
TOWARD REAL-TIME, PHYSICALLY-CORRECT SOFT TISSUE BEHAVIOR SIMULATION

Dan Koppel and Yuan-Fang Wang
�

Department of Computer Science
University of California

Santa Barbara, CA 93106

Shivkumar Chandrasekaran

Department of Electrical and Computer Engineering
University of California

Santa Barbara, CA 93106

ABSTRACT
We present a behavior simulation algorithm that has the potential
of enabling physically-correct, photo-realistic, and real-time be-
havior simulation for soft tissues and organs. Our approach com-
bines a physically-correct formulation based on boundary element
methods with an efficient numeric solver. This approach can have
a significant impact in off-line surgical training and simulation,
and in on-line computer-assisted surgery.

1. INTRODUCTION
In this paper, we describe a technique to accelerate the computa-
tions involved in modeling deformations of organs and soft tissues,
within a medical context. There are many scenarios, both in off-
line training of surgeons and on-line computer-assisted surgery,
that the proposed technique can be useful. For example, simula-
tors, used for the purpose of training surgeons in the pre-operative
stage, require physically-correct, real-time response of the graphi-
cal rendering to inputs from the trainee. However, it has long been
recognized that it is difficult to simultaneously satisfy the require-
ments of physical-correctness and real-time.

In some recent work [1], advantage is taken of the fact that
certain approximations can be made when modeling deformable
objects. More specifically, assumptions about isotropy and homo-
geneity of the material can be made with little penalty in accuracy.
These special properties allow a volume-based integral equation to
be integrated by parts, rendering a surface-based integral equation,
and thus substantially fewer nodes after discretization.

We follow a similar mathematical model, but add a novel algo-
rithm developed in [2, 3, 4]. It should be stated that reformulation
of the problem into a surface-based integral equation is not suffi-
cient for real-time performance, as the authors of [1] have shown.
Their way of creating additional speedup is based on a “low-rank
update” method. Although real-time performance is attained, this
method is based on the assumption that the deformable object in
question is being poked in a “point-like” manner, rather than along
a broad surface area. While there may be situations where this
holds, it is fairly restrictive, especially in a surgical environment,
where organ-organ or organ-wall interactions occur frequently.

The method we have developed does not make the point-like
assumption. The elimination of this restriction is useful and can
aid in simulating a much wider range of medical procedures, since
substantial and widespread time-varying boundary conditions will
now be allowed. Simulator systems employing this algorithm will
be able to render in real-time scenarios in which organs may come
in full contact with other organs or cavity wall.

�

The research was support in part by Karl-Storz Imaging, Inc. and the State of
California Micro Program.

The algorithm developed in [2, 3, 4] is used as a replacement
to the “low-rank update” method used in [1]. As stated above, its
advantage is that it is able to rapidly process a changing boundary
condition which, rather than being point-like, is widespread. The
main feature is that it takes into account the fact that the govern-
ing matrix derives from a physically-based pairwise interaction,
known mathematically as a Green’s function. The Green’s func-
tion, resulting from real-world interactions, has the nice properties
of locality and smoothness, which allow the discretized version
of it (a matrix) to be expressed in terms of low-rank components.
Operations such as matrix inversion can then be accomplished in
a much more efficient manner (both in time and space). But for
this method, the use of low-rank components does not create the
point-like restriction mentioned above.

2. BACKGROUND
A tissue or organ model must capture faithfully the structure and
behavior traits. The structure of a organ can be reconstructed us-
ing, say, the Visible Human Dataset. Many algorithms are ap-
plicable here, such as the “marching cubes” algorithm and oth-
ers for constructing surface representation from CT slices or point
cloud data of a laser range finder, and the more recent radial basis
function-based interpolation and extrapolation techniques. While
it might not prove difficult to model the static structure of a soft
organ correctly, to model the dynamic behavior of an organ is a
much difficult task. The difficulty is mainly due to two factors: (1)
the structure complexity of the model required for physically cor-
rect behavior simulation, and (2) the time complexity in solving
the resulting governing PDE equations.

It is well known that simulation of deformable behaviors is dif-
ficult. So far, approaches to this problem can be roughly classified
into two categories: those that aim more at efficiency and those that
aim more at accuracy. The former is categorized by many mass-
spring, spline, and superquadric models while the latter mainly
comprises techniques based on the finite element methods (FEM).

Efficient models usually employ a small number of model con-
trol parameters (e.g., spring constants in the mass-spring models
and control vertex positions in the spline models). Fewer param-
eters allow for faster simulation. However, it can often be diffi-
cult to control fine-level details with few tunable parameters. Fur-
thermore, there is no guarantee that the simulation will be truthful
if the model parameters do not encode the material property in a
physically meaningful way, and this, is often very difficult or im-
possible to achieve. For example, if the deformable object is made
of incompressible material, the volume should be preserved at all
times. Pressure on one side of the object should induce swelling on
some other side. This type of “action at a distance” phenomenon

is often hard to simulate correctly using the efficient models.
On the other hand, accurate models based on FEM allow for

realistic simulation of material properties. Constitutive equations
that capture the relation between stress and strain enable faithful
simulation. However, numeric solution of the resulting PDE often
requires fine discretization of the domain, which gives rise to large
and time consuming matrix inversion problem and limits the real-
time performance.

Our modeling scheme aims to achieve the best of both worlds
by providing necessary accuracy at a speed comparable to that of
the efficient models. We use a general class of numeric simulation
methods that are called “boundary element methods” or BEM [5].
Naively speaking, BEM for structure simulation concentrates the
analysis power on the boundary of the object (or the surface of a
3D organ). Intuitively, for the same level of discrete resolution,
the BEM-based methods have the potential of being significantly
less expensive than their FEM-based counterparts. This is because
that the FEM methods employ

���������
variables (representing the

displacement of the body at a particular point under externally ap-
plied forces and torques), scattered both in the interior and on the
boundary of the object. The BEM methods employ

�����
	��
vari-

ables (representing surface displacement and traction) only on the
boundary of the object, with

�
representing the resolution along a

particular dimension. Hence, BEM achieves one order of magni-
tude in saving in terms of problem size.1

While this simple analysis might look promising, the reality
is never this straightforward. No matter it is an FEM- or a BEM-
based simulation, the gist of the simulation all comes down to solv-
ing a system of linear equations of the form ��
���� over time
(or a time marching problem), where � involves the material prop-
erties such as the Lamé constants � and � (and other quantities that
have to do with the discretization and interpolation functions in the
elements), � involves known boundary conditions (e.g., known
displacement and traction at certain surface and interior points),
and
 are the unknown displacement and traction inside and on
the surface of the object.

Numeric analysts will quickly point out that while BEM re-
quires less number of variables — which results in a much smaller
system of equations (

�����
	��
for BEM vs.

����� � �
for FEM) — the

real complexity of the BEM solution can be higher. This is be-
cause that while FEM results in a bigger matrix A, A is often well
conditioned and sparse. Efficient solutions exist for many classes
of well conditioned, sparse matrices. which bring the complexity
of solution to

���������
. BEM, on the other hand, always results in

a dense matrix A [5], and the complexity of the solution can be
proportional to the cube of the matrix size. This results in a to-
tal complexity of

���������
which is even more expensive than FEM.

Hence, without an efficient numeric solution method BEM is just
a “castle-in-the-sky” or “door-painted-on-the-wall” solution.

An efficient solution was recently proposed by James and Pai
in [1]. They have adopted a method that allows the inverse of A
to be computed once and off-line. When the simulation is run-
ning, they employ a low-rank update algorithm (due to Sherman,
Morrison, and Woodbury [6]) which efficiently updates the inverse

1One might argue that there are ways to reduce the problem size for FEM, e.g.,
multi-resolution and adaptive grid. We are aware of the possibilities. The above
analysis serves only as an illustration and does not mean to ignore these possibilities.
Furthermore, similar efficient numeric techniques are often applicable to BEM to
achieve a corresponding reduction in problem size as well.

of the A matrix. The low-rank update assumption is valid if only
a small number of boundary conditions change over time. E.g.,
the surgeon slides a sharp instrument across the surface of an or-
gan, but the organ is otherwise undisturbed. In this case, only a
few contact points (or boundary conditions) change. They were
able to demonstrate real-time performance for fairly complicated
deformable simulation.

However, While this approach partially solves the efficiency
problem, it does restrict the type of collision an organ can expe-
rience. This is because in cramped body cavities, low-rank up-
date is generally not a valid assumption. Organ-organ collision
and organ-body wall collision can drastically change the boundary
conditions and violate the “low-rank” assumption. When the low-
rank assumption no longer holds, the matrix inversion becomes the
dominant computation and is as expensive as

����� � �
, where

�
is

the number of nodes being perturbed (e.g., those in contact with
other organs or the body wall).

On the other hand, our proposed numeric algorithm (to be
discussed in more detailed in Sec. 4) exploits a different mech-
anism to reduce update complexity. Our observation is that the
kernel function in the fundamental solution of the BEM is usu-
ally smooth, which results in the coefficient matrix having a block-
wise low-rank structure, which we call sequentially semi-separable
(SSS) for the one-dimensional case, and hierarchically semi-separable
(HSS) for higher dimensions. Exploiting this particular matrix
structure in our simulation, we are able to achieve real-time be-
havior simulation on ordinary PC of fairly complex organs (Sec. 5
provides timing and simulation results). Our simulation allows
large changes in boundary conditions, such as those resulted from
organ-organ and organ-body wall collision, which is not possible
in [1]. This is a significant improvement that increases the appli-
cability of the BEM methods.

3. BEM-BASED FORMULATION

Our organ deformation modeling is based on several physical con-
cepts: First is the very definition of how an object is deformed. By
defining a vector u at every location which denotes the displace-
ment of a body point from its unperturbed, resting position, we can
specify how much the object has moved or deformed.

Next, the idea of strain is defined: ��� �����	 ���! !"��#�$&% �! $��#!" �('*)
+-,/.)1032

This expression (which is a tensor expression represent-
ing nine quantities) captures how much directional compression
occurs at each location along the three axial direction 45� , '*) +)0

. The term “directional” is used to indicate that an object may be
stretched in one direction, while squeezed in some other direction.
The idea of stress (6 � �) is closely related and similarly is described
by a tensor expression. While strain measures movement, stress
measures force.

For the types of materials that we are modeling the two quan-
tities are related through a linear relationship called the “constitu-
tive equation”: 65� ���1�7��898�:9� � %<; ���=� � , where :>� � is the Kronecker
delta. The Lamé constants � and � describe the material proper-
ties and can model either rigid or flexible objects. In addition, they
can capture the “averse-ness” of the material to changes in volume
or to changes in shape. The next equation forms the foundation
of much of continuum mechanics. It describes the balancing of
internal and external forces:

��? "@$��# $ %BA �C�ED , where b denotes the
force per unit volume exerted on the body. Based on it, an impor-

tant identity, known as Somigliana’s identity, can be derived. Lack
of space prohibits a derivation of the identity here, but it can be
established in a series of straightforward steps [5].� ��� ��� ���
� % ���	��
 ��� ,
� ��� � � �����C� � �
� � � �
 ��� ,
� � � � � �����C� � � % ��� �
 ��� ,
� � A � � ������� � � (1)

and
�

and
�

denote the boundary and interior of the object, re-
spectively. The discrete version of the identity is the “workhorse”
behind the boundary element methods.

�	 � � %������� � � � � $ ��
 ��� � ,
� ��� � � �����C� � �����
� � ���� � � � � $ �
 ��� � ,
� ��� � � ����� � � ��� � (2)

where � is a (known) function that depends only on the geometry of
the surface, and again

'*) +) 0
. The main feature of this identity

is that it involves unknowns (u denotes unknown displacement and
p denotes the unknown traction—surface force per unit area) only
on the surface of the deformed object. It also makes use of some
very useful and established functions, known as “Kelvin’s funda-
mental solutions” (

�

and

�

) [5]. These functions play the math-

ematic role of the kernel functions and are essential in converting
the volume-based formulation into a surface-based one. These ker-
nel functions describe the simplest possible deformation in a ma-
terial and are useful to describe any general, complex deformation.
They are expressed, in our problem, as

� � ��� ,
� � � '
'"!�# � '%$'&7�
(*) � 0+$-,.& � :>� �/ %

/ � / �/ �10 (3)

2 �"@$"3547698;:=< 3?>A@CBED�:F�G 3�>A@HD�:JI 3LK "NM $ @CK $�M " :K�O @QPSR "@$K�TVU W K " K $3?>X@YB�D�:NK�Z\[^] K]`_ 3a8;:Eb(4)

where
(� � � � is the shear modulus and

&�� � c	�d c�egfih � is the

Poisson ratio. j�� �k$ �
, / �ml j;l , ��n�io d p h �rqts o d p hn , n is the normal

vector at a surface point, and again
'*) +-, .) 0

. The above equa-
tions give the perturbation effect of a spatially concentrated force
applied at a location

�
in the direction

+
would have at a location

�
in the direction

.
. While the expression might look complicated,

the important thing is that there is an analytical solution to Kelvin’s
problem and the solution decays away from the perturbation point
and is smooth except when x = y. This is an important property
that we will use in our fast solver, which is described below.

4. FAST DIRECT SOLVER
A key to our approach is the exploitation of a new class of direct
solvers that are capable of drastically reducing the run-times of
current deformable body simulation techniques. This is accom-
plished by significantly speeding up the solution of the resulting
system of linear equations AX=B without the restrictive low-rank
update assumption used by James and Pai [1].

The key idea behind the new fast solvers is that the coefficient
matrix � has a certain “low-rank structure.” In Figure 1 we give a
pictorial depiction of this low-rank structure for an elongated de-
formable body. In this figure every off-diagonal sub-matrix (with-
out a dot in it) has small numerical rank independent of the size of
the original matrix. For more complicated bodies, the picture looks
more complex, but the essential idea continues to hold true: large
portions of the off-diagonal blocks have a low numerical rank, in-
dependent of the size of the matrix.

Fig. 1. General structure of the
coefficient matrix.

This structure was first
exploited in the classical
Fast Multipole Method of
Greengard and Rokhlin. [7].
Recently Chandrasekaran and
Gu have made the observa-
tion that we can essentially
solve these same equations
in nearly linear time. Their
observation is based on the
fact that the solution for
the elasticity equations can
be described in terms of a
Green’s function, and that

this Green’s function is smooth away from the diagonal. Hence we
can expect �Qu � to exhibit the same low-rank off-diagonal struc-
ture. The mechanics of this algorithm are far too complicated to
be presented here. Therefore we will try to motivate it by linking
it to some work on sparse matrices.

If we look at the kernel of the integral operator (Eqs. 3 and
4) for the BEM method, it is readily apparent that the interaction
between points

�
and

�
increases as the points get closer. Now,

suppose we artificially set to zero all those entries in � other than
those that correspond to nearest neighbor interactions. Call this
new matrix � . Then, it is intuitively clear that � will look (struc-
turally) very much like a sparse matrix obtained by discretization
of a partial differential operator on the surface of the body [5]. The
reason is that, we usually discretize partial differential operators by
using a stencil that covers the nearest neighbors on the grid (e.g.,� TEv "�w $��x Tzy v "L{7|�w $ u 	 v "�w $ e v "�}~|
w $� x T). Also, it is clear that the entries we
are setting to zero in � will not be the largest entries in the matrix.
Hence this resulting sparse matrix � can serve as a reasonable ap-
proximation of � . Using standard sparse matrix theory, one can
then claim that this sparse approximation to � can be solved (or
factored if you will) efficiently.

Let us go back to � , the sparse approximation to � . Chan-
drasekaran and Gu have developed a new class of fast direct solvers
that solve linear systems involving sparse matrices similar to � in
linear time. In Table 1 we show some representative timings ob-
tained for their algorithm on a 1.6GHz, 2GB Pentium 4 machine
for similar types of sparse matrices.2

Observe that the algorithm is performing at real-time speeds
even for 3969 unknowns, which translate into roughly 1300 sur-
face nodes or triangles (because each node is represented by a
three-wide vector—3D displacement or traction). Modern desk-
tops are capable of running at much higher-speeds and we expect
to be able to solve even larger systems in real-time.

2These sparse matrices were for flat grids, whereas � corresponds to a grid on a
curved surface. But this is not critical to the algorithm.

Table 1. Preliminary timing results
Number of unknowns CPU run-time in seconds
961 0.01
3,969 0.03
16,129 0.15
65,025 0.81
261,121 3.80
1,046,529 17.00

Fig. 2. Deformable animation using LAPACK/Blas solver (upper) and our fast solver (lower) on the same cardioid model with 832 triangles.

Fig. 3. Sample graphic simulation results using our BEM formulation and fast solver. The sequence is shown left to right and top to bottom.

Anyway, it is clear from this table that the new solvers by
Chandrasekaran and Gu can solve sparse matrices of the structure
possessed by � in nearly linear time. Hence, there is some reason
to believe that it should be possible to solve (or factor if you will)
� itself in near linear time. However, the linear-time algorithm
is too complicated to explain over here, and we refer interested
readers to the papers instead [2, 3, 4].

5. EXPERIMENTAL RESULTS

Fig. 2 shows the animation results of poking a cardioid with a
large, extended surface contact moving westward along the mid-
dle of the shape. The same BEM formulation was used for the up-
per and lower rows, and the difference was in the numeric solvers
employed for matrix inversion. The upper row depicts the results
using the LAPACK/Blas solver, while the lower row the results
of our fast solver. Blas solver uses standard Gaussian elimination
for matrix inversion, which has a complexity of

����� � �
. For this

particular object with 832 triangles, our solver was running at real
time while Blas was about 300 times slower (9.1 seconds/frame).
As can be seen from Fig. 2 the results look qualitatively similar.

Fig. 3 shows another animation sequence using our BEM for-
mulation and (yet unoptimized) fast solver on a disk-shaped organ.
The simulation was done in real time with a large perturbation
went along the equator from right to left. We were able to simulate
this effect realistically with the volume preserved.

6. CONCLUSION

This paper presents our formulation of a real-time, physically-
correct behavior simulation algorithm for soft tissues and organs.

Our future work is to construct a surgical simulator to validate such
an algorithm and to apply it for on-line computer-assisted surgery.

7. REFERENCES

[1] D. L. James and D. K. Pai, “Artdefo - accurate real time
deformable objects,” in Siggraph 1999, Computer Graphics
Proceedings, Alyn Rockwood, Ed., Los Angeles, 1999, pp.
65–72, Addison Wesley Longman.

[2] S. Chandrasekaran and M. Gu, “Fast and stable algorithms for
banded plus semi-separable matrices,” SIAM J. Matrix Anal.
Appl., vol. 25, no. 2, pp. 373–384, 2003.

[3] S. Chandrasekaran and M. Gu, “A fast and stable solver for re-
cursively semi-separable systems of equations,” in Structured
matrices in mathematics, computer science and engineering,
II. 2001, AMS Publications.

[4] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, and A. van der
Veen, “Fast stable solvers for sequentially semi-separable lin-
ear systems of equations,” Tech. Rep., Department of mathe-
matics, UC Berkeley, 2003.

[5] James H. Kane, Boundary Element Analysis in Engineering
Continuum Mechanics, Prentice Hall, Englewood Cliffs, NJ,
1994.

[6] G. H. Golub and C. F. van Loan, Matrix Compujtations, 2nd
Ed., John Hopkins University Press, Baltimore, MD, 1996.

[7] L. Greengard and V. Rokhlin, “A fast algorithm for particle
simulations,” J. Comp. Phys., vol. 73, pp. 325–348, 1987.

