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Abstract

With the proliferation of inexpensive cameras, availability
of large-capacity disk storages, and ubiquitous presence
of high-speed, broad-band communication networks, it is
now economically and technically feasible to construct and
deploy multi-camera video surveillance systems. In line
with this is the need of intelligent, robust, (semi-)automated
video analysis paradigms to assist the operators in scene
analysis and event classification. In this paper, we sum-
marize our current research work toward realizing such a
multi-camera video surveillance system.

1 Introduction
Video cameras are becoming a ubiquitous feature of modern
life, useful for surveillance, crime prevention, and foren-
sic evidence. Many extended “eyes” are being installed
at an unprecedented pace, yet the intelligence needed for
interpreting video-surveillance events by computers is still
rather unsophisticated. In a recent ACM video-surveillance
workshop co-chaired by the authors [1], participating devel-
opers and practitioners emphasized the urgent need for an
enhanced “brain” to match up with these multiple camera
views for video analysis and query answering. We cannot
solely rely upon human effort to watch and sift through hun-
dreds and thousands of video frames for crime alerts and
forensic analysis. That is a non-scalable task. We need a
(semi-)automated video-analysis and event-recognition sys-
tem that can provide timely warnings to alert security per-
sonnel, and that can substantially reduce the search space
for forensic-analysis tasks.

A multi-camera surveillance task can be divided into
two major phases: data fusion and event recognition. The
data-fusion phase integrates multi-source spatio-temporal
data to detect and extract motion trajectories from video
sources. The event-recognition phase deals with classify-
ing the events as to relevance for the search. The research
challenges of the two phases are summarized as follows:

� Data fusion from multiple cameras. Observations from

multiple cameras should be integrated to build spatio-
temporal patterns that correspond to 3-dimensional view-
ing. Such integration is necessary to improve surveillance
coverage, and to deal with object-tracking obstacles such
as spatial occlusion and scene clutter.

� Event recognition. Event recognition deals with mapping
motion patterns to semantics (e.g., benign and suspicious
events). Most traditional machine-learning algorithms
cannot be directly applied to such infinite-dimensional
data, which may also exhibit temporal ordering. In addi-
tion, positive events (i.e., the sought-for hazardous events)
are always significantly outnumbered by negative events
in the training data. In such an imbalanced set of training
data, the class boundary tends to skew toward the minority
class and becomes very sensitive to noise.

In this paper, we summarize our current research on de-
veloping such a multi-camera video surveillance system. In
particular, we discuss its hardware capability and its impor-
tant software features.

2 Hardware Architecture
Fig. 1 depicts the system configuration. Multiple slave
surveillance stations, each comprising a video camera con-
nected to a host PC, are positioned at different physical lo-
cations to monitor the ground activities, say, in a parking
lot. A camera is mounted on a PTZ (pan-tilt-zoom) plat-
form, which allows its pose and aim to be dynamically con-
trolled. This is advantageous if close-up views of moving
objects are needed for identification.

The video stream obtained from each camera is encoded
using standard encoding algorithms such as H.263, MPEG1
or MPEG4. Each stream is then relayed over wireless links
to the master server for storage. The server indexes and
stores video signal with their meta-data on RAID storage.
The storage system provides real-time stream retrieval and
supports scan operations such as rewind, forward, and slow-
motion. Users of the system are alerted to unusual events
and they can perform online queries to retrieve and inspect
video clips of interest.
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Figure 1: Surveillance system configuration

Because our system architecture is highly modularized,
there is no restriction on the number of cameras used, their
brand names, or their capability. The camera aim can be sta-
tionary, follows a fixed sweep pattern, or is remotely con-
trolled by a human operator. The view volumes of different
cameras can be totally disjoint or can overlap partially. Fur-
thermore, the clocks on different slave stations need not be
synchronized.

3 Software Architecture
Our software modules are geared toward automated detec-
tion and characterization of observed motion events. For
event detection, we have focused on fusing sensor data for
improving the reliability and robustness of event tracking.
For event characterization, we have designed strategies for
sequence data learning and biased learning. These activities
are described in more details below.

3.1 Event Detection
The event detection stage aims at achieving optimal fusion
of multi-sensor data spatially and temporally to derive a hi-
erarchical and invariant description of the scene activities.
Our sensor data fusion algorithm addresses both the bottom-
up data integration problem and the top-down information
dissemination problem in a coherent framework. Several is-
sues are addressed in our event detection and sensor fusion
framework: variability in the spatial coverages and mis-
alignment of the temporal time stamps of multiple cameras,
and occlusion and missing data.

Background Subtraction A widely-used technique for
moving object segmentation is the background subtraction,
which compares color or intensity of pixels in adjacent
video frames. Significant differences are attributed to object
motion. To increase the robustness of background subtrac-
tion, it is necessary to distinguish motion due to inciden-

tal environmental factors (e.g., lighting changes, shadow,
and swing of vegetation) from those of interest (e.g., human
and vehicular motions). Our approach uses an optimization
scheme which maps the segmentation problem onto a recur-
rent stochastic binary network. We address the key issues
in designing the energy function to take into consideration
of both intensity and color change and optical flow infor-
mation. The computation of this model is completely local
and biologically plausible, and provides good segmentation
results.

Spatial Registration This step is for determining the es-
sential camera parameters and the pose and aim of a cam-
era in the environment. While camera calibration usually
needs to be done once and off-line (if the camera settings
are not changed later), pose registration is a continuous pro-
cess and is performed on-line for a mobile camera platform.
The performance of pose registration is thus more critical
and time sensitive. Theoretically, if the camera observes six
landmarks, whose world coordinates are known, it is readily
shown that a linear closed-form solution exists to pose reg-
istration. However, such a solution may not be satisfactory
for real-world applications.

This is because in the real world scenario, given the
general pose and aim of a mobile camera platform, find-
ing six landmarks that (1) have known world coordinates,
(1) are present in the field-of-view of the camera, and (3)
remain visible even with dynamic camera aim, is a non-
trivial task. Hence, alternative pose registration methods
that require fewer landmarks for registration will be benefi-
cial. Our alternative is to use an algorithm first developed
by Earl Church back in 1945 for aerial photogrammetry.
Church’s algorithm is an iterative, nonlinear optimization
technique that requires only three landmarks for pose regis-
tration. The solution is based on the condition that the face
angle subtended by any two landmarks in space is equal to
the face angle subtended at their corresponding image loca-
tions. Such constraints can be used to iteratively update the
pose and aim of the camera. Our experience with Church’s
algorithm is that it is very accurate and efficient. It is possi-
ble to achieve thousands of pose updates per second using
the current PC technology.

Temporal Alignment The same 3D trajectory is observed
by multiple cameras, and hence, the same trajectory appears
differently in different cameras’ images because of the pro-
jective distortion. If we can somehow derive a unique, or
invariant, “signature” of a 3D trajectory from its 2D projec-
tions, regardless of the particular way an image is generated,
then we can correlate these invariant trajectories from dif-
ferent sensors to establish the time shift, and hence, solve
the temporal registration problem.

Our invariant signature is designed based on two princi-
ples: First, it is well established in differential geometry that
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a 3D curve is uniquely described (up to a rigid motion) by
its curvature and torsion vectors with respect to its intrinsic
arc length. Second, under the parallel projection model and
the far field assumption (where the object size is small rela-
tive to the distance to the camera, an assumption that is gen-
erally true for outdoor surveillance applications), the affine
projection model can be used to approximate the perspec-
tive model in image formation. And the affine model pre-
serves the ratio of areas among different projections. Based
on these two principles, we designed an invariant signature
that uses normalized curvature and torsion ratios which are
preserved under the affine model.

Sensor Data Fusion We developed a hierarchical master-
slave fusion framework. Referring to Fig. 1, at the bottom
level, each slave station tracks the movements of scene ob-
jects semi-independently. The local trajectories (each rep-
resented as a state vector comprising the estimated posi-
tion, velocity, and acceleration of the tracked object) are
then relayed to a master station for fusing into a consistent,
global representation. This represents a “bottom-up” anal-
ysis paradigm. Furthermore, as each individual camera has
a limited field of view, and occlusion occurs due to scene
clutter, we also employ a “top-down” analysis module that
disseminates fused information from the master station to
slave stations which might lose track of an object.

At a slave station, we employ two different mecha-
nisms for event detection; both are based on the powerful
hypothesis-and-verification paradigm. The difference is in
the number of hypotheses that are maintained. When the
state prior and noise processes are modeled as uni-modal
Gaussian processes, a single state is maintained. Kalman
filter has proven to be very effective in such situations.

While Kalman filter is a simple and powerful mechanism
for state estimation, its validity is challenged if the assump-
tion on the prior and noise is not valid. Furthermore, there
are situations where multiple hypotheses have to be kept
until a later time when more visual evidence is gathered to
validate some and discredit others. For example, if two or a
group of persons enter the field of view of a camera in such
a way that their silhouettes overlap, the tracking algorithm
will not know in general whether such a moving region cor-
responds to a single person or multiple persons. Only when
the group of people split later and head in different direc-
tions can the single person hypothesis be safely discarded.

Our approach here is to employ a robust, yet still real-
time, control and fail-over mechanism—on top of low-level
frame differencing- and correlation-based tracking—to deal
with noise, scene clutter, short periods of absence and merg-
ing of silhouettes, and long periods of occlusion of activities
from a camera’s field of view—situations that can easily fail
simple Kalman filter-based tracking.

Our formulation is based on the powerful hypothesis-
and-verification paradigm. The utility of such a hypothesis-

verification formulation, over traditional linear state estima-
tion algorithms such as Kalman filtering, is that the noise
processes do not have to be Gaussian and state propaga-
tion does not have to be unimodal. This allows multi-
ple competing hypotheses to be maintained and contribute
to the state estimation process. If we denote sensor data
as z, then multiple hypotheses allow us not to assume
a particular parametric form of ������� �	� . Instead, ���
��� �	�
can be learned by sampling with multiple hypotheses us-
ing Bayesian rule (������� ��������
��� ����������� ). In this sense,
hypothesis-verification is akin to a Bayesian estimator in-
stead of a maximum likelihood estimator.

We envision that future surveillance systems can be
fairly “compartmentalized.” A surveillance station can be
made of a camera and associated mounting device, con-
trolled by an inexpensive PC with a digitizer card and disk
storage. A complete surveillance system then comprises
many such stations to achieve scalability. In this scenario,
We should take advantage of the processing power of in-
dividual surveillance stations to parallelly process video
footage instead of using one big server to achieve integra-
tion from raw data. Our master-slave sensor-fusion scheme
is ideally suited for such a distributed surveillance system.

3.2 Event Characterization
Raw trajectory data derived above are in terms of either lo-
cal or global Cartesian coordinates. Such a representation
is difficult for a human operator to understand. Our solu-
tion is to summarize such raw trajectory data using syntactic
and semantic descriptors that are not affected by incidental
changes in environmental factors and camera poses, and are
easier for a human operator to interpret.

We first segment a raw trajectory fused from multiple
cameras into fragments, using a constrained optimization
approach under the EM (expectation-maximization) frame-
work. We then label these fragments semantically. This is
done by approximating the acceleration trajectory of a ve-
hicle as a piecewise- constant (zeroth-order) or linear (first-
order) function in terms of its direction and its magnitude.
We then use that information to label each segment (e.g.,
as speed-up, slow-down, left-turn, and right-turn actions).
Concatenation of successive segments according to some
predefined Markov models provides an interpretation of the
whole trajectory (e.g., successive turning and straight ac-
tions may signal a circling behavior).

Recognizing events on such descriptors must handle the
ordered nature of the descriptors. Furthermore, in a surveil-
lance setting, positive (suspicious) events are always signif-
icantly outnumbered by negative events. This imbalanced
training-data situation can skew the decision boundary to-
ward the minority class, and hence cause high rates of false
negatives (i.e., failure to identify suspicious events). Our
solution is to design a sequence-alignment kernel function
to work with SVMs for correlating events. We then pro-
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pose using kernel boundary alignment ( ����� ) to deal with
the imbalanced training-data problem.

Sequence Alignment Learning We have labeled each
segmented fragment of a trajectory with a semantic la-
bel and its detailed attributes including velocity and ac-
celeration statistics. Now, the trajectory learning prob-
lem is converted to the problem of sequence-data learning
with secondary variables. For this purpose, we construct a
new sequence-alignment kernel that can be applied to mea-
sure pair-wise similarity between sequences with secondary
variables. The sequence-alignment kernel will take into
consideration both the degree of conformity of the symbolic
summarizations and the similarity between the secondary
numerical descriptions (i.e., velocity and acceleration) of
the two sequences. Two separate kernels are used for these
two criteria and are then combined into a single sequence-
alignment kernel through tensor product.

More specifically, our idea is to first compare similarity
at the symbol level. After the similarity is computed at the
primary level, we consider the similarity at the secondary
variable level. We then use the tensor product kernel to
combine the similarity at the primary and secondary level.

Imbalanced Learning via Kernel Boundary Alignment
Skewed class boundary is a subtle but severe problem that
arises in using an SVM classifier—in fact in using any
classifier—for real world problems with imbalanced train-
ing data. To understand the nature of the problem, let us
consider it in a binary (positive vs. negative) classifica-
tion setting. Recall that the Bayesian framework estimates
the posterior probability using the class conditional and the
prior. When the training data are highly imbalanced, it can
be inferred that the state of the nature favors the majority
class much more than the other. Hence, when ambiguity
arises in classifying a particular sample because of similar
class conditional densities for the two classes, the Bayesian
framework will rely on the large prior in favor of the major-
ity class to break the tie. Consequently, the decision bound-
ary will skew toward the minority class.

While the Bayesian framework gives the optimal results
(in terms of the smallest average error rate) in a theoreti-
cal sense, one has to be careful in applying it to real-world
applications. In a real-world application such as security
surveillance, the risk (or consequence) of mispredicting a
positive event (a false negative) far outweighs that of mis-
predicting a negative event (a false positive). It is well
known that in a binary classification problem, Bayesian
risks are defined as:� ����� � ���
	������� ����� � ������������� ����� � ���� ����� � ���
	���� �!� ����� � �����"�#�!��� ����� � ��� (1)

where � and $ refer to the positive and negative events, re-
spectively, �#�%� refers to the risk of a false negative, and

����� the risk of a false positive. Which action ( ��� or ��� )
to take—or which action has a smaller risk—is affected not
just by the event likelihood (which directly influences the
misclassification error), but also by the risk of mispredic-
tions ( � � � and � ��� ).

For security surveillance, positive (suspicious) events
often occur much less frequently than negative (benign)
events. This fact causes imbalanced training data, and
thereby results in higher incidence of false negatives. To
remedy this boundary-skew problem, we propose an adap-
tive conformal transformation algorithm.

A conformal transformation, also called a conformal
mapping, is a transformation & which takes the elements')("*

to elements + ( & � * � while preserving the local
angles between the elements after mapping, where

*
is a

domain in which the elements
'

reside.
Kernel-based methods, such as SVMs, introduce a map-

ping function , which embeds the input space - into a high-
dimensional feature space . as a curved Riemannian mani-
fold / where the mapped data reside. A Riemannian metric0�132 �
��� is then defined for / , which is associated with the
kernel function 4 �
�65 ��7 � by8 9 :�;�<>=�?A@CB�D�E ;�<�FG<�HI=BJ 9 BJ H:LKNMPOIQ�MSR (2)

The metric 0 1T2 shows how a local area around � in - is mag-
nified in . under the mapping of , . The idea of conformal
transformation in SVMs is to enlarge the margin by increas-
ing the magnification factor 0 1T2 ����� around the boundary
(represented by support vectors) and to decrease it around
the other points. This could be implemented by a conformal
transformation of the related kernel 4 ���65 ��7 � according to
Eq. 2, so that the spatial relationship between the data would
not be affected too much.

When the training dataset is very imbalanced, the class
boundary would be skewed toward the minority class in the
input space - . We hope that the new metric U0 132 � x � would
further magnify the area far away from a minority support
vector � 1 so that the boundary imbalance is alleviated.

4 Concluding Remarks
This paper summarizes our framework for robust and in-
telligent video interpretation for video surveillance applica-
tions. Due to space limit, we presents only a brief overview.
Experimental results and real-time video demo will be pre-
sented at the main conference.
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