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Figure 4: Salient views of TOY1

Figure 5: Salient views of TOY5.
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3   Applications

Previous researchers have demonstrated that the
eigenspace approach is a powerful tool in recognition
and pose estimation of objects from image projec-
tions. The objective of our experiments is to illustrate
that the proposed learning algorithm selects intu-
itively meaningful images from the various view-
points for representing the objects,  and thus
substantiates our claim that this approach can be used
in a dynamic environment.

When a new image is encountered during the
learning process, the representation changes under
the following three conditions: (a) When the dimen-
sionality of the current basis image space is not suffi-
cient to encode the new image. In this case the
number of basis images increases by one; (b) the sin-
gular vectors are rotated, and (c) the addition of the
new image affects the singular values only. Our
experimental studies indicate that when a new repre-
sentation is required, usually the dimensionality also
goes up. This suggests the following simplification in
the learning algorithm: check to see if an update is
necessary (this can be done by considering the recon-
struction error); if necessary, update the representa-
tion1. The following experiments are conducted
using this simplified version implemented in Matlab.

We placed test objects on a rotation stage and
took pictures for every  of rotation. A total of six
objects were digitized with 36 images per object. One
of the toy objects (TOY2) and the first 18 views (0 -
180 degree) of it are shown in Figure 2. Eigenspace
representations are constructed for all six objects by
examining the 36 images one-by-one. Only those
images that provided significant new information are
used in constructing a new, larger representation (see
Figure 3). We call these images as salient views of
the corresponding object. Figure 4 and Figure 5 show
the salient views of two other objects. In both these
cases, the number of salient views is about one third
the total number of views. Increasing the number of
views (acquiring them at a finer angular spacing)
does not increase the number of salient views. In our
implementation, as new images are acquired, the rep-

1. However, note that in our formulation the cost of checking
(projecting onto the current eigenspace) is the same as updating
the representation except for a constant factor (strictly less than
1000), and in the case of recognition from large databases it is
beneficial to just update the representation using the learning
scheme shown in Figure 1.

10°

resentation is updated only if the error in reconstruc-
tion exceeded the threshold  (see Figure 1). A good
choice of  appears to be in the range 0.06 - 0.1 per
pixel for the case of zero-mean images. We sub-
tracted the running average of the images to approxi-
mate zero-mean images. Subtracting the mean
simplifies the choice of  for a wide range of images,
but is not necessary either for the analysis of the algo-
rithm or for its implementation.

We observe that the number of salient views is
essentially invariant to initial view-point. Our current
experiments focus on active recognition wherein the
camera acquires images in an adaptive way. The
incremental positioning of the camera is adaptively
controlled by considering the changes in the eigens-
pace representation. The system starts acquiring
objects initially at one degree rotation. If the new
image is close to the current eigenspace representa-
tion, the step-size for the rotation is doubled. On the
other hand, if the distance of the current image from
the eigenspace representation is large, then the step-
size is halved. We expect to have the results of these
experiments presented at the conference.

3.1   Conclusions

The eigenspace updating technique is suitable for
use in an active environment where images are
acquired continuously and a representation is incre-
mentally constructed and refined. We have shown its
effectiveness in 3D object representation using 2D
images which is useful in active recognition and
environment exploration. Further research is needed
to quantify image saliency in a more objective way,
perhaps requiring higher level visual cues to be incor-
porated into the scheme. The methodology presented
here is also applicable to image features such as
wavelet transformed data.

Our current research seeks to extend these con-
cepts to video coding and image database problems.
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Nayar [9], Oja’s book on subspace methods [11]), but
are not very relevant to our discussion here.

2   Updating an Eigenspace
Representation

If all the  images of the data set are not avail-
able at the outset (as in an active sensing scenario),
we would need to compute the SVD every time a sig-
nificant new image is obtained. If we did the naive
thing and saved all the images and computed a full-
fledged SVD from scratch every time, it would cost

 time, which is too slow.

2.1   Adaptive eigenspace computation

We now discuss a more efficient way. Let the
left-singular vectors computed by the following
incremental updating algorithm after obtaining i
images be denoted by , and let  denote the
corresponding matrix of singular values, where
is the number of columns of . Note that  can be
different from  and the effect of this approxima-
tion is studied in this section. When we acquire the
new image  we compute a new SVD

. (4)

We now choose the integer  such that the
th singular value of  is the smallest singular

value bigger than , where  depends on  (the rela-
tion between  and  will be developed further in
Section 2.2). We then pick the first  left singular
vectors to form  and the corresponding singular
values to form . Since  does not depend on i it

Table 1:  Comparison of algorithms

Authors Method Update

Murakami and
Kumar (1982)

yes

Kirby and Sirkovich
(1990)

no

Turk and Pentland
(1991)

no

Murase and Linden-
baum (1995)

iterative
( )

no

This paper GES (1994) yes

B
T
B

BB
T

B
T
B

BB
T

N

O mN 3( )

Uki
Σki
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Ai 1+
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T
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ki 1+ Σ′
δ δ ε

ε δ
ki 1+

Uki 1+

Σki 1+ δ

follows from elementary properties of singular values
that , which is intuitively obvious.

We now state the algorithm more formally in
Figure 1. In practice there is no need to update the
SVD for every new image. Only those images which
are significantly outside the current object eigens-
pace, or those that cause a large change in the singu-
lar values need be updated.

2.2   Accuracy and Efficiency of the Algorithm

Note that  approximates  to an accu-
racy of . Similarly  approximates  to an accu-
r a c y  o f .  F r o m  t h i s  i t  f o l l o w s  t h a t
approximates  to an accuracy of 2 . In general,

,  approximates  to an accuracy of
. Therefore if we choose  to be  we

can guarantee that  will approximate all the
images to an accuracy of .

Let  be the  rank of . One possibility to
guard against is whether  may be much larger than
L. This would make the algorithm very slow. This
can happen only if there are singular values of
clustered around . This problem should be solved
on a case by case basis. More details can be found in
[7].

Time Complexity. We now consider the time com-
plexity of the algorithm. To compute the SVD of

,

we use the fast SVD update algorithm of Gu and Eisenstat
[4]. This algorithm computes the new SVD in
time. Therefore, the total time spent on computing SVD’s
will be . Note that if  (which is not
unreasonable), then computing the SVD one image at a
time is faster than computing the SVD of  directly!

ki 1+ ki≥

For  to N
;

Find k such that ;

Let  equal the first k columns of ;

Let  equal the first k columns of ;

Let  equal the leading  principal sub-
matrix of ;

End

Figure 1: Adaptive eigenspace computation
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mation is embedded within or how different the
image is from the current eigenspace representation),
and the current representation is updated accordingly.
Since the updating algorithm is based on computing
the singular values of a matrix composed of images,
we begin with a brief review of the eigenimage repre-
sentation.

1.1   Eigenimage Representation

In the following discussion, we shall use the stan-
dard Euclidean 2-norm denoted by :

. (1)

Then, for a matrix ,

(2)

Let  denote a sequence of image vectors,
obtained by row-scanning the two-dimensional
images with  pixels in each image. Let  denote
the matrix . Let  be a given tolerance
and define the -rank of  to be the number of sin-
gular values of  greater than . Denote the -rank
of  by . Therefore, if ‘s are the singular values
of  in non-increasing order, then . In
many image processing applications, . There-
fore,  can be represented efficiently by its first
singular vectors and singular values. Denote the SVD
of  by

, (3)

where  is an  matrix,  is  diagonal matrix,
and  is an  matrix. Note that  and  are matri-
ces whose columns are the first  left- and right-singular
vectors, respectively.

Note that  can be reconstructed to  accuracy
by . That is . The algorith-
mic requirement in many applications is to compute

 efficiently. This can be directly com-
puted from  by using standard SVD algorithms
(e.g., Golub-Reinsch [3]). This has a complexity of

. Some researchers ([8],[14]) have suggested
computing SVD by computing the eigendecomposi-
tion of . While this has the same complexity, its
numerical properties are not as good [3]. Neverthe-
less, in applications involving a large number of

.
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images, computing the SVD of  can be too slow.
In many situations (as in face recognition, data-

base browsing, video coding, and active recognition)
the  is available and this can be
used to speed-up the computations. We can approxi-
mately compute  by computing the SVD
of . This is the approach
taken in [8] but they compute the SVD of  by com-
puting the eigendecomposition of . This costs

. While more efficient than computing
the SVD of , this still suffers from potential
numerical instability [3]. Murase [10] advocates the
use of iterative methods for computing the SVD/
eigendecomposition. But as is well known in numeri-
cal linear algebra [3] it is difficult to get robust imple-
mentations of such iterative methods.

In this paper, we propose instead the use of a
direct update GES algorithm to compute the SVD of

. This algorithm has good numerical properties,
and is as efficient as the approach of [8]. Moreover,
for data sets with large , Gu and Eisentat have a
fast version of the algorithm with time complexity

. A brief description of the GES algorithm is
given below.

The GES Algorithm: The Gu and Eisenstat algorithm
is used for computing the SVD of a matrix which can
be represented as a diagonal matrix plus a rank-1
update. That is, if , where  is a diago-
nal matrix and  and  are vectors, then the GES
algorithm computes the SVD of  in  where

 is the dimension of . If the SVD of  is known
and we append another image  to get the new
matrix , then its SVD is related to the SVD of
by a rank-1 update involving . The algorithm is
based on a divide-and-conquer strategy and we refer
the reader to [4] for the details.

Table 1 summarizes the algorithmic differences
among some previous work in vision and ours. Note
that these papers address different applications and it
is not our intention here to compare those other
aspects. From this table, an important conclusion to
be drawn is that there exists a powerful technique
from numerical linear algebra (fast and stable SVD
update) that has important bearings on many vision
applications. This is born out by the fact these tech-
niques have been rediscovered several times in the
vision literature. There are several other papers con-
cerning various pattern recognition applications of
eigenspace representations (for example, Murase and
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Abstract

During the past few years several interesting applications
of eigenspace representation of the images have been
proposed. These include face recognition, video coding,
pose estimation, etc. However, the vision research
community has largely overlooked parallel developments in
signal processing and numerical linear algebra concerning
efficient eigenspace updating algorithms. These new
developments are significant for two reasons: Adopting
them will make some of the current vision algorithms more
robust and efficient. More important is the fact that
incremental updating of eigenspace representations will
open up new and interesting research applications in vision
such as active recognition and learning. The main objective
of this paper is to put these in perspective and discuss a
recently introduced updating scheme that has been shown
to be numerically stable and optimal. We will provide an
example of one particular application to 3D object
representation projections and give an error analysis of the
algorithm. Preliminary experimental results are shown.

1   Introduction

The eigenspace representation of images has
attracted much attention recently among vision
researchers [8]-[14]. The basic idea is to represent
images or image features in a transformed space
where the individual features are uncorrelated. For a
given set of (deterministic) images this can be
achieved by performing the Singular Value Decom-
position (SVD). The statistical equivalent of this is
the Karhunen-Loeve Transform (KLT) which is com-
puted by diagonalizing the autocorrelation matrix of
the image ensemble. Note that when the complete
data are given, SVD converges to the KLT, if it exists.
Both are well known techniques in image processing.
However, they are computationally expensive.

Since computing SVD is expensive, there is a
need for efficient algorithms for SVD updating. In the
updating problem, one is interested in computing the
new SVD when a row (or a column) is added to a
given matrix whose SVD we already know. The idea
of SVD updating has been prevalent in signal pro-

cessing for about two decades. One of the first papers
on the numerical issues of updating matrix factoriza-
tions appeared in 1974 [2]. However, till recently
there was no fast and stable updating algorithm for
the SVD [4].

In the context of image analysis in eigenspace,
this paper makes the following contributions:
• We provide a comparison of some of the popular

techniques existing in the vision literature for
SVD/KLT computations, and point out the prob-
lems associated with those techniques.

• A brief summary of Gu and Eisenstat’s [4] SVD
updating algorithm, GES, is given. This algo-
rithm has been proved to be stable and optimal.
Using the GES, we suggest a technique for adap-
tively modifying the number of basis vectors and
provide an error analysis.

• We provide preliminary experimental results for
the case of 3D object representation using image
projections. Other interesting applications in
vision are identified.
Although SVD updating techniques have been

used by several researchers in the past, to the best of
our knowledge this is the first time that a scheme is
suggested for adaptively modifying the number of
basis vectors.

Let us consider the following scenario: A camera
is mounted on a robot which explores a 3D object by
viewing it from different angles, and builds an inter-
nal representation in terms of image projections. This
is a slightly different formulation from the face rec-
ognition problem introduced in [13] and later made
popular by [14]. In all these cases, we need to be able
to recognize an object from its projections only. We
assume that image data are directly used in building a
representation, but the formulation is valid for any set
of image features extracted from the image data. As
the sensor acquires each new image, the image is
analyzed to determine if it is a salient image (the
image saliency is measured by how much new infor-


