
Multi-View Stereo Point Clouds Visualization

Yi Gong and Yuan-Fang Wang

Computer Science Department, University of California, Santa Barbara, CA 93106

Abstract. 3D reconstruction from image sequences using multi-view
stereo (MVS) algorithms is an important research area in computer vi-
sion and has multitude of applications. Due to its image-feature-based
analysis, 3D point clouds derived from such algorithms are irregularly
distributed and can be sparse at plain surface areas. Noise and outliers
also degrade the resulting 3D clouds. Recovering an accurate surface
description from such cloud data thus requires sophisticated post pro-
cessing which can be computationally expensive even for small datasets.
For time critical applications, plausible visualization is preferable. We
present a fast and robust method for multi-view point splatting to visu-
alize MVS point clouds. Elliptical surfels of adaptive sizes are used for
better approximating the object surface, and view-independent textures
are assigned to each surfel according to MRF-based energy optimiza-
tion. The experiments show that our method can create surfel models
with textures from low-quality MVS data within seconds. Rendering re-
sults are plausible with a small time cost due to our view-independent
texture mapping strategy.

1 Introduction

Research in 3D model reconstruction using multi-view stereo (MVS) algorithms
has made significant strides recently in the computer vision community. As a
result, 3D point cloud data are no longer derivable only from expensive and spe-
cialized devices like range scanners, but also from uncalibrated consumer-market
digital cameras [1] or even community photo collections [2]. However, 3D point
clouds recovered by these computer vision algorithms are not as ideal as those
from specialized scanners. MVS algorithms use feature-based analysis under the
Lambertian shading assumption, which have difficulty handling textureless and
non-Lambertian surfaces. Combined with the inherent difficulties of solving an
ill-posed, inverse 2D to 3D problem, 3D point clouds reconstructed from MVS
algorithms are often sparse, irregularly distributed, noisy, and usually contain
many outliers (see Figure 1). Such datasets present challenges to the recovery of
object surface structure and appearance.

To improve the quality of the recovered 3D point clouds, post-processing steps
are often employed to adjust the positions and orientations of 3D points based
on photo discrepancy constraints [1]. But such methods can be computationally
very expensive. For applications requiring fast 3D model reconstruction, e.g.,
creating avatars for game players, a long waiting time is unacceptable. Efficient

G. Bebis et al. (Eds.): ISVC 2011, Part I, LNCS 6938, pp. 283–292, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



284 Y. Gong and Y.-F. Wang

Fig. 1. An example of MVS data. Left: input images; right: output point clouds.

and robust visualization methods for such MVS 3D datasets are important in
completing the pipeline of image-based 3D reconstruction. Although computer
graphics researchers have explored point-based modeling and rendering tech-
niques for a long time, most existing work is not applicable to the raw 3D point
data derived from MVS algorithms due to the data quality issues. Furthermore,
deriving consistent texture maps for MVS data presents additional research is-
sues of avoiding color mismatch and cracking using the color/texture information
from multiple images.

This paper is aimed at providing an efficient and generic solution for visu-
alizing unpolished MVS point clouds. Our main contributions are: we propose
a statistical method to select nearest neighbors in highly irregularly-distributed
point clouds; we apply adaptive radius elliptically-shaped surfels to approximate
object surfaces; we introduce Markov Random Field (MRF) based multi-view
texture mapping for point splatting. Our results show the proposed methods can
handle such challenging 3D datasets much better than existing ones.

2 Related Work

For relatively clean, regular and dense point clouds, many existing algorithms
have been developed to extract the geometric surface precisely. They can be di-
vided into two categories: explicit and implicit methods. Explicit methods make
use of Voronoi diagram and Delaunay triangulation to connect points and form
surface meshes [3,4,5]. As explicit methods require dense point clouds as inputs
and are sensitive to noise and outliers, they are not suitable to process irreg-
ularly distributed 3D point data generated from the MVS algorithms. Implicit
methods do not connect points explicitly. Instead, they define an inside/outside
function f() and take f = 0 as the surface. This f() function is determined by
minimizing an energy expression related to the distances from the input points
P to the surface function f(). Hoppe et al. first used the distance field to extract
surfaces from point clouds [6]. Later, radial basis functions [7,8,9], moving least
squares [10], level set [11] and poisson functions [12] were also introduced to solve
the implicit function. Implicit methods are relatively robust to noisy data, but
require an additional triangulation step to transform implicit functions to poly-
gon meshes. Moreover, they are sensitive to normal estimation errors, which is
a common problem for MVS data due to their sparsity and irregularity. Finally,
for complex scenes containing overlapping objects, implicit surface extraction



Multi-View Stereo Point Clouds Visualization 285

Fig. 2. Left: incorrect surface connection generated by implicit surface extraction;
right: the result of our method

techniques will generate unexpected inter-object connections between unrelated
points, as shown in Figure 2(left).

To simplify the visualization of 3D point cloud data, Pfister et al. [13] and
Zwicker et al. [14] proposed the EWA point splatting method which skips the
surface extraction step and visualizes an object’s surface directly with oriented
disks, called surfels – surface elements. Surfels overlap with each other in 3D
space to cover gaps among the points. When surfels are projected onto the
screen, pixels covered by multiple surfels will blend their surface attributes such
as normals and textures in a weighted manner. This no-topology method avoids
incorrect connections of points and thus is very suitable for MVS data visualiza-
tion, whose points’ group division is especially difficult when close or overlapping
objects present. Goesele et al. proposed an ambient point cloud concept that vi-
sualizes difficult backgrounds with ambient points to reduce artifacts in view
interpolation [15]. But their method is more focused on the view interpolation
effect and is different from our purpose.

Before MVS algorithms had got mature enough to enable automatic image-
based reconstruction, quite a few researchers tried image-based rendering (IBR)
methods to visualize 3D scene based on multi-view images while totally dis-
carding assumptions of the scene geometries [16]. But these techniques usually
require a huge amount of images and have blurred results due to their blending
essence for new viewpoints. Debevec et al. [17] introduced view-dependent tex-
ture mapping (VDTM) with manually built 3D geometric model with much less
input images to solve these problems. VDTM inherits the ability of replaying
view-dependent effects from pure IBR methods. But due to its visibility based
subdivision step, the model becomes so complex that requires huge memory to
store, and consumes more time to render than view-independent methods. Yang
et al. combined VDTM with point splatting [18]. But their experiments were
mainly tested on synthetic/calibrated systems which are more clean and precise
than our input, and is suitable to apply VDTM algorithm directly. For MVS re-
constructed 3D points from uncalibrated camera like ours, blending multi-view
textures cannot eliminate the appearance incoherence among neighboring points
and neighboring views due to re-projection error and exposure difference, which
are the most serious problems of MVS data.



286 Y. Gong and Y.-F. Wang

Lempitsky et al. [19] presented a view-independent texture mapping approach
by minimizing an energy expression that incorporates both viewing direction
matching and texture coherence. The selected image to texture a mesh trian-
gle should have its viewing direction close to the triangle’s normal. Meanwhile,
neighboring triangles are expected to sample textures from the same image. They
use MRF optimization to constrain the relationship between these two factors.
We also use MRF optimization to select texture based on the energy of surface
orientation and coherence among neighbors. But point clouds don’t have explicit
connections like polygon meshes to build the MRF directly. Our strategy is to
create a graph conservatively, based on the distances between points and their
sizes. The details will be explained in section 3.3.

3 Our Method

3.1 Nearest Neighbors

Picking nearest neighbors is the first and key step for surface approximation from
point clouds, because the surfels’ orientations, sizes and positions are mainly
determined by the information from their neighbors. As we mentioned above,
for MVS data, the 3D points are actually recovered from 2D features detected in
input images. The distribution of the these image features is usually very sparse
and uneven at featureless regions. Traditionally, each point is assigned a fixed
radius for neighbor selection, but such a strategy is not ideal when applied to
MVS data, because it may select either too few or too many neighbors. Fixing
the number of nearest neighbors is not a good design either, as it may include
some neighbors very far away that contribute little or even incorrect information
to the current point’s local geometry.

To collect an adequate and representative set of neighbors for normal estima-
tion, we allow the number of nearest neighbors to vary in a range and make the
decision of accepting or rejecting a neighbor by maximizing the relative difference
between the accepted group of neighbors and the discarded ones. Suppose we
have n nearest neighbors sorted by distance in ascending order. We will accept
the first

k∗ = argmax
k

dk+1 − μ̂k

σ̂k/
√

k
(1)

neighbors and reject the range from k∗ + 1 to n. In the equation, dk+1 is the
distance of the (k + 1)th neighbor, and μ̂k and σ̂k are the sample mean and
sample standard deviation of the distances of the first k nearest neighbors. The
formula above to maximize is essentially reduced from Welch’s t-test statistic [20]

tA,B =
μ̂A − μ̂B√

σ̂2
A/nA + σ̂2

B/nB

(2)

which serves as a discriminant measure between the two sample groups A =
{d1, d2, · · · , dk} and B = {dk+1} for our case, where the sample sizes nA = k
and nB = 1, and the second sample has only one element, thus a degenerate



Multi-View Stereo Point Clouds Visualization 287

−4
−2

0

2.5

3

3.5

−10.5

−10

−9.5

−9

Y

X

Z

0 5 10 15 20
0

20

40

60

80

100

Nearest Neighbor Order

S
co

re

Fig. 3. An example of our neighbor selection. Left: a 3D point (in red) and its accepted
(in blue) and rejected (in pink) neighbors; Right: scores of the tested neighbors.

mean μ̂B = dk+1 and a zero variance σ̂2
B = 0. The effect of this algorithm is

shown in Figure 3. The current point is marked in red. The remaining dots are
its nearest neighbors sorted by distance from it. From the score chart, obviously
the 18th neighbor get the highest score, i.e. k∗ equals 18. The rest two points
are rejected, which are marked in pink.

3.2 Adaptive-Size Elliptical Surfels

After obtaining an estimate of a local neighborhood above, we approximate
the object surface by oriented surfels. The normal of each surfel is available
through Principal Component Analysis (PCA) [6], which is relatively robust for
MVS data. But the size and shape need more sophisticated approach to better
match local neighborhood geometry. Due to the irregular point distribution, each
surfel’s size need to be adaptive to the local cloud density to cover the gap among
the points. Most existing point-based rendering algorithms use circular disks as
the rendering primitives, which does not work well with MVS data. For example,
for points on the ridge of a sharp geometry (i.e., an edge), large surfels will jut
out from approximated surface and look abrupt and wired. Thus, the surfel sizes
should also relate to the local curvatures in different directions . For flat surface
patches that have a small absolute value of surface curvature, a surfel can extend
its area in any direction until it covers the gap in that direction or reaches the
maximum radius we set. For highly curved patch, surfel radius should be small.
For patches flat in some directions and highly curved in other directions, we
should assign anisotropic radii to the surfels.

From differential geometry, we know that the largest difference between two
surface curvatures of a point occurs at two perpendicular directions on the
tangent plane, i.e. the principal directions [21]. Therefore, an elliptical surfel
with two different axes which can be adjusted independently perfectly meets our
needs. To estimate the local curvature, we fit a least square quadratic surface
over the given point and its nearest neighbors. Then the principal curvatures can
be derived from Gaussian curvature and mean curvature [21] calculated based
on the surface equation. As for the principal directions, we adopt Che et al.’s



288 Y. Gong and Y.-F. Wang

method [22]. The radii along the two axes are assigned to min
(

1
κ , 1

k

∑k
i=1di

)
,

where κ is the curvature of the current point, whose reciprocal equals to the
radius of the tangent circle in the given direction at that point. The second term
is an estimation of the sparsity of the current point’s neighborhood, which is the
average distance of the first k neighbors to current point. In our implementation,
we have used k = 5 based on experiments. We also set a minimum and maximum
limitation for the surfel radius to avoid extreme cases. With our algorithm, we
can fill gaps among points better and avoid improperly extended surfels.

3.3 Multi-View Texture Mapping

Texture coherence among neighboring points is very important to MVS data
visualization because of the non-ignorable re-projection error of reconstructed 3D
points and exposure difference among different view images. Seam and mismatch
are inevitable if neighboring surface points take different images as textures. As
a result, simply choosing the closest orientation image as the texture source
for each surfel will not lead to a satisfactory result (Figure 4). Therefore, we
need to strike a balance between similarity in viewing direction and coherence
of neighborhood, i.e., the texture source, among neighboring surfels. Since this
coherence is only related to neighboring surfels, which conforms to Markovian
property, we can define this problem as an energy minimization problem over an
MRF. In contrast to Lempitsky and Ivanov’s method [19], which applies MRF
to optimize texture mapping of polygon meshes, we do not have an explicit
neighbor graph. Our points’s neighbor relationship is vague and implicit because
our primitives have no explicit connections and the surfel’s radius is adaptive.
We judge two points p1 and p2 to be neighbors if their distance is smaller than
the sum of their long axes. This is a conservative estimation. But as we want
the color to transfer smoothly, making close points share similar texture sources
is not a drawback. According to this rule, we add edges between surfel pairs
to create the MRF. Its energy function has two parts: data energy which only
relates to the given point’s visibility in a certain image (already known in typical
MVS result data) from MVS data and how close the camera’s viewing angle is
to the point’s normal; and smoothness energy which penalizes if current surfel
does not use the same texture as its neighbors.

E(p) = data(p, camerai) + λ smoothness(p, neighbor of(p)) (3)

in which λ is a regularization parameter to balance between these two terms.
We use graph-cuts [23, 24, 25] to solve the MRF optimization and it works well.

3.4 Point Splatting

Our rendering method is similar to Botsch et al.’s [26]. We first disable the
color buffer’s writing operation and enable the depth buffer’s to render surfels
into the depth buffer without shading. Then the depth buffer is disabled and
the color buffer is enabled. We shift all surfels a little closer to the camera to



Multi-View Stereo Point Clouds Visualization 289

Fig. 4. Multi-view texture mapping without (left) and with (right) MRF optimization

avoid z-fighting and render them with the assigned textures onto the screen. The
colors and weights of covered pixels are accumulated by alpha blending in the
frame buffer object, where weights are recorded in the alpha channel. Finally,
each pixel’s color is normalized by its alpha value. This splatting process also
helps us smooth the boundaries between surfels, as overlapping surfels will all
contribute to the intersection area and blur the boundary naturally.

4 Experiments

We test our algorithms on a computer configured with a Core 2 Quad 2.33GHz
CPU, 4GB DDR3 memory, and an Nvidia GeForce 210 video card with 512M
video memory. Our input is the 3D point clouds generated by the SfM algo-
rithm [27]. Note that the algorithm uses photos from uncalibrated, consumer-
market digital cameras with arbitrary photographing modes. Illumination and
exposure are not controlled in these sequences and adjacent images can exhibit
large change in color and brightness. The camera’s intrinsic and extrinsic pa-
rameters are recovered by a non-linear optimization using corresponding feature
points in different images. Hence, the point clouds have errors and outliers. The
data contains sparse but precisely recovered 3D points from SIFT features and
dense but flawed points recovered by interpolation. When calculating normals
and curvatures, we give high weight to the SIFT features and low weight for
interpolated points to reduce error.

Though we only test performance on the data sets from this MVS algorithm,
our method is applicable to point clouds from other MVS algorithms too. 3D
points generated from MVS algorithms have similar attributes and formats: 3D
positions, colors, 2D coordinates in visible images. Camera parameters are also
available from their own recovering process. So all the information we need are
accessible in typical MVS algorithms.

In our experiments, the operations of searching nearest neighbors [28], cal-
culating normal, and estimating principal curvatures are very fast. Optimizing
texture selection with MRF is the most time consuming stage in our algorithms.
We run 2 iterations of alpha expansion with graph-cuts which cost 14 to 18 sec-
onds for 41k to 50k point models in our tests (Table 1). From our results, we



290 Y. Gong and Y.-F. Wang

Table 1. Our test datasets and corresponding time costs

Model # PTS # Views # MRF Edges # Used Views Time(fitting) Time(texture)

Building 60,206 16 1,039,649 15 3.132s 15.253s
Logcabin 41,303 29 683,124 18 2.142s 13.844s
Nandhu 43,247 22 712,329 14 2.301s 17.697s
Tobias 49,044 21 809,571 14 2.366s 20.614s
Medusa 63,373 19 1,026,093 15 2.970s 33.159s

(a) (b) (c) (d)

Fig. 5. Medusa model. (a) recovered normals; (b)(c)(d) results from different views.

can see that even without very precisely estimated normals, MRF based texture
mapping strategy can still produce plausible visualization results, while selecting
texture using only the best matched viewing direction leads to color jump and
discontinuity (Figure 4).

We also compare our result with Autodesk’s photofly [29], the state-of-the-art
application of 3D reconstruction and visualization. Photofly has its own 3D re-
construction algorithm. So its input point clouds may have slight difference from
ours. But it is still a good reference for the visualization part. From Figures 6
and 7, we can see the large difference between its rendering strategy and ours.
Photofly blends multi-view textures to reduce the artifacts brought by low qual-
ity MVS data, which blurs the picture heavily, while we render surfels boldly
without vagueness after optimizing their orientation, shape and textures.

(a) (b) (c) (d)

Fig. 6. Tobias model. (a) recovered normals; (b)(c) results from different views; (d)
Photofly’s [29] rendering result - in the hair area, the artifacts caused by multi-view
images blending is very obvious.



Multi-View Stereo Point Clouds Visualization 291

(a) (b)

Fig. 7. Logcabin model. Rendering results of (a) Ours and (b) Photofly’s [29].

5 Conclusions

We have presented a novel algorithm to visualize challenging point clouds gener-
ated from the MVS algorithms. Our algorithm uses a statistical metric to select
representative neighbors for each 3D point and then approximates the point’s
neighborhood with an elliptical surfel of an adaptive size. Each surfel’s orienta-
tion, shape and size are calculated according to its neighborhood information. To
remedy the imprecision of an approximated surface, we apply MRF optimized
texture mapping strategy to select most proper images as texture source for each
surfel while minimizing appearance incoherence among neighboring surfels. Our
results show the proposed algorithm handles the low quality 3D data well. Our
future work includes improving the precision of the normal estimation by taking
image information into consideration and exploring possible shape detection on
MVS data to make the surface reconstruction more robust.

References

1. Furukawa, Y., Ponce, J.: Accurate, dense, and robust multi-view stereopsis. In:
Proc. CVPR 2007, pp. 1–8 (2007)

2. Goesele, M., Snavely, N., Curless, B., Hoppe, H., Seitz, S.M.: Multi-view stereo for
community photo collections. In: Proc. ICCV 2007, pp. 1–8 (2007)

3. Edelsbrunner, H., Mücke, E.P.: Three-dimensional alpha shapes. In: Proc. VVS
1992, pp. 75–82 (1992)

4. Amenta, N., Bern, M., Kamvysselis, M.: A new voronoi-based surface reconstruc-
tion algorithm. In: Proc. SIGGRAPH 1998, pp. 415–421 (1998)

5. Amenta, N., Choi, S., Kolluri, R.K.: The power crust. In: Proc. SMA 2001, pp.
249–266 (2001)

6. Hoppe, H., DeRose, T., Duchamp, T., Halstead, M., Jin, H., McDonald, J.,
Schweitzer, J., Stuetzle, W.: Piecewise smooth surface reconstruction. In: Proc.
SIGGRAPH 1994, pp. 295–302 (1994)

7. Turk, G., O’Brien, J.F.: Shape transformation using variational implicit functions.
In: Proc. SIGGRAPH 1999, pp. 335–342 (1999)

8. Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum,
B.C., Evans, T.R.: Reconstruction and representation of 3d objects with radial
basis functions. In: Proc. SIGGRAPH 2001, pp. 67–76 (2001)



292 Y. Gong and Y.-F. Wang

9. Ohtake, Y., Belyaev, A., Seidel, H.P.: Ridge-valley lines on meshes via implicit
surface fitting. In: Proc. SIGGRAPH 2004, pp. 609–612 (2004)

10. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Computing
and rendering point set surfaces. IEEE Trans. Visual. Comput. Graph. 9, 3–15
(2003)

11. Zhao, H.K., Osher, S., Fedkiw, R.: Fast surface reconstruction using the level set
method. In: Proc. VLSM 2001, pp. 194–201 (2001)

12. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proc.
SGP 2006, pp. 61–70 (2006)

13. Pfister, H., Zwicker, M., van Baar, J., Gross, M.: Surfels: surface elements as ren-
dering primitives. In: Proc. SIGGRAPH 2000, pp. 335–342 (2000)

14. Zwicker, M., Pfister, H., van Baar, J., Gross, M.: Surface splatting. In: Proc.
SIGGRAPH 2001, pp. 371–378 (2001)

15. Goesele, M., Ackermann, J., Fuhrmann, S., Haubold, C., Klowsky, R., Steedly, D.,
Szeliski, R.: Ambient point clouds for view interpolation. In: Proc. SIGGRAPH
2010, pp. 95:1–95:6 (2010)

16. Shum, H.Y., Chan, S.C., Kang, S.B.: Image-Based Rendering. Springer, Heidelberg
(2006)

17. Debevec, P.E., Taylor, C.J., Malik, J.: Modeling and rendering architecture from
photographs: a hybrid geometry- and image-based approach. In: Proc. SIGGRAPH
1996, pp. 11–20 (1996)

18. Yang, R., Guinnip, D., Wang, L.: View-dependent textured splatting. The Visual
Computer 22, 456–467 (2006)

19. Lempitsky, V., Ivanov, D.: Seamless mosaicing of image-based texture maps. In:
Proc. CVPR 2007, pp. 1–6 (2007)

20. Welch, B.L.: The generalization of “student’s” problem when several different pop-
ulation variances are involved. Biometrika 34, 28–35 (1947)

21. Struik, D.J.: Lectures on Classical Differential Geometry. Addison-Wesley, Reading
(1950)

22. Che, W., Paul, J.C., Zhang, X.: Lines of curvature and umbilical points for implicit
surfaces. Computer Aided Geometric Design 24, 395–409 (2007)

23. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1222–1239 (2001)

24. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach.
Intell. 26, 1124–1137 (2004)

25. Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph
cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26, 147–159 (2004)

26. Botsch, M., Hornung, A., Zwicker, M., Kobbelt, L.: High-quality surface splatting
on today’s gpus. In: Proc. PBG 2005, pp. 17–141 (2005)

27. Chen, C.I., Sargent, D., Tsai, C.M., Wang, Y.F., Koppel, D.: Stabilizing stereo
correspondence computation using delaunay triangulation and planar homography.
In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Porikli, F., Peters,
J., Klosowski, J., Arns, L., Chun, Y.K., Rhyne, T.-M., Monroe, L. (eds.) ISVC 2008,
Part I. LNCS, vol. 5358, pp. 836–845. Springer, Heidelberg (2008)

28. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.: An optimal algo-
rithm for approximate nearest neighbor searching. J. ACM 45, 891–923 (1998)

29. Photofly, A., http://labs.autodesk.com/technologies/photofly/

http://labs.autodesk.com/technologies/photofly/

	Multi-View Stereo Point Clouds Visualization
	Introduction
	Related Work
	Our Method
	Nearest Neighbors
	Adaptive-Size Elliptical Surfels
	Multi-View Texture Mapping
	Point Splatting

	Experiments
	Conclusions



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


