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Abstract—In recent years, the application of Unmanned Aerial
Vehicle (UAV) devices in military, industrial, and civilian sectors
has become increasingly widespread. Consequently, research on
multi-UAV formation cooperative control strategies has garnered
significant attention. However, current multi-agent reinforcement
learning algorithms often struggle with unguided exploration,
making it challenging for agents to develop efficient action
strategies for complex collaborative tasks. To address this issue,
this paper introduces a Multi-Critic Deep Deterministic Policy
Gradient (MCDDPG) algorithm. This algorithm designs a Multi-
Critic (MC) structure based on the DDPG algorithm. This
structure guides UAVs using physical models for tracking and
obstacle avoidance, while deep learning models are employed to
facilitate cooperative coordination among UAVs. Furthermore,
to address the weight allocation issue among different Critic
modules in the MC structure, a dynamic difficulty priority
weight optimization algorithm is implemented. This enhances
the algorithm’s collaborative capabilities. To validate the col-
laborative planning capability of the proposed algorithm, a
simulation scenario involving multi-coupled tasks is designed in
the Multi-Agent Particle Environment (MPE). In this scenario,
the MCDDPG algorithm demonstrates the fastest convergence
speed and the optimal collaborative strategy, outperforming
other state-of-the-art Multi-Agent Deep Reinforcement Learning
(MADRL) algorithms currently in use.

Index Terms—Multi-agent deep reinforcement
learning(MADRL), Formation control of unmanned aerial
vehicles(UAV), gravitational force model, optimal multi-module
weights.

I. INTRODUCTION

W ITH the continuous development of intelligent devices
such as drones, unmanned vehicles, and unmanned

ships, various intelligent agents can now perform specific
tasks in different environments. These agents can significantly
reduce labor consumption and improve personal safety due to
their strong information acquisition ability.

At present, the development of single UAV control technol-
ogy is relatively mature, but there is still room for development
in the cooperative control technology of multi-agents, such as
UAV formation control technology. While this technology can
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quickly and efficiently complete complex coupling tasks such
as battlefield environment exploration, forest fire rescue, and
post-disaster personnel search.The current challenge is mainly
the limitation of poor coordination among agents and control
strategies that struggle to adapt to dynamic and complex
environments increase the difficulty of practical application
for multi-agent control technology.

Therefore, In the field of multi-agent cooperative planning,
researchers focus on enabling intelligent agents to share data
and coordinate effectively to achieve specific tasks. Two
primary research strategies are currently employed to enhance
cooperative capabilities in multi-agent systems. The first way
is cooperative algorithms inspired by biological principles
are designed to enable agent collectives to adapt their group
functionalities across different environments. The second way
is a combination of deep learning and reinforcement learning
techniques allows agents to learn optimal cooperative strate-
gies based on policy value functions and policy gradients [1].

Currently, Bio-inspired algorithms draw inspiration from
biological evolutionary processes, these algorithms have de-
cent performance in the field of coordination control opti-
mization [2]–[4] and multi-agent task allocation [5]. However,
the drawback of bio-inspired algorithms difficulty lies in
handling the interconnection between agents and dynamic
environments. They lack the capability to adapt to changes
in the environment.

In order to make the UAV cooperation capability achieve
human-level intelligent control, researchers combine deep
neural networks with reinforcement learning that effectively
mitigate the shortcomings of bio-inspired methods. For in-
stance, Mnih et al. proposed the value-based DQN algorithm
[6], and Van Hasselt et al. introduced the DDQN algorithm
[7], both of which guide the agent’s decision-making process
through value function learning, which can be either state
value or action-value functions. In contrast to value-based deep
reinforcement learning algorithms, Schulman et al. proposed
the TRPO algorithm [8] and introduced the PPO algorithm [9],
focusing on policy networks as the update target and directly
learning the mapping from states to actions to identify the
optimal policy. Additionally, Volodymyr Mnih et al. proposed
the A2C reinforcement learning architecture [10] and Lillicrap
et al proposed DDPG algorithm [11] based on A2C . The
A2C architecture allows for direct policy learning while also
utilizing value functions to inform policy updates. This hybrid
approach combines the strengths of both value and policy
functions, thus expanding the application domain of deep
reinforcement learning techniques.

Building on deep reinforcement learning, research into
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multi-agent reinforcement learning algorithms has also pro-
gressed significantly. Yu, C et al. conducted an in-depth study
of the performance of the PPO algorithm in cooperative multi-
agent settings, subsequently proposing the MAPPO algorithm
[12]. Pu, Y et al. introduced a novel decomposed multi-agent
soft actor-critic MASAC method, which supports efficient non-
policy learning and partially addresses the credit assignment
problem in both discrete and continuous action spaces ,
making it suitable for tasks with large action spaces [13].
Additionally, Lowe et al. developed the MADDPG algorithm,
which takes into account the actions of other agents and suc-
cessfully learns complex multi-agent coordination tasks. This
method demonstrates superior performance compared to other
multi-agent reinforcement learning algorithms in cooperative-
competitive task scenarios [14].

At present, multi-agent reinforcement learning algorithms
have been applied in various multi-agent systems that require
the consideration and collaboration of state information among
different control units, including traffic signal control [15],
resource allocation [16], competitive games [17], and robot
collaboration [18]. These applications demonstrate the effec-
tiveness of multi-agent systems in real-world scenarios.

Multi-agent reinforcement learning techniques have been
widely applied to various tasks in drone formations, demon-
strating their potential in advancing the capabilities of au-
tonomous UAV operations. For instance, reference [19] pro-
poses a cooperative trajectory design method (KMAPPO)
to minimize interaction overhead and optimize deployment
efficiency for emergency communications in disaster areas.
Reference [20] introduces a multi-agent deep deterministic
policy gradient method (3A-MADDPG) based on attention
mechanisms and adaptive precision, enhancing path plan-
ning accuracy during formation adjustments. Reference [21]
presents the GPR-MADDPG algorithm, which employs a
multi-UAV system for continuous tracking and end-to-end
coverage of mobile fleets, providing safety and surveillance
support. Reference [22] investigates multi-UAV competitive
games in air combat scenarios using a graph attention-based
multi-agent soft actor-critic reinforcement learning target pre-
diction network (GA-MASAC-TP). Lastly, references [23],
[24] improve the MASAC and MADDPG algorithms, respec-
tively, to enhance cooperative performance among different
types of UAVs.

Aforementioned MARL algorithms have been optimized
to address the demands of UAV swarm path planning [25]–
[29] and coordinated tasks [30]–[33] in UAV formations.
These optimized algorithms are capable of handling simple
coordination tasks. However, they still face challenges with
complex coupled tasks, including slow convergence, limited
scalability, and effectiveness only in specific scenarios.

To address these shortcomings, this paper proposes an
MCDDPG algorithm for handling coupled tasks. MCDDPG
builds upon the DDPG algorithm, which combines value and
policy functions. Specifically, it introduces a Multi-Critic (MC)
architecture to enhance the optimization of policy networks.
Unlike traditional MARL approaches where a single value
function guides policy function optimization, the MC archi-
tecture allows the algorithm to utilize multiple Critic modules

with diverse value functions. Some Critic modules are model-
based, focusing on tasks like tracking, obstacle avoidance, and
collision prevention, while others are deep neural network-
based, guiding policy networks in coordinating actions among
agents.In this paper, an application scenario is designed to
verify the practicability of the MCDDPG algorithm. The
MCDDPG algorithm is used to realize the test task of multi-
angle cooperation of UAV formation, which verifies that the
algorithm has certain practicability and versatility in the field
of multi-UAV multi-target cooperative control, and can provide
multi-angle image information for small targets. It can assist
the extraction of target feature information [34] and improve
the average accuracy of small target detection tasks [35].

In summary, the contributions of this paper are as follows:
1) This paper designs a MC framework and proposes

MCDDPG algorithm. The framework solves the problem
that the A2C architecture adopted by MARL algorithm
acts randomly in the early stage of training, which makes
it difficult to explore the effective empirical data.

2) A Dynamic Difficulty Priority(DDP) Weight Optimiza-
tion algorithm is proposed to adjusts the evaluation
weights of Critic modules in an MC architecture dynam-
ically. This method prevents the performance degrada-
tion due to improper weight allocation among different
Critic modules.

The structure of the subsequent chapters is as follows.
Section II provides the physical model of the UAV and
describes the problem statement for the coupled cooperative
planning tasks. Section III provides a detailed description
of the proposed MCDDPG algorithm and the mathematical
principles and ideas behind the multi-critic module weight
optimization algorithm. Section IV presents an analysis of the
algorithm’s simulation results. Finally, Section V presents the
conclusions and a summary of the approach proposed in this
paper.

II. PHYSICAL MODEL AND PROBLEM DESCRIPTION

The coordination planning of UAVs is subject to constraints
from three aspects: the UAV themselves, the environment, and
the Target. Therefore, it’s necessary to define the physical
attributes of the UAVs, Obstacles, and Targets to facilitate the
subsequent training of deep reinforcement learning algorithms.

A simulation mathematical model is established for UAVs
to address their characteristic properties.{

Uav = Uavi(i = 1, 2, 3, ..., n)
Uavattr = [p, rs, v, a, c, θ]

(1)

In the Uavattr model, p stands for the coordinates of
the UAV’s position, rs is used to denote the safe operating
radius, v represents the current velocity of the UAV, a is the
current acceleration of the drone, c signifies whether UAV can
access each other’s current states, and θ represents the UAV
orientation Angle, the physical model of the UAV is shown in
Fig.1.

The environment is primarily composed of obstacles, a
target, and others UAVs. Essentially, for each individual UAV,
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Fig. 1. Physical Model of UAV

any objects excluding themselves are considered as environ-
mental states. The action strategies of the UAVs must be
tailored in response to the various environmental variables.
Consequently, it is crucial to model the attributes of the
environment. The environment attributes are shown in Eq.(2),
Eq.(3) and Eq.(4):{

Obs = Obsi(i = 1, 2, 3, ..., n)
Obsattr = [p, rc]

(2)

Tarattr =

{
[p, r, v, a, θ] , movable = True
[p, rv] , movable = False

(3)

Colis = Uavis(s = 1, 2 · · · , n, i = 1, 2, 3, · · · , n, i ̸= s) (4)

In these model, Obs is a set that comprises multiple ob-
stacles, with Obsattr serving as the attribute model for these
obstacles. Within Obsattr, p signifies the position coordinates
of the obstacle, and rc denotes the collision radius of the
obstacle. Tarattr is used to represent the Target attribute
model, which can be divided into two categories: immovable
targets(indicated by movable = False) and movable tar-
gets(indicated by movable = True). For immovable targets,
the attributes are limited to the coordinate point p and the
effective radius rv . On the other hand, movable targets possess
additional attributes such as velocity v, acceleration a, and
direction deviation angle θ. Lastly, Colis consists of other
UAVs that may collide with each other.

When Unmanned Aerial Vehicles (UAVs) are tasked with
flight path planning, they generally ascend to a predetermined
altitude before embarking on their missions. As such, it can be
inferred that UAVs, obstacles, and targets objects all interact
within the same plane. The Eq.(5) describes the kinematic
model for dynamic objects within this environment:

vx = vt × cos θ
vy = vt × sin θ

vt+△t = vt + at ×△t
xt+△t = xt + vx ×△t
yt+△t = yt + vy ×△t

(5)

In the equations, vx,vy denote the components of velocity
vt along the x and y axes. xt and yt denote the position of
UAV at time t. vt and θt are the velocity and orientation angle
at time t. at is the acceleration at time t; △t is the motion
state sample interval. As shown in Fig.2.

Simultaneously, constraints are imposed on both the state
spaces and action spaces of the UAV and the target to more
realistic in the scene design. The constraints on the action

Fig. 2. Kinematic model of the UAV and the target

space include limitations on velocity vu, vr and acceleration
au, ar. In the state space, constraints are applied to the total
number of actions steps(reflecting energy constraints of the
UAV), the perception distance rd (the environment perceived
by the UAV is dynamically changing), and the bounds on the
operational range xu, xr, yu, yr.

The MCDDPG algorithm needs to complete the cooperative
strategy exploration of UAV swarm under this constraint
condition. All constraints are expressed as follows:

0 ≤ vu ≤ max(vu)
0 ≤ vr ≤ max(vr)
0 ≤ au ≤ max(au)
0 ≤ ar ≤ max(ar)
steps ⩽ STEP
rd = rs × d

lb ≤ xu, xr ≤ ub
lb ≤ yu, yr ≤ ub

(6)

The max() function is utilized to represent the maximum
constraint, which is applied to limit the maximum speed and
acceleration of both the UAVs and targets. The number of
action steps of the UAV must not exceed the maximum energy
step limit STEP . The perception range rd is d times the
safe collision radius rs. The lower and upper bounds of the
coordinate axes are denoted by lb and ub respectively, and
these are employed to confine the range of the operational
space.

To validate the algorithm’s relevance in real-world en-
vironments, it is necessary to incorporate various primary
constraints encountered in practical considerations into the
simulation scenarios. Currently, the physical constraints of
UAV primarily focus on three aspects: communication lim-
itations [36]–[38], energy constraints [39], [40], and envi-
ronmental restrictions [41], [42]. In terms of communication,
unmanned devices typically rely on wireless communication;
however, existing signal transmission scenarios mainly address
static environments [43]. Regarding energy constraints, fixed-
wing UAVs require gradual adjustments in tilt, speed, and
acceleration when turning, and operating at high angles and
speeds increases energy consumption [40].

To address these limitations, when utilizing the MCD-
DPG algorithm to learn optimal control strategies, this paper
constrains the maximum action steps (STEP ), speed (v),
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Fig. 3. MARL architecture based on MCDDPG algorithm

acceleration (a), and direction angle (θ) during model training.
The other UAVs is regarded as part of the environment to
mitigate the adverse effects of various communication prob-
lems. And we introduces the concept of a visibility range rd
as a constraint to address obstacle avoidance and formation
coordination in dynamic environments during UAV formation
target tracking.

Although the simulation scenario considers major influenc-
ing factors encountered by UAVs in real operational settings,
there are still numerous other factors such as wind speed,
humidness and magnetic field strength limitations. These limi-
tations affect the control accuracy and long-term service life of
Uavs to some extent, they have little relevance for the mission
scenario studied in this paper, so these limitations are not
considered.

III. PROPOSED MULTI-AGENT REINFORCEMENT
LEARNING FRAMEWORK

This paper proposes a MARL algorithm solving the problem
of UAV swarm cooperative planning, as shown in Fig.3.
Firstly, we model this problem as a Markov game and employ
the MCDDPG algorithm to train the action strategy network
parameters of the UAV formation. Secondly, considering that
the execution of cooperative tasks involves coupled tasks and
requires complex optimization, we design an MC architecture
in this paper. MC architecture enables UAV formation to
optimize decision exploration and accelerate the improvement
of cooperative planning capabilities. Ultimately, we obtain
action strategies for UAV formation cooperative tasks.

A. Scalable MC Architecture

In MARL algorithms, the A2C architecture is commonly
used. Both the Critic and Actor modules in A2C are con-
structed using deep neural networks (DNN). The Critic mod-
ule, formed by a Deep Neural Network , acts as a proficient
mentor guiding the agent to explore optimal decision-making
strategies. However, it lacks practical experience. This paper

introduces the MCDDPG algorithm based on the Multi-Critic
(MC) architecture. Unlike A2C, MC employs multiple Critic
to guide the agent’s learning, as depicted in Fig.4.

Some Critic components, akin to Experts, are composed of
specific models endowed with prior knowledge and substantial
practical experience. These models advise the agent on action
selection in specific scenarios. Other Critic modules consist of
deep neural networks and are model-free, dedicated to learning
scenarios that Experts cannot resolve. MC architecture by
employing different types of Critics, the exploration process
of agents is streamlined, thereby enhancing the efficiency of
agents training.

Fig. 4. Each Critic module in MC architecture jointly trains the agent action
policy

The MCDDPG algorithm extends the DDPG framework
by introducing a Multi-Critic architecture, as shown in Fig.5.
This MC architecture incorporates multiple Critic modules
that collectively evaluate and guide the Actor module. The
agent’s historical information is stored in an experience pool,
and DNN are used to extract features from the trajectories of
the agent’s historical actions, approximating the optimal action
strategy.
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The policy network µ is used to output the probability
distribution of actions for the agent given its current state.
The Multi-Critic modules synthesize evaluations on the effec-
tiveness of current action executions. These evaluations are
then used to update the parameters within the agent’s policy
network.

Fig. 5. Multi-Critic architecture

Therefore, for the total evaluation Q-value for the current
action output by composed of MC rchitecture is shown in
Eq.(7) and Eq.(8):

Q = β1Q1 + β2Q2 + ...+ βnQn (7)

β1 + β2 + ...βn = 1 (8)

In the equation, Q represents the evaluation value of the
current UAV action, Q1, Q2, ..., Qn is the critic module of
n different principles, β1, β2, ..., βn is the weight of these
critic modules. Through the MARL algorithms comprising MC
architecture, theoretically, issues such as the increase in the
number of UAVs or Targets, high task coupling, and exploding
dimensions in backpropagation optimization can be addressed.

By combined model-based Critic modules (such as cluster
grouping models for UAVs, target selection models, etc.) with
the Critic modules composed of DNNs, model can converge
efficiently, improve of UAVs’ ability to coordinate actions in
complex task environments, thereby enhancing exploration and
coordination capabilities.

B. Complexity analysis

As the number of UAVs and targets continues to increase, it
is necessary to analyze the changes in data complexity within
the empirical data. The complexity of the data in the experi-
ence pool directly impacts the convergence performance of the
RL algorithm and the design of MC architecture. Therefore,
analyzing data complexity is significant for constructing the
MC architecture.

This paper utilizes Differential Entropy(DE) to evaluate the
uncertainty and complexity of the data in the experience pool.
DE serves as a measure of the uncertainty of continuous
random variables, where a higher value indicates greater data
complexity. As shown in Eq.(9).

DE (XDE) = −
∫
p (x) log (p (x)) dx (9)

In the equation, DE (XDE) represents the calculated value
of the DE, where XDE denotes the experience replay buffer
data of each UAV or Target, and p (x) represents the proba-
bility of occurrence of data x in XDE .

TABLE I
EMPIRICAL REPLAY BUFFER DATA COMPLEXITY ANALYSIS

Indicator 3 UAVs and 1 Target 6 UAVs and 2 Target 9 UAVs and 3 Target
Dimension 12 28 40

Differential Entropy 0.450 0.643 0.855
Mutual Information 0.725 0.607 0.479

Mutual information(MI) indicates whether there is a rela-
tionship between the data of two agents, as well as the strength
of that relationship. It serves as a metric for measuring the
correlation between two variables. A larger value suggests a
greater influence of the target’s actions on the UAV, indicating
stronger correlation between them. Conversely, a smaller value
implies weaker correlation between a single UAV and the
target. The calculation is shown in Eq.(10).

MI (X,Y ) =

∫
Y

∫
X

p (x, y) log

(
p (x, y)

p (x) · p (y)

)
dxdy (10)

In the Eq.(10), MI (X,Y ) represents the mutual informa-
tion between the UAV’s experience data X and the Target’s
experience data Y . p (x, y) denotes the joint probability distri-
bution of X and Y occurring together, while p (x) and p (y)
represent the individual probabilities of X and Y , respectively.

As shown in Table I, with the increase of the number of
UAVs and targets increases, the dimensions of the experience
replay buffer become more numerous, leading to increased
data complexity. Additionally, the DE of the experience replay
buffer data gradually increases, indicating a rise in data
disorder. The MI value decreases, suggesting a diminishing
correlation between individual UAV and individual target,
while the complexity of the collaborative task progressively
increases.

The analysis results indicate that as the number of UAVs
and targets increases, the complexity of the tasks also grad-
ually rises. If conventional reinforcement learning structures
were employed, the time cost incurred would be substantial.
However, the MC architecture can reduce unnecessary explo-
ration through MC modules, thereby saving exploration time
while still achieving a robust policy network for completing
collaborative tasks. This effectiveness of the MC architecture
in complex scenarios is further demonstrated in the subsequent
experimental results in Section IV.

C. Method and principle

This section utilizes the MCDDPG algorithm to tackle the
specific task of multi-angle coordination among UAV clusters.
In this task scenario, factors such as dynamic changes in
obstacle environments during task execution and complex
adjustments in UAV group path coordination are taken into
account. The MC architecture is specifically designed with two
Critic modules, Critic1 and Critic2, to cater to the needs of
this task scenario. The value function of the Critic1 module is
approximated by an MLP network, while the Critic2 module
employs an gravitational field model for guidance. Further-
more, the DDP (Dynamic Difficulty Prioritization) algorithm
is used to dynamically optimize the weights of the two Critic
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Fig. 6. Specific architecture of MCDDPG algorithm in UAV swarm cooper-
ative task scenario

modules. The specific structure of the MCDDPG algorithm is
depicted in Fig.6.

The specific design of the Critic1 and Critic2 modules
within the MC architecture is depicted in Fig.7. During the
initial phase of the follow-tracking task, the parameter updates
of the Actor module’s policy network should primarily focus
on the value network of the Critic2 module. This phase mainly
considers the attractive force between the UAV and the target
point, and the repulsive force between the obstacles to ensure
to move towards the target and avoidance collisions. Once the
UAV formation reaches the target points, the task transitions
to multi-angle coordinated formation planning. In this phase,
the focus should shift towards the value network of the
Critic1 module, utilizing MLP to delve into deeper cooperative
relationships among UAV groups within a localized area. This
enables strategic coordination actions among UAV formations
in small-scale movements.

Fig. 7. Critic1, Critic2 modules consisting of MLP neural network and
gravitational field model

The text below elucidates the Critic1 and Critic2 modules
within the MC module, the Actor module, and the policy
gradient update method of MCDDPG.

The Critic1 module employs the value network from the
DDPG algorithm to assess the action output of the actor
model. It investigates the update methods for cooperative
strategies for UAV swarms within a limited range, with the
objective of achieving multi-angle encirclement deployment
planning around target points. The value function of this

Critic1 network is represented by Eq.(11), γ1 indicating the
conversion coefficient of Critic1.

QC1(s, a) ≜ E

[
T∑

k=1

γk−1
1 r(sk, ak) | s1 = s, a1 = a

]
(11)

The value network of the Critic2 module is constructed
based on the gravitational field model. The attraction model, a
method for route planning, calculates the attraction and repul-
sion between the agent and objects, taking into account their
distances and action tendency relationships. It operates under
the assumption that the dynamic model of the environment is
known, with the target generating attraction towards the UAV
and obstacles creating repulsion. The movement direction and
path strategy of the UAV formation are planned in accordance
with the resultant force of attraction and repulsion. The
gravitational model between the target and the UAV is defined
as per Eq.(12).

Fgra (i) =
1

2
ε× d2

(
pUavi

, ptar
)

(12)

In the equation, ε represents the gravitational coefficient
used to quantify the strength of attraction exerted by the target
on the UAV. pUAV i

and ptar are positional attributes of the
UAV and the target, respectively, where d(·) is used to calculate
the Euclidean distance between them. The repulsion force
model is represented by Eq.(13).

Frep (i) =


1

2
η

(
1

d (pUavi , p)
− 1

d0

)2

0

,
if d < d0
if d ⩾ d0

(13)
In the given equation, η symbolizes the repulsion coefficient,

while d0 represents the safe operational distance for the UAV.
As illustrated in the equation, when the distance between the
UAV and obstacles, other UAVs, or the target falls below
the safe distance, the UAV will encounter a repulsion force.
On the other hand, when the distance between the UAV and
other objects surpasses the safe distance, indicating no risk of
collision, the repulsion force experienced becomes zero.

The cumulative force of repulsion and attraction experi-
enced by the UAV during its operation is termed as the UAV’s
gravitational field, which is represented by Eq.(14).

F (i) = Fgra(i) + Frep(i) (14)

By integrating the gravitational model into the algorithm
via the MC architecture, preliminary information is supplied
to steer the UAV towards exploration in the direction of at-
traction. In other words, it approaches the target position while
distancing itself from other UAVs and obstacles. Consequently,
in the MCDDPG algorithm, the Critic2 network, which is built
using the gravitational model, is defined by Eq.(15).

qF (s, a) ≜ −F (s) [1− cos (χ)] (15)

As illustrated in Fig.8, the angle χ between the actual action
values derived from the action space and the guided actions
from the gravitational field model is depicted. This suggests
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that as the angular difference between the two escalates, the
influence of the gravitational field on the UAV’s output action
strategy intensifies. This can be harnessed to rectify the UAV’s
irrational exploration directions.

Fig. 8. The angle between the direction of the UAV’s acceleration and the
gravitational force

Hence, the integration of the gravitational model as the
Critic2 module in the MCDDPG algorithm can be articulated
as Eq.(16), where γ2 symbolizes the weighting coefficient of
Critic2 and step denotes the action step.

QF (s, a) ≜ E

[
step∑
k=1

γk−1
2 qF (sk, ak) |s1 = s, a1 = a

]
(16)

The Critic2 module, grounded in the gravitational model,
facilitates a unified evaluation of action space selection for
UAV swarms. Each UAV utilizes the same Critic to guide
the update of action planning strategies, thereby reducing
the randomness in decision-making among multiple agents in
dynamically changing environments. This process accelerates
and stabilizes the exploration process of the Actor module.

The action policy network, Actor, for the UAV is composed
of a multi-layer perceptron (MLP). Its aim is to secure the
optimal reward values for the state distribution space and the
corresponding action space. The Actor module computes the
probabilities of actions that yield the highest reward values
for the current state and future states at this step, iteratively
updating the policy network. The policy network is represented
as Eq.(17).

ρu (s′, γ) =

∫
s

step∑
t=1

γt−1p1 (s) p (s→ s′, t, π) ds (17)

In the given equation, p1 (s) signifies the initial distribution
of the state space s , p (s→ s′, t, π) denotes the probability
distribution of transitioning from state space s to s′ at time
t when executing the action outputted by the policy network,
and γ is the discount factor of the policy network, which serves
to mitigate the influence of future actions on the current actor
decision.

As outlined above, the objective function of the MCDDPG
network is steered by both the Critic1 and Critic2 modules to
update the Actor module. The aim is to secure the maximum
reward value for the UAV over the course of an episode
trajectory. The objective function is represented by Eq.(18).

J (µθ) = β

∫
s

ρµ (s, γ1) r (s, µθ (s)) ds

+(1− β)

∫
s

ρµ (s, γ2) qPF (s, µθ (s))

(18)

In the equation, r (s, µθ (s)) represents the reward function
corresponding to the impact of the current action on the
state, This is determined by the task requirements of the
UAV swarm, and additional explanations will be provided
regarding the reward function. As depicted in the equation,
the first part of the objective function is based on the MLP-
based Critic1 module, while the second part is grounded in
the gravitational model-based Critic2 module. β represents the
weight parameters of the two Critic networks.

By utilizing Eq.(19) to update the gradient of the objective
function, we train to secure the optimal actor network pa-
rameters, thereby accomplishing multi-perspective cooperative
planning tasks for UAV formations.

∇θJ (µθ) = βEs∼ρµ(s,γ1)

[
∇θµθ (s)∇aQC1 (s, a) |a=µθ(s)

]
+(1− β)Es∼ρµ(s,γ2)

[
∇θµθ (s)∇aQF (s, a) |a=µθ(s)

]
(19)

D. Reward function

In MARL, an agent’s policy network updates its parameters
based on historical data stored in the experience replay buffer.
By assigning reward values to historical actions and environ-
mental states, the agent assesses the performance of various
actions under different environmental conditions. These reward
values enable the agent to conduct backpropagation, guiding
the optimization of its policy network parameters.

This paper employs a sparse reward function to guide the
policy network updates for the agent. This reward mechanism
aligns more closely with human intuition and experience,
enhancing the agent’s exploratory capabilities. With sparse
rewards, the agent receives rewards only upon reaching in-
termediate goals or completing the task, which also increases
the difficulty of optimal policy convergence for various algo-
rithms. The reward values are shown in Table II.

TABLE II
REWARD FUNCTION

Description Values
Task completion 10
Target detection 1

Action steps −0.1
Collision or out of the boundary −1

A task completion reward is given when the UAV success-
fully performs multi-angle tracking of the target. During task
execution, a collision penalty is applied if a collision occurs. A
action steps penalty is also introduced to encourage the UAV
to complete the collaborative task in as few decision steps as
possible. Additionally, a detection reward is provided to guide
the UAV in actively searching for the target.

Hence, the reward function for an individual UAV is repre-
sented by Eq.(20).

Ri = r1 + r2 + r3 + r4 (20)

The overall reward score for the agent is expressed as
Eq.(21).
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RT =

n∑
i=1

Ri (21)

RT represents the sum of the reward functions for all
UAVs participating in the cooperative task. In the MCDDPG
algorithm, it is necessary to search for the highest reward
for each individual UAV, while also aiming to maximize the
overall reward value RT for the entire UAV formation.

E. Weight Optimization for multi-critic module

The weight value β of the MC module significantly in-
fluences the policy planning performance of the MCDDPG
algorithm. Determining an optimal value for β is essential to
maximize the performance of the MCDDPG algorithm and
improve the success rate of multi-angle cooperative tasks for
UAV formations.

In this MC architecture, the Critic1 module QC1 is based on
MLP, while the Critic2 module QC2 employs a gravitational
field model. These two modules collaboratively evaluate the
actions output by the Actor module µ. The Critic2 module
uses a fixed model, where it only necessitates the input of
parameters to obtain the action evaluation values it focuses on.
Therefore, in the MCDDPG algorithm, updates are required
for the MLP network parameters w in the Critic1 module and
the Actor module netword parameters θ. The network model
expressions for these two modules are as follows:

µ (s|θ) = MLPActor (s|θ) (22)

QC1 (s, a) = MLPC1 (s, a|w) (23)

s represents the state, w are the parameters of Critic1’s
MLP network, and θ are the parameters of the Actor’s policy
network.

at = µ (st|θ) (24)

The Critic1 module takes the action at and state st of UAV
at time t as inputs into its value estimation network, and
subsequently provides the reward evaluation value VC1 for the
action selected by UAV.

VC1 = QC1 (st, at) (25)

In the training process, the MCDDPG algorithm persistently
updates the weight parameters w of the Critic1 module. This
is done to achieve precise evaluations of the reward values for
actions. The algorithm employs the root mean square error
(MSE) as the error function, which is the difference between
the evaluation outputs VC1 and the actual reward values yi.
By minimizing this error, the Critic1 module is updated. yi
is obtained by adding the true reward at time step t and the
evaluated value of the action µ′ at time step t+ 1 multiplied
by the distance discount coefficient γ1.

L1 =
1

N

N∑
i

(yi − VC1)
2

yi = ri + γ1Q′C1 (st+1, µ′ (st+1|θ′) |w′)
(26)

For Critic2, at time step t, both the state and action at time
t are directly fed into the Critic2 module. This is done to
generate the current action’s value evaluation VC2 under the
gravitational field model QF , error value L2 is equal to the
evaluated value VC2.{

L2 = VC2

VC2 = QF (st, at)
(27)

Therefore, by minimizing the L1 error function, the param-
eters w of the MLP network in the Critic1 module are updated
to their iterated values w′. In this equation, τ represents the
learning rate parameter, which is used to adjust the step size
of the network parameter updates.

τw + (1− τ)w′ → w′ (28)

The evaluation values, produced by the Critic1 and Critic2
modules that form the MC architecture, directly steer the
update of the weight parameters in the Actor module.

τθ + (1− τ) θ′ → θ′ (29)

For the overall MC module, the total value function Q is
defined as follows:

Q (st, at) = β1QC1 (st, at|w) + β2QF (st, at) (30)

Therefore, under the guidance of the MC architecture and in
accordance with the gradient ascent update formula presented
in Eq.(18), policy network update formula for the MCDDPG
algorithm as shown in Eq.(31).

∇θJ (µθ) =
1

N

∑
i

∇θµ (si|θ) [β1∇wQC1 (si, ai|w)

+β2∇aQF (si, ai)]

(31)

Reference [44], [45] dynamically adjusts the weights of the
multiple loss functions based on the rate of gradient descent.
The principle of the multi-Critic structure utilized in this paper
bears conceptual similarity to the adjustment of weights for
multiple loss functions. Consequently, this paper introduces a
DDP method. The DDP method dynamically allocates weights
based on the changes in the gradients of the error functions:
the more the gradient of the error function Li for the i-th
Critic module changes during iteration of the whole error
function Lk, the higher the weight it is assigned, as illustrated
in Eq.(32).

DDP (βi) =
∇Li∑N

k=1∇Lk

(32)

For the MCDDPG algorithm designed in this paper, the
variable k = 2.

When the gradient of the evaluation error for Critic1,
denoted as ∇L1, exhibits significant variation, it is assigned
greater weights. This prioritizes the guidance of UAVs in
collaborative exploration tasks. On the other hand, when the
evaluation error variation for Critic2, denoted as ∇L2, is
substantial, it concentrates on guiding UAVs in tracking and
obstacle avoidance exploration tasks. This dynamic adjustment



9

Fig. 9. Simulation of subtasks for multi-angle collaborative planning: (a) target tracking, (b) obstacle avoidance, and (c) Bounding collaboration

strategy aims to optimize the weight βi of the MC module,
thereby enhancing the training efficiency of the MCDDPG
algorithm.

Therefore, the iterative update formula of the MCDDPG
algorithm after optimization with DDP is shown as Eq.(33).

∇θJ (µθ) =
1

N

∑
i

∇θµ (si|θ) [DDP (β1)∇wQC1 (si, ai|w)

+DDP (β2)∇aQF (si, ai)]
(33)

Based on the principles and formulas outlined in this
section, the weight assignment of the MC architecture can
be dynamically adjusted to further improve the algorithm per-
formance. The proposed MCDDPG approach is summarized
in Algorithm 1.

F. MCDDPG convergence

To ensure the convergence of the MCDDPG algorithm, we
analyze the convergence of each core component: the policy
gradient update, the Q-value update, and the joint convergence
of multiple agents.

In MCDDPG, each UAV has an independent policy and a
Q-value network . The objective of each agent’s policy update
is to maximize the expected return under the current estimate
of the Q-value function. The policy gradient update rule is
defined as Eq(19).

Monotonic Improvement of Policy Updates.The policy gra-
dient method ensures that each update increases the objective
function Eq.(18) J (µθ) [14].For the policy gradient update to
converge, the following conditions are required:(1) The learn-
ing rate should be sufficiently small to ensure stable gradient
updates.(2) The Q-value estimate Q must gradually approach
the true Q-value function (discussed further in the Q-value
convergence section).(3) Assuming the action space A ̸= ∞
is compact ensures that the gradient remains bounded. Given
these conditions, the policy gradient update will converge to
a optimum, thereby ensuring monotonic improvement of the
policy with each update.

Convergence of the Q-Value Update. Q-value update follows
the Bellman equation, minimizing the target error to update

Algorithm 1 MCDDPG algorithm
1: Initialize the network parameters of Critic1 module w and

Actor module θ.
2: Receive initial observation state S1

3: for episode = {1, 2, . . . ,M} do
4: Initialize a random process N for action exploration for

each UAV.
5: Receive empirical data of the random exploration round
6: for t = 1, STEP do
7: Select action at according to the current policy at =

u (st|θ)
8: Execute action at and observe reward rt and next

state st+1

9: Compose data groups st =
(
st, a

1
t , a

2
t , ..., a

n
t

)
and

st+1 =
(
st+1, a

1
t+1, a

2
t+1, ..., a

n
t+1

)
, according to the

actions ai∈n
t , ai∈n

t+1 at time t and time t + 1 of each
UAV in the formation, and states st, st+1.

10: Store transition (st, at, rt, st+t) in Replay buffer.
11: Sample a batch transitions (st, at, rt, st+t) from Re-

play buffer.
12: Set yi: yi = ri + γ1Q

′
C1 (st+1, µ

′ (st+1|θ)|w′).
13: Update critic 1 by minimizing the loss:

L1 = 1
N

∑N
i (yi − VC1)

2.
14: Calculate the value of critic 2: VC2 = QF (st, at)
15: Calculate the βi by DDP algorithm according to

Eq.(32).
16: Calculate the Q value of MC architecture:

Q(st, at) = β1Qc1(st, at|w) + β2QF (st, at).
17: Update the actor policy according to Eq.(33)
18: end for
19: end for

the Q-value network parameters. The Q-value update rule is
as follows:

w ← argmin
w

E(s,a,r,s′) D (Qw (s, a)− yi)
2 (34)

yi is defined as Eq.(26).
The Q-value update can be viewed as an application of the

Bellman operator Tµ. For a given state-action pair (s, a), the
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Bellman operator is defined as:

TµQ (s, a) = r (s, a) + γEs′ [Q (s′, µ (s′))] (35)

According to Bellman’s optimality principle, repeated appli-
cation of Tµ the Q-value function to converge to the optimal
Q-value Q∗.

In summary, Under this framework, the multi-agent joint
policy can be represented as a collective policy vector π =
(π1, · · · , πn). With each update, policies and Q-values un-
dergo a convergence iteration. Due to the monotonicity of the
Bellman operator and policy gradient update, the system will
converge to a Nash equilibrium.

IV. ANALYSIS AND DISSCUSSION OF SIMULATION
RESULTS

In this section, we implement the physical models of UAVs,
targets, and obstacles in the OpenAI Multi-Agent Particle
Environment (MPE). We devise simulation experiments for
various scenarios to evaluate the performance of the MCDDPG
algorithm. We compare the MCDDPG algorithm with other
MARL algorithms such as MADDPG, MAPPO, MASAC,
IPPO [46] and ISAC [47], all utilizing the same DNN architec-
ture. We create diverse simulation scenarios, including track-
ing, obstacle avoidance, and cooperation, to assess the plan-
ning effectiveness of the MCDDPG algorithm in controlling
UAV formation in these scenarios, as illustrated in Fig.9 below.
We conduct ablation experiments to demonstrate the efficacy
of each functional module of the MCDDPG algorithm in opti-
mizing control policies. By comparing performance metrics of
the MCDDPG algorithm under dynamically adjusted weight
parameters and fixed parameter settings for the optimizer, we
validate the enhancement in algorithm performance achieved
by the dynamic difficulty priority weight optimization method.
Further details of the simulation experiments are provided in
the subsequent sections of this article.

A. Parameter setting
Before starting the experiments, it is necessary to initialize

the physical properties of the UAVs, target points, and obsta-

cles in the MPE environment. The physical properties of the
UAVs and targets include a radius r = 0.035, velocity v = 0.5,
acceleration a = 1, and a maximum field of view c = 120.
The obstacles, which are immovable, only require setting their
radius to r = 0.2. Unless otherwise specified, each episode
consists of a maximum of 200 STEPS, the detection radius
parameter d. The hyperparameter Settings of the MCDDPG
algorithm are shown in Table III below.

TABLE III
PARAMETER SETTING OF SIMULATION SCENARIO

Parameter Values
Policy learning rate γθ 0.001
Critic learning rate γQ 0.001

Discount factor γ 0.99
Update frequency τ 0.001

Training episodes 500000
Buffer size 300000
Batch size 1024

and the physical attribute parameters of the UAV, target, and
obstacle are shown in Table IV below.

TABLE IV
PARAMETER SETTING OF SIMULATION SCENARIO

Object Parameter Value
UAV Radius rS 0.035

Velocity v 0.5
Acceleration a 0.5

Cooperation for view angle c 120
The detection radius d 2

STEPS 200
Target Radius rT 0.035

Velocity v 0.5
Acceleration a 0.5

Obstacle Radius rO 0.2

B. Simulation scenarios

To verify the capability of the MCDDPG algorithm in
multi-angle cooperative planning tasks for UAV swarm for-
mations, this section designs simulation scenarios 1 to 5
ranging from simple to complex, and from single-task to

Fig. 10. Simulation effect of UAV formation execution action output by MCDDPG algorithm in (a) obstacle avoidance; (b) Multi-angle coordination of static
targets; (c) Dynamic target multi-angle cooperation
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Fig. 11. Uav formation of three Uavs, learning curve for each UAV

coupled-task scenarios. These scenarios aim to demonstrate the
algorithm’s ability to achieve excellent cooperative strategies
across different task environments.

We first verify the reward value convergence effect of the
MCDDPG algorithm under three simple scenarios 1,2,3 as
depicted in Fig.10. These scenarios will assess whether the
algorithm exhibits robust convergence and whether it can be
effectively applied across diverse single task scenarios.

As shown in Fig.11 presents the learning curves of UAV
formations across three task scenarios. In scenario 1, the
MCDDPG algorithm only needs to address obstacle avoidance
and collisions between UAVs, without addressing coordination
issues. Therefore, the algorithm can rapidly converge and
obtain the optimal obstacle avoidance strategy, as deplicted in
Fig.11(a). Despite the increased complexity of environmental
conditions in scenarios 2 and 3, the MCDDPG algorithm
retains its capability to train UAV formations to excel in exe-
cuting collaborative tasks. The corresponding learning curves
from the training process are illustrated in Fig.12(b) and
Fig.13(c).

C. Composition of MC Architecture

As proposed in Chapter 2, the MC architecture requires a
combination of model-based and deep neural network-based
Critic modules. By extending the model-based Critic module,
the algorithm’s fitting capability for more complex tasks can
be enhanced. In the A2C architecture, the Critic module
iteratively updates its network parameters without guidance.
During the early training phase, poor evaluation accuracy from
the Critic can result in slow updates for the Actor module,
making it challenging to explore effective actions. However,
the MC architecture can address this shortcoming through the
model-based Critic module.

To validate the effectiveness of different MC architec-
ture compositions, we conducted comparative experiments to
demonstrate that the combination of the model-based Critic
module and the DNN-based Critic module exhibits superior
performance compared to other function approximators. We
compared the MC architectures consisting of LSTM neural
networks and MLP neural networks, ARIMA models and MLP
neural networks, as well as the proposed Model-base combined

with MLP neural networks. Each configuration was trained on
tasks in Scenario 3, with results shown in Fig.12.

From the loss function convergence curves in Fig.12(a) and
Fig.12(b), it is evident that the MC architecture composed of
the Model and MLP allows for rapid convergence of the loss
values for both the Critic and Actor modules. This is attributed
to the fact that the model-based Critic module can provide ac-
curate evaluation results when the MLP module’s assessment
accuracy is insufficient, thereby accelerating the convergence
of the MLP network and, subsequently, the Actor module.
In contrast, the MC architectures formed by LSTM+MLP
and ARIMA+MLP are unable to provide effective evaluations
in the early stages of the algorithm, resulting in inferior
convergence capabilities compared to the MODEL+MLP con-
figuration.

From the reward value convergence curves in Fig.12(c)
and Fig.12(d), it can be observed that the MC architecture
composed of MODEL+MLP achieves high reward values early
in the training process and continues to improve from that
point. In contrast, the MC architecture formed by LSTM+MLP
exhibits very low reward values during the initial training
phase, with significant fluctuations. This inconsistency arises
because the LSTM+MLP architecture extracts different fea-
tures from the data, making it difficult for the MC architec-
ture to obtain a unified and accurate Critic neural network
parameter. The MC architecture composed of ARIMA+MLP
benefits from the autoregressive characteristics and linear con-
straints of ARIMA, resulting in better convergence compared
to LSTM+MLP. However, it still does not outperform the
MODEL+MLP architecture. The statistical results for each
model in Scenario 3 are shown in Fig.13, which also reflects
that the MC architecture comprising MODEL+MLP achieves
the best task completion performance.

D. Ablation experiments

The ablation study to demonstrate the positive role played
by the MC architecture proposed in this paper during agent
training. Specifically, we aim to elucidate the guiding roles of
Critic1 and Critic2 modules within the MC structure through-
out the training process, and to illustrate their significant
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Fig. 12. In Scenario 3, the MCDDPG algorithm training curve. The MC architecture consists of dual DNN network (LSTM+MLP), statistical MODEL and
DNN network (ARIMA+MLP), and physical model and DNN network (MODEL+MLP) groups, respectively

Fig. 13. In Scenario 3, the MCDDPG algorithm training curve. The MC
architecture consists of dual DNN network (LSTM+MLP), statistical MODEL
and DNN network (ARIMA+MLP), and physical model and DNN network
(MODEL+MLP) groups, respectively

contributions to enhancing the decision-making capabilities of
the agents in terms of action strategies.

In the ablation study, Scenario 3 serves as the test environ-
ment, which includes tasks such as dynamic target tracking,
obstacle avoidance, and multi-angle coordination within a
UAV swarm. This environment effectively underscores the
roles that each Critic module plays in the exploration and train-
ing processes of the MCDDPG algorithm. The experimental
results, as shown in Fig.14, reveal the following:

Over the training iterations, the MCDDPG algorithm,
equipped with the full MC architecture, rapidly progresses
through the initial exploration phase. It steers the UAV swarm
to update the action strategy network parameters for tasks such
as tracking and obstacle avoidance. As a result, the decision
model orchestrates the UAV swarm to achieve an average
completion rate of nearly 100% in multi-angle cooperative
tasks.

When the Critic1 module is removed, the Critic2 module
alone forms the value function using an attraction-repulsion
field model to guide the UAV swarm’s exploration and action
decisions. This attraction-repulsion field model evaluates the
combined forces of repulsion between UAVs and obstacles,
and attraction towards the target, to determine the direction of
UAV swarm movement.

In the absence of the Critic1 module, the MC architecture
can only guide the UAVs towards the target location based on

Critic2’s gravitational field model. However, without Critic1,
the MC architecture lacks the capability to acquire multi-angle
cooperative strategies. It can only guide the UAV swarm in
obstacle avoidance and target tracking tasks. This limitation
prevents the MCDDPG algorithm from achieving coordinated
UAV swarm behavior for multi-angle coordination tasks, as
intended.As a result, the training curve labeled NO Critic1
in Fig.14 fails to converge. This outcome illustrates that the
MC architecture, without Critic1, cannot achieve the strategic
objective of multi-angle coordination among UAVs, thereby
highlighting the indispensable role of Critic1 in enabling the
MCDDPG algorithm to achieve coordination task within UAV
formation.

Fig. 14. Ablation Experiment: When β = 0, Critic1 module is ablated; when
β = 1, Critic2 module is ablated; Otherwise, MCDDPG operates normally.
The success rate of UAV formation tasks driven by the MCDDPG algorithm
under these three modes is also evaluated.

When the Critic2 module is removed, leaving only the
Critic1 module, the MCDDPG algorithm loses the structured
guidance provided by the attraction-repulsion field model
during the exploration phase for action selection. As a result,
agents resort to trial-and-error, leading to less efficient updates
of the MLP network weights in Critic1.

In this scenario, agents find it challenging to comprehend
even simple tasks such as tracking and obstacle avoidance,
due to the absence of structured guidance from Critic2. This
leads to a significant increase in the number of training
episodes required to achieve understanding and convergence
in these tasks, the success rate achieved with only Critic1 is
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around 50%, indicating that the agents often fail to effectively
coordinate and accomplish tasks without the guidance of
Critic2’s attraction-repulsion model. The training curve labeled
NO Critic2 in Fig.14 illustrates this extended convergence
process compared to the complete MCDDPG algorithm.

Therefore, based on the results of the ablation study de-
picted in Fig.14, we can conclude that each Critic module
within the MC architecture contributes to enhancing the algo-
rithm’s convergence capability.

E. Weight optimization

To validate the effectiveness of the DDP algorithm on
the MC architecture, this paper compares the success rate
convergence curves and average reward convergence curves
for the scenarios with optimized β values and fixed β values
in both Task Scenario 3 and Task Scenario 4.

In Task Scenario 3, as shown in Fig.15(a) and Fig.15(b),
the MCDDPG algorithm employing the DDP algorithm to
optimize the weight parameter β converges faster than the
algorithm with fixed β values. Additionally, both the success
rate and reward values are higher than those of the fixed β
value algorithm, and the training process is more stable. This
indicates that, in Task Scenario 3, the DDP algorithm can
dynamically adjust the β value for the MC architecture based
on the difficulty of the current subtask, thereby enhancing the
algorithm’s performance.

In Task Scenario 4, the tasks for the UAV formation are
more complex compared to those in Scenario 3. The MC
architecture designed in this paper only extends the Critic
module of the gravitational field model. As a result, the MLP
module in the MCDDPG algorithm still needs to explore target
allocation strategies. This leads to a significant decrease in the
task success rate curve during the mid-training phase, as the
number of UAVs allocated to one of the targets is insufficient
to complete the collaborative task due to the underdeveloped
allocation strategy.

From the training curves in Fig.15(c) and Fig.15(d), it can
also be observed that as β increases, providing more weight to
the MLP module results in better convergence of the rewards
and success rates obtained by the UAVs. When β < 0.7,
the guidance provided by the MLP to the Actor module is

insufficient, which hinders the MC module’s ability to instruct
the Actor module in learning allocation strategies, making
convergence difficult. The convergence curves in Scenario
4 indicate that even in more complex task scenarios, the
DDP-optimized MCDDPG algorithm achieves higher success
rates and reward values compared to the fixed β parameter
MCDDPG algorithm, with smaller fluctuations and greater
stability during training.

F. Comparison of other MADRL algorithms

This section presents comparative experiments among vari-
ous MARL algorithms. These experiments are designed to test
cooperative tasks that range from single-target to multi-target
and single-team to multi-team scenarios. The objective is to
validate that the MCDDPG algorithm demonstrates superior
convergence speed and task completion capability compared
to other MARL algorithms. This superiority is particularly
evident in task scenarios 3, 4, and 5, which involve 3 vs 1, 6 vs
2, and 9 vs 3 formations, respectively. All these scenarios aim
to achieve multi-angle coordination for UAV swarms towards
dynamic targets.

In each of these scenarios, the physical properties and
reward functions remain consistent across all algorithms to
ensure fair performance evaluations. Various deep reinforce-
ment learning algorithms, including MCDDPG, are trained
to develop cooperative control strategies for UAV swarms
under identical conditions. These conditions include the same
number of training episodes, reward functions, and physical
parameter models.

Performance testing reveals that under these standardized
conditions, MCDDPG consistently outperforms other algo-
rithms in the domain of multi-angle cooperative planning. De-
tailed simulation procedures and results are further elaborated
in the subsequent sections.

Firstly, the multi-angle information gathering task is con-
ducted under Scenario 3. In this scenario, the UAV swarm is
required to track moving targets and form multi-angle coordi-
nated formations when targets reach designated positions, all
while ensuring collision-free operation among the UAVs. Six
deep reinforcement learning algorithms, including MCDDPG,
MAPPO, MADDPG, MASAC, IPPO [32], and ISAC [33], are

Fig. 15. In Scenario 3, the task success rate convergence curve with optimized β parameters and fixed β parameters is shown in Figure 13(a), and the reward
function convergence curve is shown in Figure 13(b). Similarly, in Scenario 4, the task success rate convergence curve with optimized β parameters and fixed
β parameters is shown in Figure 13(c), and the reward function convergence curve is shown in Figure 13(d).
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Fig. 16. Comparison between MCDDPG algorithm and other MADRL
algorithms.

trained. Their training curves are depicted in Fig.16(a), while
their test curves are shown in Fig.16(b). This confirms that the
proposed algorithm successfully handles a series of coupled
tasks such as tracking, obstacle avoidance, and multi-angle
coordination.

In the scenario 3, the training learning curves shown in
Fig.16(a) and Fig.16(b) do not clearly demonstrate the ad-
vantages and disadvantages among MCDDPG, MAPPO, and
MADDPG. In scenarios with few targets and a small num-
ber of collaborative UAVs, all three algorithms can achieve
relatively high rewards. Although the average success rate
statistics in Fig.16(c) indicate that the MCDDPG algorithm
exhibits a more stable task completion rate, relying solely on
this metric may not provide conclusive evidence. Therefore,
we further compare and validate the MCDDPG, MAPPO,
and MADDPG algorithms using more complex collaborative
scenarios.

In both scenario 4 and scenario 5, the UAVs performs
the same task as in Scenario 3 and shares the same reward
function. The simulation results of the MCDDPG algorithm for
these scenarios are depicted in Fig.17(a) and Fig.17(b), while
the learning curves from the training of different algorithms
are shown in Fig.18(a) and Fig.18(c), the task success rate

convergence curves are shown in Fig.18(b) and Fig.18(d).
From Fig.18, it can be observed that as the number of UAVs

in the fleet and the number of target points to be planned
increase, the MCDDPG algorithm shows improvements com-
pared to the other two algorithms in terms of convergence
speed, robustness, and the acquisition of reward values. More-
over, in terms of task completion success rate, MCDDPG
achieves the highest success rate among the selected deep
reinforcement learning algorithms, as shown in Table V.

TABLE V
COMPARISON OF DIFFERENT ALGORITHMS BASED ON THEIR SUCCESS

RATE AND AVERAGE STEP COST ACROSS THREE SCENARIOS.

Algorithms Metric scenario 3 Scenario 4 Scenario 5
ISAC Success rate 0.43 None None
ISAC Average step cost 172.58 None None
MASAC Success rate 0.47 None None
MASAC Average step cost 166.29 None None
IPPO Success rate 0.50 None None
IPPO Average step cost 106.23 None None
MADDPG Success rate 0.53 0.43 0.26
MADDPG Average step cost 92.79 101.15 14813
MAPPO Success rate 0.90 0.75 0.56
MAPPO Average step cost 70.42 89.56 96.77
MCDPPG Success rate 0.97 0.86 0.73
MCDPPG Average step cost 56.30 62.22 75.85

The MADDPG algorithm employs deterministic policy gra-
dient methods, where the Actor generates specific actions
based on the state during parameter iteration updates. This
characteristic leads to unstable fluctuations during training,
resulting in increased training volumes and computational
complexity. As depicted in Fig.18, the training results of vari-
ous MADDPG algorithms show the most noticeable variability
in success rates after convergence.

In contrast, MAPPO utilizes actor networks that output ac-
tion probability distributions rather than deterministic actions.
It leverages the PPO algorithm to explore the environment with
stochastic policies. The Critic network evaluates the state value
function, predicting the expected return the agent can achieve
in specific states. The probabilistic nature of MAPPO’s actor
outputs introduces uncertainty during exploration. Addition-
ally, the computational overhead associated with computing
probability distributions contributes to higher training costs.
As shown in Fig.18, MAPPO exhibits greater stability and
smaller success rate fluctuations after convergence compared
to MADDPG, albeit requiring more training episodes during
initial exploration.

The MCDDPG algorithm proposed in this paper addresses
the challenges of lengthy initial exploration periods and post-
convergence fluctuations through its MC architecture. This
enhances the algorithm’s convergence and robustness. Con-
sequently, the convergence speed and stability of reward
values and success rates in MCDDPG surpass those of both
MADDPG and MAPPO algorithms.

V. CONCLUSION

The proposed MCDDPG algorithm, based on the MC ar-
chitecture, not only offers an efficient solution for multi-angle
coordination tasks in UAV swarm formations, but also has
applicability in various other multi-agent cooperative planning
scenarios. By integrating model-based Critic modules and
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Fig. 17. Collaborative planning simulation effect of multi-UAV formation to obtain multi-target points.

Fig. 18. Comparison of training learning curves of MCDDPG, MADDPG and MAPPO algorithms.

DNN-based Critic modules within the MC architecture, it
enhances the adaptability and coordination efficiency of multi-
agent systems in complex dynamic environments. This ap-
proach introduces novel perspectives for addressing decision-
making and coordination challenges in multi-agent systems.

Future research directions could include integrating the
MC architecture with other advanced reinforcement learning
techniques or optimization algorithms to further enhance the
performance of UAV swarms in extremely complex environ-
ments, so that multiple UAV formations can have a more
intelligent cooperative action plan, and better complete the
more complex task scene of multiple target tracking and image
collection.
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