of points should also 
be present in the query image (e.g., corner and inflection points).  

For each image M in the database represented by m feature 
points, and for each ordered triplet (P1,P2 ,P3) of M,  

1. Compute a set of 3-tuple index keys, described in 
Sec.2.1.2.  

2. At the bins designated by each 3-dimensional index 
key, the entry (M,(P1,P2,P3)) is added.   

2.1.2 Computing the hash index key 
Given a triangle ∆P1P2P3  (using three feature points as vertices), 
we use the remaining m-3 feature points Qi in M to compute a set 
of ratios that are invariant to an affine transformation (see Eq.2). 
We present two variations. 

 
Figure 1. Two ways to compute the hash index key. 

In Figure 1a, the hash index keys are computed as follows. For 
each point Qi, compute the areas of ∆P1P2Qi, ∆P1P3Qi and 
∆P2P3Qi, which become part of the first, second, and third 
dimensions of a 3-dimensional key, respectively. The hash index 
key corresponding to point Qi, with α denoting area, will be 
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which is quantized according to a fixed bin size. This results in  
m-3, 3-tuples that are affine-invariant. 

An alternate version is shown in Figure 1b. For each unordered 
pair of points Qi1 and Qi2, we compute the areas of ∆P1Qi1Qi2, 
∆P2Qi1Qi2 and ∆P3Qi1Qi2. As before, the hash index key 
corresponding to the unordered pair {Qi1,Qi2} will be the 
quantized components of 
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resulting in m-3C2 (order of m2 ) 3-tuples that are affine-invariant. 

The choice of which variation to use is completely domain-
specific, the most noticeable difference being in the number of 
entries produced by each method. 

2.1.3 Retrieval of candidates 
After the off-line construction of the hash table, the system can 
search for a given query image, represented by n feature points,  

1. Select an arbitrary ordered triplet (P1,P2,P3) from the 
set of points of the query image, and compute a set of 
3-tuple index keys for this triplet, as described in 
Sec.2.1.2.  

2. Check the entries in each bin designated by the 
computed index keys, and accumulate the image/triplet 
information encoded within. To account for noise and 
deformations of the object, neighboring bins within a 
certain radius should also be included.  

3. Compute a histogram for the occurrence of each 
accumulated (image, triplet) pair, and select the peak 
values as suitable candidates for the correct image and 
triplet values in the database corresponding to the query 
image and triplet (P1,P2,P3), respectively. 

4. Since three ordered points uniquely determines an 
affine transformation between two images, recover the 
affine parameters A which transforms the candidate 
triplet to the triplet (P1,P2,P3). Immediately exclude 
affine transforms that unrealistically distort the image, 
by using the condition number of the 2x2 matrix of A 
(Eq.1), ||m||*||m-1||, as an estimate. The condition 
number measures how nearly singular a matrix is. 

5. Apply A to all feature points (and possibly the whole 
image itself) in the database image M to obtain M', 
canceling out the effect of any affine transformation. 

6. Verify that M' is a suitable match for the query image, 
using a suitably designed similarity metric, as described 
in Sec. 2.2. If no (image, triplet) candidate pair is a 
suitable match, or if a refinement of the search results is 
desired, return to step 1 for another triplet. 

2.2 Local matching 
Since M' (from Sec. 2.1.3, step 5) and the query image are now 
properly aligned in the same affine coordinate frame, any visual 
distortion caused by a change in viewpoint, including translation, 
rotation, scale, and shear, has been canceled out. The two images 
can thus be conveniently compared, point-by-point, using a 
similarity metric suitably designed for the particular domain. 

Conventionally, the measure of similarity is usually defined to be 
the minimum summation of some cost function (such as squared 
Euclidean distances) between matched points (with 
corresponding penalties for unmatched points), among all 
possible pairings of the points between the two contours. 
However, this does not have to be the only choice. If we are 
interested in qualitative similarity, e.g., the two contours should 
have similar twists-and-turns characteristics, (for example, maple 
leaves are not going to be identical in shape and size, but will 
have very similar visual characteristics that are described by a 
pattern grammar or a production rule for that species), then a 
metric measuring the number and ordering of corner and 
inflection points will suffice, without insisting that the corner and 
inflection points be at exactly the same locations. Domain 
specific knowledge, (e.g., downplaying the dissimilarity of fin 
and tail positions when a fish is swimming) can also be brought 
in to emphasize/de-emphasize certain characteristics. By 
carefully designing the cost function, nonessential local 
deformation can be downplayed.  

The underlying assumption from Sec. 2.1.3, step 3, is that the 
correspondence of three points, (P'1,P'2,P'3) to (P1,P2,P3), is 
already known. Hence, we can break the problem down into 
matching the three contour segments, P'1P'2, P'2P'3, and P'3P'1 
with the corresponding segments from the other contour P1P2, 
P2P3, and P3P1, respectively.  

Consider matching m points si of segment S to n points s'j of 
segment S'. The ordering of the points along the contour is 
assumed preserved. That is, if point si corresponds to s'j, then a 
point sk can only correspond to points s'l, for k < i and l < j, or 
for k > i and l > j. To obtain an optimal solution, a dynamic 
programming algorithm is used, described as follows. A table T 
is constructed, and filled according to the following rules: 

T [i,0] = i * ρ 
T [0,j] = j * ρ                                                      (Eq. 5) 
T [i,j] = min ( T[i-1,j-1] + δ(si,sj), T[i-1,j] + ρ, T[i,j-1] + ρ ) 

where ρ is the penalty imposed for failing to match a point, and δ 
is the cost function between two points, typically the squared 
Euclidean distance. An entry T[i,j] represents the optimal value 
in matching the first i points in S with the first j points in S'. The 
optimal solution for the whole contour segment is thus found by 
computing for T[m,n]. As the table is filled-in diagonally from 
T[0,0] to T[m,n], the operation can easily be visualized as going 
through each contour segment, point-by-point, starting with the 
first pair of points. At each turn, there is choice of whether to 
match the two points, declare the point of S as unmatched, or 
declare the point in S' as unmatched. As the optimal solution is 
found, point correspondence for all points is easily established by 
tracing the decision made at each turn. 



3. EXPERIMENTAL RESULTS 
We present results obtained from two different databases. In both 
cases, the feature points used are corner points and points of 
inflection along the object contour. Note that although these 
feature points are not affine invariant in a strict sense, they are 
likely to remain unchanged in an affine transformation with a 
distortion that is not too severe and the viewpoint is not 
incidental (e.g. any 2D pattern looked edge-on reduces to a line 
segment with no corner or inflection points, we use the condition 
number to make sure that this degeneracy does not happen). A  4-
dimensional hash table was used, the additional fourth dimension 
being a combination of the type of each point in the triplet. In 
particular, we classified each feature point as being one of the 
following six types: a corner forming a convex/concave angle 
that is a member/non-member of the convex hull (a total of 4 
types), and a point of inflection which goes in one direction or 
the another (a total of 2 types). The second variant (Eq.4) was 
used to compute the hash index keys. We stored entries only for 
the ten largest (in terms of triangular area) triplets in each model, 
and consequently, iterating among the ten largest triplets in the 
query image.  Dynamic programming was used (Sec. 2.2) to 
optimally measure the amount of local deformation between the 
query image and the candidate images, using the squared distance 
between corresponding points as the cost function δ (in Eq.5). 

 
Figure 2. Results from querying the SQUID database. The 
leftmost columns are the query images. The top three 
search results (1st and 3rd rows) also show the best global 
alignment found (2nd and 4th rows). 

Figure 2 shows results from the SQUID database used in [5]. The 
database consists of 1,100 images of marine animal contours, 
many of which appear very similar to each other. The boxed 
images on the left are the query images and its contour. 
(Unfortunately, the actual scanned images are not provided due 
to copyright restrictions, so for the SQUID database, the contour 
is the image itself). The top three search results are shown, 
arranged from left to right, with the leftmost being the most 
similar to the query image. The upper rows depict the retrieved 

images from the database, identified by the image number in 
parentheses. The lower rows show the best global alignment that 
was found between the query image and the corresponding 
database image. Such results are typical for this database, 
affirming the proposed method's ability to retrieve highly similar 
objects, while at the same time, disregarding varying viewpoints 
and nonessential shape deformation. 

Similarly, Figure 3 shows search results from a small subset of 
the FishBase [3] database. Fifty images were used, the contours 
of which were traced semi-automatically with the aid of an 
“edge-seeking” selection tool. Notice the deformation of the fins 
in the query image as the fish moves on water. As before, results 
show that the method is adept at retrieving very similar objects. 

 
Figure 3. Results from querying the Fishbase database.  

Note that even though contours were used to represent these 
objects, were used to select the feature points, and shape 
similarity metrics were used to verify the match, it was not 
necessary to do so. The feature points could very well have been 
selected from the raw image itself, and a different image 
similarity metric used, such as one that uses color/texture 
information. The decision to rely on contours in this case was 
based on available data, and its suitability to this domain. 

4. CONCLUSION 
We have presented a novel method to index and efficiently 
retrieve very similar images belonging to the same class, while at 
the same time disregarding visual distortions caused by a change 
in viewpoint and nonessential shape deformation. Experimental 
results were provided to show the validity and strength of the 
proposed scheme. 
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