
INVARIANT, INTRA-CLASS RETRIEVAL IN
HOMOGENEOUS IMAGE DATABASES

Ronald Alferez and Yuan-Fang Wang
{ronald,yfwang}@cs.ucsb.edu

Department of Computer Science
University of California at Santa Barbara

ABSTRACT
In this paper, we present a new method for content-based image
retrieval and indexing. The context is for searching an image
database containing objects of similar appearance for a query
object in a way that is insensitive to incidental environmental
factors such as change in viewpoints and slight, nonessential
shape deformation. The scheme is well suited for discriminating
among objects within the same class, with members that can
appear very similar to each other (what we call a “homogeneous”
database, e.g., the FishBase containing thousands of fish images).
The scheme comprises a global alignment and a local matching
process. Affine transform is used to model the different
viewpoints associated with positioning the camera. Furthermore,
multi-dimensional indexing techniques are used to make the
global alignment scheme efficient. A local matching process
based on dynamic programming allows optimal matching of local
structures using cost metrics that may ignore nonessential local
shape deformation. Results show the method's ability to cancel
out visual distortions caused by a changing viewpoint, tolerance
to noise, occlusion, and slight deformations of the object, as well
as its ability to distinguish between similar, but different objects
of the same class.

1. INTRODUCTION
Content-based image search engines can be very useful in today's
explosion of available multimedia archives. Yet, one cannot deny
that these tools have been largely underutilized. For example,
scientific digital image libraries such as the FishBase [3]
featuring thousands of images of fish and the Perseus Digital
Library [2] which features images of historical objects like vases
and sculptures, still provide only text-based queries. There is a
clear lack of enthusiasm in embracing current image-based search
technology, indicating that further research is needed to gain
wider acceptance.

In this paper, we present a new method for content-based image
retrieval and indexing which address the problems involved in
searching homogenous image databases such as [2][3]. These
types of databases are composed of images of the same class of
objects, thus appearing very similar to each other. While majority
of image-retrieval systems are able to distinguish between
different classes of objects (e.g., fish vs. airplanes, or what we
call the “inter-class” retrieval problem), only a few are capable
of discriminating among objects within the same class (e.g., trout
vs. bass, or what we call the “intra-class” retrieval problem;).
Clearly, it is desirable to have a system that succeeds at the more
specific intra-class queries, such as retrieving pictures of

rainbow trout (characterized by the shape of the body and fins)
from an ensemble of fish images. However, current systems will
likely fail with this query, generating lists of images containing
various species of fish. The aggregate features adopted by many
current systems (such as histograms and low-ordered moments
surveyed in [6][7]) capture only the general shape of a class and
are not descriptive enough to distinguish objects within a
particular class.

Moreover, only a handful of the current systems are able to
accommodate the visual distortions caused by incidental
environment changes, and slight and nonessential deformations
of the query object. Allowing global viewpoint change and local
deformation increases the complexity of the search. Query
images, though belonging to the class of interest, can appear
different due to several factors, such as a change in the camera's
viewpoint, or local shape deformations attributed to noise,
occlusion, or simply peculiarities of the individual objects. It is
this more challenging scenario (that of intra-class retrieval, with
invariance to viewpoint change and nonessential shape
deformation) that is the focus of this paper.

Invariant, intra-class retrieval is important in many real-world
applications. For example, a useful botanical image database
application might be to help identify a leaf as belonging to a
particular species. Children visiting an aquarium might produce
an image of a fish (taken from an unknown viewpoint) and an
automated search is performed to provide information about its
particular species, along with other interesting facts such as
migration patterns. Other applications include searching on-line
catalogs of tools, trademarks, etc., for similar designs and
patterns. Many real-world applications require intra-class
retrieval, and in a manner that is immune to incidental
environmental changes and slight deformations of the object.

To achieve viewpoint invariance, the affine transform is used to
model the different viewpoints associated with positioning the
camera. In general, we extract representative feature points from
the image (e.g., corner and inflection points from contours). The
recovered affine parameters, derived from an efficient multi-
dimensional indexing process, will allow a best global alignment
between the query object and a few good candidate objects from
the database.

The discrepancy between two object contours produced by such a
global alignment process, in general, can be attributed to a
number of factors: such as noise, and small local deformation
(e.g., resulted from the flapping of tail and dorsal fins when a
fish is swimming). To further refine the matching, we use a local
matching process (based on dynamic programming) to determine

the shape deformation. The cost in the match is used to indicate
how much local deformation there is between the two objects.
The cost metric can be designed in such a way (with domain
specific knowledge) to discount nonessential or incidental local
deformation.

2. TECHNICAL DETAILS
There are two major issues we must address: canceling out the
effect of a changing viewpoint through global alignment, and
obtaining accurate similarity measure through local matching.

2.1 Global alignment
To achieve viewpoint invariance, the affine transform is used to
model the different viewpoints associated with positioning the
camera. The affine transform model has the ability to account for
an imaged object's rigid motion, as well as the camera's change in
viewpoint and/or zoom. Using a combination of translation,
rotation, scale, and shear, this model is often sufficient to explain
the many different ways that an object can be posed (or
conversely, the many different ways the camera can be
positioned). It is also a generally accepted approximation to the
more general perspective projection, as long as the perspective
distortion is not too severe [4]. Mathematically, an affine
transformation of a point [x,y]T is defined by

 







+
















=








y

x

t
t

y
x

mm
mm

y
x

2221

1211

'
' (Eq. 1)

for some nonsingular matrix m, and mij, tx, ty ∈ ℜ. Such a
transformation preserves a number of characteristics in an image.
For instance, straight lines will remain straight and parallel lines
remain parallel. On the other hand, many significant
measurements are lost in the transformation. For example,
distances are not preserved, nor are angles between line
segments. This visual distortion in the image is primarily what
makes it difficult to compare images with one another.

At the heart of our global alignment algorithm is a well-known
geometric property on affine transform, which states that the ratio
of the area of two triangles is constant under an affine
transformation [7]. That is, given any two triangles ∆1 and ∆2,

)'(
)'(

)(
)(

2

1

2

1

∆
∆=

∆
∆

α
α

α
α (Eq. 2)

where α denotes the area and ∆' is some affine transformation of
∆. Assuming that we can effectively decompose an image into a
small set of representative feature points, we can use the fact that
a correspondence of only three ordered points uniquely
determines an affine transformation between images, thus
allowing us to recover the pose of the object. However, the
number of possible triplet correspondences between two sets of n
points is in the order of n6. Since only one correspondence is
needed, the search space is reduced to n3. Therefore, assuming v
is the time to verify a similarity match between two images, and
there are m models in the database, the total search time for a
given query will be in the order of n3*m*v, which can be
prohibitively high, especially with very large databases.

Therefore, we need to make the process efficient, achieved by
employing ideas from multi-dimensional indexing [1] and

geometric hashing [4] techniques that have gained popularity
over the past decade. The main idea is to build a hash table that
can be processed off-line without prior knowledge of the query
image. A set of affine-invariant features (Eq.2) is extracted from
each image in the database, and is used as indexes into the hash
table to enter the same image code in the different bins. During
the search phase, the same affine-invariant features are extracted
from the query image, and used as indexes into the hash table,
with the expectation that similar objects will index to the same
set of bins in the hash table. Hence, by inspecting only relevant
bins in the hash table during the search phase, and ranking the
images based on the number of times they are retrieved from the
hash table, huge numbers of unlikely candidates from the
database are immediately filtered out, allowing for a closer
inspection of only a small number of good candidates.

Since the hash table is built only once and well in advance of any
search task, the time needed to construct it becomes immaterial.
As will be shown in Sec. 2.1.3, however, the actual search time
can be reduced to the order of n*v, if we assume a negligible
number of collisions in the bins.

2.1.1 Pre-processing stage
A multi-dimensional hash table is constructed, and is filled in
with encoded information from each image in the database. Each
image is reduced to a set of representative feature points, which
are carefully chosen such that the same set of points should also
be present in the query image (e.g., corner and inflection points).

For each image M in the database represented by m feature
points, and for each ordered triplet (P1,P2 ,P3) of M,

1. Compute a set of 3-tuple index keys, described in
Sec.2.1.2.

2. At the bins designated by each 3-dimensional index
key, the entry (M,(P1,P2,P3)) is added.

2.1.2 Computing the hash index key
Given a triangle ∆P1P2P3 (using three feature points as vertices),
we use the remaining m-3 feature points Qi in M to compute a set
of ratios that are invariant to an affine transformation (see Eq.2).
We present two variations.

Figure 1. Two ways to compute the hash index key.

In Figure 1a, the hash index keys are computed as follows. For
each point Qi, compute the areas of ∆P1P2Qi, ∆P1P3Qi and
∆P2P3Qi, which become part of the first, second, and third
dimensions of a 3-dimensional key, respectively. The hash index
key corresponding to point Qi, with α denoting area, will be

 () () ()
() 








∆

∆∆∆

321

i32i31i21 ,,
PPP

QPPQPPQPP
α

ααα , (Eq. 3)

which is quantized according to a fixed bin size. This results in
m-3, 3-tuples that are affine-invariant.

An alternate version is shown in Figure 1b. For each unordered
pair of points Qi1 and Qi2, we compute the areas of ∆P1Qi1Qi2,
∆P2Qi1Qi2 and ∆P3Qi1Qi2. As before, the hash index key
corresponding to the unordered pair {Qi1,Qi2} will be the
quantized components of

 () () ()
() 





∆

∆∆∆

321

213212211 ,,
PPP

QQPQQPQQP iiiiii

α
ααα , (Eq. 4)

resulting in m-3C2 (order of m2) 3-tuples that are affine-invariant.

The choice of which variation to use is completely domain-
specific, the most noticeable difference being in the number of
entries produced by each method.

2.1.3 Retrieval of candidates
After the off-line construction of the hash table, the system can
search for a given query image, represented by n feature points,

1. Select an arbitrary ordered triplet (P1,P2,P3) from the
set of points of the query image, and compute a set of
3-tuple index keys for this triplet, as described in
Sec.2.1.2.

2. Check the entries in each bin designated by the
computed index keys, and accumulate the image/triplet
information encoded within. To account for noise and
deformations of the object, neighboring bins within a
certain radius should also be included.

3. Compute a histogram for the occurrence of each
accumulated (image, triplet) pair, and select the peak
values as suitable candidates for the correct image and
triplet values in the database corresponding to the query
image and triplet (P1,P2,P3), respectively.

4. Since three ordered points uniquely determines an
affine transformation between two images, recover the
affine parameters A which transforms the candidate
triplet to the triplet (P1,P2,P3). Immediately exclude
affine transforms that unrealistically distort the image,
by using the condition number of the 2x2 matrix of A
(Eq.1), ||m||*||m-1||, as an estimate. The condition
number measures how nearly singular a matrix is.

5. Apply A to all feature points (and possibly the whole
image itself) in the database image M to obtain M',
canceling out the effect of any affine transformation.

6. Verify that M' is a suitable match for the query image,
using a suitably designed similarity metric, as described
in Sec. 2.2. If no (image, triplet) candidate pair is a
suitable match, or if a refinement of the search results is
desired, return to step 1 for another triplet.

2.2 Local matching
Since M' (from Sec. 2.1.3, step 5) and the query image are now
properly aligned in the same affine coordinate frame, any visual
distortion caused by a change in viewpoint, including translation,
rotation, scale, and shear, has been canceled out. The two images
can thus be conveniently compared, point-by-point, using a
similarity metric suitably designed for the particular domain.

Conventionally, the measure of similarity is usually defined to be
the minimum summation of some cost function (such as squared
Euclidean distances) between matched points (with
corresponding penalties for unmatched points), among all
possible pairings of the points between the two contours.
However, this does not have to be the only choice. If we are
interested in qualitative similarity, e.g., the two contours should
have similar twists-and-turns characteristics, (for example, maple
leaves are not going to be identical in shape and size, but will
have very similar visual characteristics that are described by a
pattern grammar or a production rule for that species), then a
metric measuring the number and ordering of corner and
inflection points will suffice, without insisting that the corner and
inflection points be at exactly the same locations. Domain
specific knowledge, (e.g., downplaying the dissimilarity of fin
and tail positions when a fish is swimming) can also be brought
in to emphasize/de-emphasize certain characteristics. By
carefully designing the cost function, nonessential local
deformation can be downplayed.

The underlying assumption from Sec. 2.1.3, step 3, is that the
correspondence of three points, (P'1,P'2,P'3) to (P1,P2,P3), is
already known. Hence, we can break the problem down into
matching the three contour segments, P'1P'2, P'2P'3, and P'3P'1
with the corresponding segments from the other contour P1P2,
P2P3, and P3P1, respectively.

Consider matching m points si of segment S to n points s'j of
segment S'. The ordering of the points along the contour is
assumed preserved. That is, if point si corresponds to s'j, then a
point sk can only correspond to points s'l, for k < i and l < j, or
for k > i and l > j. To obtain an optimal solution, a dynamic
programming algorithm is used, described as follows. A table T
is constructed, and filled according to the following rules:

T [i,0] = i * ρ
T [0,j] = j * ρ (Eq. 5)
T [i,j] = min (T[i-1,j-1] + δ(si,sj), T[i-1,j] + ρ, T[i,j-1] + ρ)

where ρ is the penalty imposed for failing to match a point, and δ
is the cost function between two points, typically the squared
Euclidean distance. An entry T[i,j] represents the optimal value
in matching the first i points in S with the first j points in S'. The
optimal solution for the whole contour segment is thus found by
computing for T[m,n]. As the table is filled-in diagonally from
T[0,0] to T[m,n], the operation can easily be visualized as going
through each contour segment, point-by-point, starting with the
first pair of points. At each turn, there is choice of whether to
match the two points, declare the point of S as unmatched, or
declare the point in S' as unmatched. As the optimal solution is
found, point correspondence for all points is easily established by
tracing the decision made at each turn.

3. EXPERIMENTAL RESULTS
We present results obtained from two different databases. In both
cases, the feature points used are corner points and points of
inflection along the object contour. Note that although these
feature points are not affine invariant in a strict sense, they are
likely to remain unchanged in an affine transformation with a
distortion that is not too severe and the viewpoint is not
incidental (e.g. any 2D pattern looked edge-on reduces to a line
segment with no corner or inflection points, we use the condition
number to make sure that this degeneracy does not happen). A 4-
dimensional hash table was used, the additional fourth dimension
being a combination of the type of each point in the triplet. In
particular, we classified each feature point as being one of the
following six types: a corner forming a convex/concave angle
that is a member/non-member of the convex hull (a total of 4
types), and a point of inflection which goes in one direction or
the another (a total of 2 types). The second variant (Eq.4) was
used to compute the hash index keys. We stored entries only for
the ten largest (in terms of triangular area) triplets in each model,
and consequently, iterating among the ten largest triplets in the
query image. Dynamic programming was used (Sec. 2.2) to
optimally measure the amount of local deformation between the
query image and the candidate images, using the squared distance
between corresponding points as the cost function δ (in Eq.5).

Figure 2. Results from querying the SQUID database. The
leftmost columns are the query images. The top three
search results (1st and 3rd rows) also show the best global
alignment found (2nd and 4th rows).

Figure 2 shows results from the SQUID database used in [5]. The
database consists of 1,100 images of marine animal contours,
many of which appear very similar to each other. The boxed
images on the left are the query images and its contour.
(Unfortunately, the actual scanned images are not provided due
to copyright restrictions, so for the SQUID database, the contour
is the image itself). The top three search results are shown,
arranged from left to right, with the leftmost being the most
similar to the query image. The upper rows depict the retrieved

images from the database, identified by the image number in
parentheses. The lower rows show the best global alignment that
was found between the query image and the corresponding
database image. Such results are typical for this database,
affirming the proposed method's ability to retrieve highly similar
objects, while at the same time, disregarding varying viewpoints
and nonessential shape deformation.

Similarly, Figure 3 shows search results from a small subset of
the FishBase [3] database. Fifty images were used, the contours
of which were traced semi-automatically with the aid of an
“edge-seeking” selection tool. Notice the deformation of the fins
in the query image as the fish moves on water. As before, results
show that the method is adept at retrieving very similar objects.

Figure 3. Results from querying the Fishbase database.

Note that even though contours were used to represent these
objects, were used to select the feature points, and shape
similarity metrics were used to verify the match, it was not
necessary to do so. The feature points could very well have been
selected from the raw image itself, and a different image
similarity metric used, such as one that uses color/texture
information. The decision to rely on contours in this case was
based on available data, and its suitability to this domain.

4. CONCLUSION
We have presented a novel method to index and efficiently
retrieve very similar images belonging to the same class, while at
the same time disregarding visual distortions caused by a change
in viewpoint and nonessential shape deformation. Experimental
results were provided to show the validity and strength of the
proposed scheme.

5. REFERENCES
[1] Califano, A. and R. Mohan, Multidimensional Indexing for

Recognizing Visual Shapes, IEEE Trans. on Patt. Anal. and
Mach. Intell., April 1994, Vol. 16, No. 4, pp. 373-392.

[2] Crane, G. Editor. 2001. The Perseus Digital Library. Tufts
Univ. http://www.perseus.tufts.edu. February 2001.

[3] Froese, R. and D. Pauly. Editors. FishBase 2000.
http://www.fishbase.org, February 2001.

[4] Lamdan, Y., J.T. Schwartz and H.J. Wolfson, Affine Invariant
Model-Based Object Recognition, IEEE Trans. on Robotics
and Automation. Vol 6. No. 5. October, 1990.

[5] Mokhtarian, F. Abbasi S. and Kittler J. Robust and Efficient
Shape Indexing through Curvature Scale Space. Proc. 6th
Brit. Mach. Vis. Conf. Sept 1996, pp 53-62.

[6] Mundy, J. and Zisserman, A. (eds.) Geometric Invariance in
Computer Vision. MIT Press, Cambridge, MA, 1992.

[7] Reiss, T. Recognizing Planar Objects Using Invariant Image
Features. Springer-Verlag, Berlin, 1993.

	INTRODUCTION
	TECHNICAL DETAILS
	Global alignment
	Pre-processing stage
	Computing the hash index key
	Retrieval of candidates

	Local matching

	EXPERIMENTAL RESULTS
	CONCLUSION
	REFERENCES

