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Abstract

Molecules interact through their surface residues. Calculation of the molecular sur-

face of a protein structure is thus an important step for a detailed functional anal-

ysis. One of the main considerations in comparing existing methods for molecular

surface computations is their speed. Most of the methods that produce satisfying

results for small molecules fail to do so for large complexes. In this article, we

present a level-set-based approach to compute and visualize a molecular surface at

a desired resolution. The emerging level-set methods have been used for computing

evolving boundaries in several application areas from fluid mechanics to computer

vision. Our method provides a uniform framework for computing solvent-accessible,

solvent-excluded surfaces and interior cavities. The computation is carried out very

efficiently even for very large molecular complexes with tens of thousands of atoms.

We compared our method to some of the most widely used molecular visualization

tools (Swiss-PDBViewer, PyMol, and Chimera) and our results show that we can

calculate and display a molecular surface 1.5 to 3.14 times faster on average than

all three of the compared programs. Furthermore, we demonstrate that our method
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is able to detect all of the interior inaccessible cavities that can accommodate one

or more water molecules.
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1 Introduction

Interactions between molecules are usually induced by the properties of their

surface components. Sequences may diverge and secondary structure arrange-

ments may change topology in the evolutionary process. However, surface

properties that are essential to protein function are usually conserved. There-

fore, calculation and analysis of molecular surfaces play a main role in discov-

ering the functional properties of a protein.

Three main molecular surface definitions exist in the literature[1]. Figure 1

shows an illustration of these definitions in 2D. The van der Waals surface is

the surface area of the volume formed by placing van der Waals spheres at the

center of each atom in a molecule. The solvent-accessible surface[3] is formed

by rolling a solvent, or a probe, sphere over the van der Waals surface. The

trajectory of the center of the solvent sphere defines the solvent-accessible

surface. Whereas, the solvent-excluded surface is defined as the trajectory of

the boundary of the solvent sphere in contact with the van der Waals surface.

The solvent-excluded surface is also referred to as the molecular surface. As

shown in Figure 1, the molecular surfaces can be further decomposed into the

contact surfaces that are in common (or in contact) with the van der Waals
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surfaces and the re-entrant surfaces that are not. The molecular surface and

the solvent-accessible surface are the most commonly used representations

for both graphical visualizations and quantitative calculations of the surface

area[1].

Protein molecules are usually well packed. In fact, the packing efficiency of

atoms inside proteins is roughly that for the close packing of hard spheres[1].

Hubbard and Argos[2] analyzed internal packing defects or cavities (both

empty and water-containing) within protein structures and defined three cav-

ity classes: within domains, between domains, and between protein subunits.

These cavities may have several important functions. Takano et al.[4] showed

that buried water molecules in internal cavities contribute to protein stability.

Water-filled cavities also play the role of modulating pKa values of acidic and

basic residues surrounding the cavities[5]. Therefore, in the absence of high-

resolution structural data capable of resolving all the water molecules inside

protein cavities, it is extremely useful to develop accurate and fast compu-

tational methods for quantitatively calculating the shapes and sizes of these

cavities. The proposed technique addresses both the surface generation and

cavity detection problems.

Related work. Numerous methods have been developed to compute molec-

ular surfaces. Here, we describe some of these methods, and the interested

readers are referred to Ref. [1] for a more thorough review of the area. One of

the earliest algorithms was proposed by Connolly [6,7]. A molecular dot sur-

face is formed as a combination of convex, toroidal, or concave patches when

a probe sphere is tangent to one, two, or three atoms respectively.

A grid-based algorithm was described by Nicholls et al.[8] and used in the
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program GRASP[9]. The method we propose in this article is similar to their

algorithm in the processing steps, but differs significantly in the details. In

particular, we use the level-set front-propagation method[10,11] to identify

van der Waals, solvent-accessible, re-entrant, and contact surfaces in a unified

and efficient framework. Our method is applicable and efficient regardless of

the molecules are densely or sparsely packed.

Furthermore, we use the same level-set method for identifying enclosed cavi-

ties. Nicholls et al.[8] detect the cavities by choosing a seed point at an extrema

that does not belong to a cavity. All points associated with it, those which

can be reached by traveling along triangle edges, are deemed the noncavity

surface. All others belong to cavities. Note that this will give an incorrect as-

sessment if there is more than one disconnected surface. Unlike GRASP, our

method can handle such topologies naturally without any effort. 1

Sanner et al.[12] developed a method that relies on the reduced surfaces for

computing the molecular surfaces. The reduced surface corresponds to the

alpha shape[13] for that molecule with a probe radius α. An implementation

of this method (MSMS package) is used by the UCSF Chimera[14] molecular

graphics program, which is one of the programs that we compared our method

to.

All described methods work well for small molecules. However, one often needs

to analyze large protein/DNA, protein/RNA, or protein/protein complexes as

the interaction of proteins with other macromolecules is essential for many

cellular functions. Therefore, development of a method that is capable of in-

1 Unfortunately, GRASP is currently available only on SGI machines, and is not

among the programs that we used for experimental comparison.
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teractively analyzing and visualizing the molecular surfaces of large complexes

is very important.

An overview of our method. We use a level-set-based approach to compute

the molecular surface of a protein of known structure. Our method, which we

name LSMS: Level Set method for Molecular Surface generation, proceeds in

three stages:

• An outward propagation step that generates the van der Waals surface and

the solvent-accessible surface.

• An inward propagation step that generates the re-entrant surfaces and con-

tact surfaces, i.e., the solvent excluded or the molecular surface.

• Another inward propagation step to distinguish between the outer surface

and interior cavities of the molecule.

The novelty of our algorithm is three-fold: First, we propose a unified frame-

work for solving all the tasks above based on the level-set front-propagation

method; second, our algorithm traverses each grid cell at most once and never

visits grid cells that are outside the sought-after surfaces to guarantee effi-

ciency; and third, our algorithm correctly detects interior cavities for all kinds

of protein topologies, while GRASP fails for some.

The volume and area calculations of the molecular surface as well as the in-

ternal inaccessible cavities is then carried out very efficiently on the processed

grid. For visualizing the molecular surface, a triangular mesh is generated

using the marching cubes method[15].

We evaluated LSMS for generating molecular surfaces of very large molecular
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structures having 27375 (PDB id: 1a8r) to 97872 (PDB id: 1hto) atoms. We

compared our results to PyMol[16], Chimera[14], and Swiss-PDBViewer[17]

and our results show that LSMS is faster than all of those tools. We also

performed experiments to evaluate the extent of LSMS’s interior cavity de-

tection capabilities. We compare the internal cavities found by LSMS to the

cavities found by Swiss-PDBViewer. Our results show that LSMS can find all

the cavities that can accommodate one or more water molecules. Hence, our

technique makes two significant contributions: (1) time and memory efficient

mechanisms for computing and visualizing molecular surfaces and (2) accurate

determination of interior cavities.

2 Methods

The inputs to our method are the atomic coordinates of the three dimen-

sional molecular structure as a PDB[18] file. We ignore the hydrogen atoms

during the surface computation and employ the commonly used united atom

approach[1]. In this approach, the size of an atom is enlarged by accounting

for its hydrogens. We use the same united atom radii applied in Rasmol’s[19]

spacefill rendering 2 . However, it should be noted that the united atom as-

sumption is not an essential element of our algorithm — our algorithm works

without modification with or without the assumption. We made the assump-

tion to be consistent with the existing techniques for comparison purposes.

The molecular structure is then placed and centered on a three-dimensional

orthogonal grid of a desired resolution. The size and the resolution of the

2 http://www.umass.edu/microbio/rasmol/rasbonds.htm
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grid are the same along all three dimensions and are held constant during the

molecular surface computations. The resolution of the grid with respect to

the size of the molecule defines a quality measure that directly corresponds to

the quality measure employed by Swiss-PDBViewer[17], that is, the number

of grid cells per 1.4 Å. We resize the molecule uniformly in all dimensions so

that it fits completely inside the cubic grid. The quality is therefore given by

(N/L) × 1.4, where N is the number of grid cells and L is the length of the

molecule (in Å) along the major axis.

A molecular surface for the input structure is computed in three stages. Firstly,

we use an outward marching front to locate the van der Waals and the solvent-

accessible surface of the molecule. Secondly, we use an inward marching front

to compute the re-entrant surfaces and contact surfaces, i.e., the solvent-

excluded surface. At the end of the second stage, the grid cells outside the

solvent-excluded surface are readily identified as those not processed by our

algorithm. However, the cavities inside the molecule are also marked as outside

cells. The surfaces surrounding those cavities are not distinguished from the

outside molecular surfaces that are accessible to solvent molecules. Therefore,

we use the level-set method to distinguish the outer surface from the interior

cavities, by shrinking a surface that initially encloses all of the molecule.

An outward marching front propagation to find van der Waals and

solvent-accessible surfaces. The first stage in the molecular surface compu-

tation consists of locating the van der Waals and solvent-accessible surfaces.

In the process, we mark the grid cells inside the volume defined by the solvent-

accessible (or van der Waals) surface accordingly.

To start with, all grid cells are considered outside the surfaces. To mark the
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volume inside the solvent-accessible (or van der Waals) surface, one may tra-

verse all the atoms of the molecule and mark the cells, whose centers fall inside

the volume defined by the solvent-accessible (or van der Waals) radii around

the atoms, as inside. Figure 2 illustrates the process in two dimensions for

one of the atoms of the molecule. The extension to three dimensions involves

spheres instead of circles.

Some details deserve careful consideration to ensure efficiency in realizing the

procedure described above. There are two general approaches to accomplish

inside-outside demarcation: one is grid-based and the other is molecule-based.

In a molecule-based approach, we iterate through the atoms in the molecule

and mark the grid cells that each atom occupies. The marking of the grid

cells that are inside takes O(m · k) time, where m is the number of atoms

and k is the average number of grid cells occupied by an atom. As a final

step, all grid cells need to be traversed once to locate the surfaces (a grid cell

is on the surface if it is marked inside but is adjacent to some cells that are

marked outside). The complexity is O(N3), where N is the grid resolution

along one dimension. Note that this process, though simple to implement, is

not efficient. This is because we often visit the same grid cell more than once,

since the enlarged van der Waals volumes of the atoms may intersect. This

repetition is particularly troublesome when the molecule is densely packed.

The grid-based approach overcomes this repetition by traversing each grid

cell exactly once and checking if it is inside an atom or not. The brute-force

implementation of this technique will take O(N3 ·m) time in the worst case,

where each grid cell is checked for intersection with every atom. One can

expedite this process by building an octree data structure over the atoms of

the molecule. This will reduce the time complexity to O(N3 · log m).
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However, even with a clever data structure this approach is not efficient, be-

cause cells that are outside the surfaces will be examined no matter what.

The wasted effort in iterating through cells outside the surfaces is particu-

larly pronounced if a molecule assumes a highly-linear and sparsely-packed

3D structure. In such cases, the embedding grid (or N) will be large but cells

will only be sparsely occupied.

Furthermore, each step in the grid-based approach (checking if a cell is occu-

pied or not) is more expensive than the corresponding step in a molecule-based

approach (marking the cells that an atom occupies). Our experiments on a

256×256×256 grid showed that even with optimization a grid-based approach

can be as much as six times slower than a molecule-based approach. It takes

11.34 seconds to process the protein 1pma (45892 atoms), on a 256×256×256

grid using a grid-based approach; however, it only takes 1.86 seconds when a

molecule-based approach is used.

The solution that we propose is novel and different because: Unlike a molecule-

based approach, our technique does not examine a grid cell more than once,

and unlike a grid-based approach, our technique does not waste time examining

grid cells that are going to be outside the surfaces. Hence, we combine the best

properties of the molecule- and grid-based approaches to achieve efficiency.

Our solution is based on the level-set method. The level-set method[10,11] pro-

vides a mathematical framework to compute evolving boundaries. It is based

on a continuous formulation represented by partial differential equations and

allows one to deform or propagate an implicit surface, which is the zero iso-

contour of a scalar (level set) function. The topological changes, e.g., split and

merge, are handled naturally by the level-set method. The level-set formula-
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tion works in any number of dimensions and the computation can easily be

restricted to a narrow band near the zero level set for efficiency.

In more details, imagine a closed surface Γ in space that is propagating nor-

mal to itself with a velocity F. One way to characterize the position of this

expanding front is to compute the first arrival time T (x, y, z) of the front as

it crosses each point (x, y, z) in space. The equation that describes this arrival

surface T (x, y, z) is easily derived using the relationship that distance = speed

× time. Hence, we have

dx = FdT, or

|∇T ||F| = 1. (1)

Thus the front motion is characterized as the solution to a boundary-value
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problem. 3

One can intuitively understand the use of level-set front-propagation for molec-

ular surface generation as follows: We initially “seed” a closed surface (a sphere

of radius 1 covering just one grid cell) at each and every atom that makes up

the molecule. We then evolve (expand) the individual atomic surfaces outward

until they reach the specified solvent-accessible (or van der Waals) radii. The

radii can be the same or different for different atoms. In the process we mark

those grid cells visited as inside. Three important points are discussed below

about this procedure:

• First, when multiple atomic surfaces are evolving simultaneously, they often

meet and merge — therefore changing the topology of the final solvent-

accessible (or van der Waals) surfaces in drastic and unpredictable ways.

Luckily, the level-set formulation takes care of surface merging and topology

3 Conversely, a level-set problem can also be casted as an initial-value problem by

identifying the position of the propagating front as the zero level set (iso-contour)

of a higher dimensional function φ[10,11], which satisfies

φ(x(t), t) = 0.

By the chain rule

φt +∇φ(x(t), t)x′(t) = 0 or

φt + |F ||∇φ| = 0

where x′(t) · n = F , and n = ∇φ/|∇φ| . This representation is more general than

the boundary-value formulation. It allows the front to propagate both forward and

backward. However, for our application, the boundary-value formulation is more

appropriate.
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change in a natural way with no undue restriction (details later).

• Second, in our formulation the boundary-value level-set computes the first

arrival function T (x, y, z) at each cell (x, y, z). As will be shown shortly, T

represents the distance of a grid cell to the nearest atom. This is significant

because once a cell is deemed in the solvent-accessible range from a seed

atom based on T , it will never be visited later. This implies that each cell

will be visited at most once. 4

• Third, once the propagating front reaches the specified distances, an appro-

priate stopping criterion (detailed later) will be imposed to stop its prop-

agation 5 . Hence, cells that are outside will never be visited to improve

efficiency.

Two remaining questions are how to design such an F function and how to

implement the front propagation efficiently and correctly. Different applica-

tions need to come up with suitable definitions of the F function based on

relevant domain-specific knowledge. For example, in many image processing

and edge detection applications, the F function represents a curvature-based

evolution (expansion and contraction, depending on the sign of the curvature

dependency term) with a stopping criterion satisfied at image regions with

significant intensity gradient (or presence of edges)[10,11].

In our formulation, the F function represents a uniformly expanding surface

front that expands one unit distance at a time until the front reaches the

4 Or one can imagine a propagating surface front as a “wall of flames” that burns

through the space. Once a cell is visited by a propagating fire wall, it will stay

“burned.”
5 Or one can imagine that the propagating surface front simply runs out of fuel to

go beyond the specified van der Waals or solvent-accessible distances.
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desired van der Waals or solvent-accessible distance, at which time it stops.

We have chosen the two-norm (or Euclidian) distance:

d[(xi, yi, zi), (xj , yj , zj)] = ‖(xi, yi, zi)− (xj , yj , zj)‖
=

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2

which provides the best approximation of a sphere represented by discrete

grid cells. Based on the distance metric, the F function will be a step function

that assumes a value of 1 before the front travels the desired distance and 0

afterward.

To implement the front-propagation framework efficiently and correctly, we

adopt a numerical solution scheme that is known as the Fast Marching Method[10,11].

The Fast Marching Method is suitable for boundary-value level-set formulation

and can be many times more efficient than the general narrow-band level-set

method[10,11]. The central idea is to systematically construct the solution by

propagating the front to the nearest grid cells. The key is the observation that

the front propagates only one way, that is, from smaller values of T to larger

values. Hence, the Fast Marching Method solves Eq. 1 by discretizing it and

building the solution outward from the smallest T values.

To better explain the central idea behind the efficient implementation of

the Fast Marching Method, we use an illustration that is similar to that in

Refs. [10,11]. In Figure 3, we depict the initial condition of seeding the propa-

gating surface at one of the atoms in the molecule, which is located at location

(x, y, z) in the grid. This provides possible values for T at the six neighboring

grid points Tx+i,y+j,z+k, where −1 ≤ i, j, k ≤ 1 and i2 + j2 + k2 = 1.
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Now, to propagate the front, we would like to march the front to one of these

neighboring points, but we do not know which one to choose. The answer

lies in the observation that the smallest T value at these neighbors must be

correct, because no point can be affected by grid cells containing larger values

of T . Thus, we may freeze the value of T and propagate the front to that

closest grid 6 .

A pseudo-code algorithm is given below.

Initialization:

(1) NEAR ← all seed cells, IDC = IDatom, TC = −rIDc
van der Waals,∀C ∈ NEAR

(2) FAR ← all other cells

(3) VISITED ← φ

Loop until NEAR = φ:

(4) VISITING ← C(x,y,z) = argminNEART

(5) NEAR ← NEAR - {C}
(6) if TC < rprobe then

(7) if (x+i,y+j,z+k) ∈ FAR , −1 ≤ i, j, k ≤ 1, i2 + j2 + k2 = 1

(8) NEAR ← NEAR ∪ { (x+i,y+j,z+k) }
(9) FAR ← FAR - { (x+i,y+j,z+k) }
(10) IDx+i,y+j,z+k ← IDC

(11) Tx+i,y+j,z+k ← ‖(x + i, y + j, z + k)− (xIDc , yIDc , zIDc)‖ − rIDc
van der Waals

(12) if (x+i,y+j,z+k) ∈ NEAR, −1 ≤ i, j, k ≤ 1, i2 + j2 + k2 = 1

6 Because we choose T to be a constant, the six neighbors will be reached at the

same time and the ordering is less consequential. However, the algorithm is general

enough to handle T that is spatially- and directionally-varying, or the front can

arrive at the neighbors at different times.
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(13) IDx+i,y+j,z+k ← argmin(Tx+i,y+j,z+k, Tc + 1)

(14) Tx+i,y+j,z+k ← min(Tx+i,y+j,z+k, Tc + 1)

(15) VISITED ← VISITED ∪ { C }
(16) else

(17) FAR ← FAR ∪ { C }

Cells are assigned to one of four categories: NEAR: near the propagating front,

FAR: far away from the propagating front, VISITED: already visited by the

propagating front, and VISITING: currently being visited. Initially, VISITED is

empty, NEAR comprises all seed cells, and FAR comprises all others. For cells in

NEAR, we remember the closest atom ID (the seed atom) and the distance to

the closest atom. Note that initially a cell marked as NEAR is at a distance of

zero from the corresponding seed atom. However, in our algorithm we initialize

that distance as the negative van der Waals radius of the closest seed atom.

This choice of the initial value is important to ensure the correctness of our

algorithm. We discuss the rationale of this distance assignment in more detail

later.

In each iteration, we select the cell (C) in the NEAR list that is closest to the

propagating front and mark the cell C as VISITING (line 4). We also remove C

from the NEAR list (line 5). If the T value is still smaller than the probe radius

(line 6), which means this cell is still within the solvent-accessible distance,

we perform the following operations 7 : We examine the six neighbors of C.

For those neighbors that are in the FAR list, we move them to the NEAR list

7 If not, the cell lies outside the reach of the current propagating surface front. It

will then be reverted back to the FAR list (line 17).
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(line 8) and remove them from the FAR list (line 9). We also assign the nearest

atom ID for this neighbor (the same ID as that of C, line 10) and compute

the distance of the neighbor to that nearest atom (the Euclidian distance to

the atom center, line 11) 8 .

For those neighbors that are already in the NEAR list, we update their distances

to the closest atoms and the IDs of the closest atoms if necessary (that is, if

going through C proves shorter than the recorded path so far, lines 13 and

14). Finally, we move C to the VISITED list after the processing is done (line

15). As can be seen from the algorithm, cells marked as VISITED will never be

involved in the processing loop again. This ensures that no cells will be visited

more than once (but a cell might be examined more than once).

Validity. The validity of the algorithm—i.e., it marks as inside all grid cells

within the solvent-accessible (or van der Waals) distance to a seed atom,

but no others—is informally argued below. Three main claims underpin the

validity assertion: (1) surface fronts will never propagate to the cells outside

the solvent-accessible distances from the seed atoms, (2) surface fronts will

always propagate to the cells inside the solvent-accessible distance from some

seed atom, and (3) the algorithm computes and maintains, at each NEAR cell,

the correct distance to the nearest seed atom. It should be intuitively clear

that if the above three claims are true, then the algorithm is correct.

The first claim is easily verified as line 17 in the algorithm shows that cells

are not processed further if the recorded distance to the closest atom is larger

8 The van der Waals radius of the nearest atom is subtracted from the computed

distance to account for the fact that distances are initialized with negative van der

Waals radii to ensure correctness.
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than the corresponding solvent-accessible distance. Hence, no cells outside the

solvent-accessible distances will be processed.

The third claim is also easily verified. When a cell is first brought into the

NEAR list, its only known path to a seed atom is through cell C, i.e., the cell’s

neighbor who is currently being visited. The cell’s distance to the nearest seed

atom is the Euclidian distance to that atom (line 11). If a cell in the NEAR list

is being examined again (line 12), then a new path to a seed atom must have

been found. Line 14 then updates the first arrival time that has been found so

far. Hence, the algorithm correctly maintains the first arrival time at a NEAR

cell.

The second claim deserves some thinking. Often times, a grid cell is within

the solvent-accessible distances to multiple seed atoms (because van der Waals

or solvent-accessible distances account for sharing of electrons in co-valence

bonds). Hence, if a cell, called C, has been visited by the front originated from

the closest seed atom and marked as VISITED, then another front—from a

more distant atom and arriving some time later—will not be able to propagate

through cell C, because it has already been visited. Then the question is: Will

the late-arriving front still be able to propagate itself to reach all the cells

within its solvent-accessible distance without the participation of cell C?

The answer to the above question is actually no. However, we claim that a cell,

which lies within the solvent-accessible distance to an atom but is not reached

by the atom’s surface front, must have been assigned the VISITED label by the

surface front originated from some other neighboring atom. Hence, collectively

the surface fronts from all seed atoms will reach all cells that are within the

solvent-accessible distances to some seed atoms.
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To prove the above argument, we must first consider how the surface fronts

from neighboring atoms meet and thus “quench” the propagation of each

other. In our algorithm, the initial distance of a NEAR cell is assigned the

negative value of the van der Waals radius of the corresponding seed atom (line

1 in our algorithm). This assignment is important because it ensures that not

until all propagating fronts finish filling in every cell inside their own van der

Waals distances can the fronts start to propagate toward the solvent-accessible

surfaces. In other words, any atom which has completed filling its van der

Waals volume must somehow wait all other atoms to catch up. However, a

more elegant solution involves the simulation of this “waiting” effect at the

beginning of the propagation process. Instead of starting the propagation of

the fronts of all atoms at the same time, each atom may wait until proper

time to start propagating its front and thus having all atoms fill their van der

Waals volume at the same time. To achieve this goal, we let atoms with larger

van der Waals radii start propagating their fronts earlier than atoms with

smaller radii. The smaller atoms start propagating their surfaces when the

remaining van der Waals distances of the larger atoms are equivalent to the

radii of smaller atoms. In the algorithm, this is carried out by initializing the

arrival time of surface at atom centers with negative van der Waals radii (line

1) and with cell picking strategy in which the cell with smallest distance is

chosen always (line 4). The cell picking strategy forces our algorithm maintain

the same propagation speed in all directions, implying that all the cells with

shorter distances need to be filled in before any cell with larger distance can be

reached. On the other hand, setting the initial distances with negative van der

Waals radii is the same as setting the distance on the van der Waals surface to

zero and every cell outside the van der Waals surface will have a distance larger

than zero. Therefore, it becomes clear that the solvent-accessible surfaces will
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not be propagated until all cells inside every atoms van der Waals distances

have been filled in. Our algorithm is general enough to solve all known possible

molecular structures, even the cases that neighboring atoms have some overlap

on their van der Waals volume.

As mentioned before, the neighboring atoms meet and quench the propagation

of each other. An interesting question on might ask is: What will the shape

of this “fire quenching” surface be? To illustrate, consider a simple 2D case

of two atoms in Figure 4. Without loss of generality, assume that one atom

is centered at (0, 0) and has a van der Waals radius rA and the other atom is

centered at (xB, 0) and has a van der Waals radius rB. The “fire quenching”

surface thus satisfies the equation

√
x2 + y2 − rA =

√
(x− xB)2 + y2 − rB (2)

When rA = rB, it is readily shown that the quenching surface is x = xB/2—

a plane that passes through the mid point between the two atoms and is

perpendicular to the line joining the two atoms. If all atoms have the same van

der Waals radius, the union of these quenching surfaces is thus the Voronoi

diagram of the seed atoms, which has been widely used for protein surface

calculation and generation[1]. When rA 6= rB, the shape of the quenching

surface is a parabola and is biased toward the small atom (see Figure 4). In

any case, our choice of starting measuring the propagation distance at the

negative van der Waals distance (instead of zero) ensures that Eq. 2 to be

true. Eq. 2 states that cells that are closer to the van der Walls surface of an

atom will be reached by its own propagating front. Those that are closer to

another atom will be reached by the propagating front from the other atom.

Collectively, all cells that are within the solvent-accessible distances will then
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be reached and marked VISITED accordingly.

Complexity. The complexity of the algorithm can be informally analyzed as

follows: Lines 1 to 3 represent a constant initialization overhead that is in-

consequential. Lines 5 to 17 all can be executed in constant times. This is

because in real implementation, it is not necessary to use any complicated

data structures for NEAR, FAR, and VISITED. Each cells can be augmented

with a 2-bit status flag that represents one of the following four states: NEAR,

FAR, VISITING, and VISITED. The status flag can be checked and updated in

constant time. The only line that deserves some careful implementation is line

4, which selects from the all NEAR cells one that is closest to the propagating

front to visit next. This selection process can be implemented efficiently using

a data structure called a partially ordered tree or a heap[20], which has log-

arithmic complexity for insert and deletemin operation. Furthermore, a heap

can be implemented using an array (or a Vector in Java) without complicated

pointer arithmetics.

So the question is how large can the NEAR set grow to? Intuitively speaking, the

NEAR set will grow as the fronts from the seed atoms expand, and then starts

to shrink when the expanding fronts merge and reach the solvent-accessible

distances. We can readily establish an upper bound of the total surface area

of the expanding fronts as follow: The surface area of a sphere (i.e., an atom)

is 4πr2, where r can be either the van der Waals or solvent-accessible ra-

dius. When a surface front is expanding, we note that (1) the front maintains

roughly a spherical shape. This is because we select the cell to visit based on

the distance to the center of the atom. Hence, we cannot introduce big pro-

trusions (too large a distance to explore next) or big depressions (too small a

distance not to explore next) in the front. In fact, the difference in the dis-
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tances to the center of the atom of points on the front can be at most 1 grid

cell in our scheme, and (2) the radius is always less than or equal to the final

r. Hence, the upper bound of the active surface areas to maintain in NEAR is

at most 4πr2 for a single atom, and 4πr2 ·m for m atoms. 9

If the size of NEAR is O(m), then the complexity of line 4 is O(log m). The

algorithm will then have complexity that is O(l · log m), where l is the number

of cells that are inside the solvent-accessible surfaces. As it is necessary to visit

each cell inside the solvent-accessible surfaces once (to mark them as inside),

the l term is theoretically minimum and cannot be reduced further no matter

what algorithms are used. Our algorithm achieves high efficiency (log) for

operations per cell, and hence, theoretically it is better than either molecule-

or grid-based alternatives. However, it is worthwhile to note that, experimental

performance assessments at different grid resolutions showed that molecule-

based determination of the solvent-accessible volume performs as well as our

proposed level-set based approach in practice.

An inward marching front propagation to find the solvent-excluded

(molecular) surfaces. After marking the grid cells inside the volume of

the solvent-accessible surface, the next step is to mark out the parts that fall

inside the solvent molecule, hence the name, solvent-excluded surface. A brute-

force implementation will involve finding all the probe spheres centered on the

solvent-accessible surface. Then, for each such probe, the grid cells that are

inside the probe sphere are marked as outside the molecular surface. Figure 5

illustrates this procedure in two dimensions. The grid cells that were marked

9 If the propagating fronts from multiple atoms merge, the total surface areas can

only get smaller.
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as inside in the previous stage are now marked outside by this procedure, if

they fall inside a probe circle. Again, the extension of this illustration to three

dimensions involves probe spheres instead of probe circles.

However, it is obvious that the brute-force method (which is used by the

GRASP method) is very inefficient, as it requires every pair and triple of atoms

to be examined for possible probe placements. Probe placement process can

be made efficient by examining the atoms that are spatially close. However,

placement of overlapping probe spheres, hence the redundant examination of

grid cells, cannot be avoided. We propose a much more efficient method which

guarantees that (1) only cells that are inside the solvent-accessible surfaces

are examined, and (2) each cell will be examined at most once.

The key observation is that finding the solvent-excluded surfaces (or molecular

surfaces) is just another front marching process as before. But this time, we

“seed” the marching front at the solvent-accessible surfaces to start with, and

march the front inward instead of outward for a distance specified by the

solvent radius. For a protein embedded in space with complicated twists and

turns, one might wonder how to decide the directions that are “inward.” This

turns out to be very easy — inward directions correspond to those that lead

to cells that were visited in the previous step. Cells that were not visited in

the previous steps lie in the outward directions.

An algorithm similar to the one presented above is used here. At the beginning

the NEAR set comprises all cells that are on the solvent-accessible surfaces

found in the previous iteration. As there is a single probe sphere and a single

propagation distance, it is not necessary to maintain the ID information in

this iteration as before. The FAR set then includes all other cells that were
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visited in the previous step. Finally, the VISITED set includes all cells that

were not visited in the previous step (we mark them as VISITED so they will

not be examined here).

The time complexity of the second stage is similar to that of the first stage.

Again, it will depend on the resolution of the grid as well as the complexity of

the solvent-accessible surface. A protein surface which contains a lot of pockets

(outside cavities) will have a much larger surface area compared to a surface

that is smooth. Therefore, it would require more computation time. In any

case, our technique will visit only cells that are inside the solvent-accessible

surfaces and will not visit any cell more than once. Furthermore, our technique

performs efficient operations at each loop iteration.

Interior cavity detection. The result of the first two stages is a grid that

represents the volume occupied by solvent-excluded surface of the molecu-

lar structure. However, the interior inaccessible cavities are not distinguished

from the surrounding space in this representation. The volume occupied by

them should be excluded in the total molecular volume. Furthermore, if one

computes the molecular surface area using that grid, the resulting surface

area will not be the area of the molecule in contact with its surrounding en-

vironment, but will also include the surface areas of the interior inaccessible

cavities. Hence, we need to distinguish between the outer surface and the in-

terior cavities. Figure 6 illustrates an inaccessible cavity in two dimensions. In

three dimensions the illustration should not be realized as a torus shape, but

instead as a small sphere inside a larger sphere, where the small one would be

the inaccessible cavity.

The idea is to initialize an evolving surface that encloses the molecule, then
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shrink the surface at a constant speed. The stopping criterion in the speed

function is the encounter with a grid cell that is marked as inside. The evo-

lution of the surface stops completely when all the surface points are stopped

by an inside grid cell. The key observation here is that during this shrinkage

process, the surface has a fixed signed speed, i.e., a grid cell passed over by

the surface will not be visited again by any part of the surface.

With this observation we can again apply the Fast Marching Method, in which

the closest grid points to the evolving surface are considered first, and a grid

cell that is processed is never processed again. In this procedure we again

maintain a narrow band of grid cells in a heap that represents the current

evolving surface and update that narrow band as the surface evolves. At the

end of this procedure the outer surface is detected; and the voids inside the

molecular surface are detected as interior inaccessible cavities. We present

examples of interior cavities in the experimental results section.

3 Results

We conducted for sets of experiments to evaluate the performance and utility

of our method. First, we evaluate the running time performance of LSMS for

computing and visualizing molecular surfaces of very large complexes. Second,

we compare the quantitative measures of molecular surfaces, such as solvent-

accessible surface area and solvent-excluded surface area measures, computed

by LSMS to the corresponding values reported by MSMS, a widely used tool to

compute molecular surface measures. Third, we compare the cavity detection

accuracy by comparing our results to cavities reported by Swiss-PDBViewer.

Finally, we analyze the effect of varying the grid size on generated surfaces
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and cavities. We explain the experiments in detail below.

Molecular surface generation and visualization performance. We se-

lected a challenging set of large molecules as a benchmark dataset. The dataset

consists of 15 large complexes that contain 27375 to 97872 atoms in their struc-

ture data. We compared LSMS’s molecular surface generation performance to

three other programs that are widely used in the computational biology com-

munity and are freely available. PyMOL[16] is an open source molecular graph-

ics system with an embedded Python[21] interpreter designed for real-time

visualization and rapid generation of high-quality molecular graphics images

and animations. UCSF Chimera[14] is another tool implemented in Python.

The solvent-excluded molecular surfaces produced by Chimera are created

with the help of the MSMS package[12]. Swiss-PDBViewer (v3.7 SP5)[17],

or SPDBV for short, is another molecular viewer with extended functional-

ity. There is scanty documentation on the molecular surface component of

SPDBV though. Nevertheless, it can be understood from the documentation

that the surface computation is carried out on an orthogonal grid as in LSMS.

The probe size is 1.4 Å as in other methods, however all the molecule atoms

have a fixed radius. The current version of SPDBV does not allow changing

of these parameters. The only value that can be altered is the smoothness

(quality) parameter. By default it is 1, which means 1 grid point every 1.4 Å.

This quality should be enough for most purposes as indicated by SPDBV’s

developers 10 .

Table 1 shows the molecular surface generation times. All of the tests were

performed on a Microsoft Windows XP machine with Intel Pentium 4 Pro-

10 http://us.expasy.org/spdbv/text/surface.htm
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cessor at 2.0GHz and 512MB of RAM. The results we report here used the

programs’ default parameter sets and did not include the time taken to load

the molecule into memory. The timings for Swiss-PDBViewer are acquired us-

ing a quality value of 1. We also computed a quality measure for LSMS that

directly corresponds to Swiss-PDBViewers’s quality measure, i.e., the number

of grid cells per 1.4 Å. The corresponding quality values for LSMS are shown

on the table. We used a 256×256×256 resolution grid for timing LSMS.

Figure 7 shows the largest protein in our dataset in 256×256×256 resolution

and a quality of 1.28. Furthermore, LSMS can interactively render that surface

with varying viewpoints with a 9-frames-per-second refresh rate.

Table 1 shows that LSMS is up to 2.46 times faster than SPDBV (achieved at

protein 1j0b) and is 1.5 times faster on the average, while achieving a better

quality for every test protein. LSMS is also 3.14 times faster than both PyMol

and Chimera on average. Also, it is important to note that for some of the

test cases SPDBV, PyMol, and Chimera are not even able to generate the

molecular surfaces, whereas LSMS successfully computes the surfaces for all

of the test cases.

Quantitative measures of molecular surfaces Apart from the generation

of three-dimensional representations of molecular surfaces, reporting quantita-

tive measures, such as the solvent-accessible surface area and solvent-excluded

surface area, are among the desired functionalities of a molecular surface pack-

age. In this section, we compare the surface area and molecular volume values

given by LSMS to the corresponding values reported by MSMS [12], a de facto

standard in molecular surface calculations. Since LSMS produces a molecular

surface that is represented by rectangular grid cells, based on the granularity
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of the grid, molecular volume and surface area values are approximations to

actual values at different levels of accuracy. Table 2 shows molecular volume

and surface area values for nine different protein molecules. The last two pro-

teins in the table are very large molecules that contain 45892 and 64281 atoms

respectively and given for informative purpose rather than for comparison. It

can be concluded from the table that, LSMS usually produces smaller area and

volume values compared to the values generated by MSMS. This is expected

since the Euclidian distance in grid space is only an approximation to actual

distances in molecular space and the approximated spheres occupy a smaller

volume than actual spheres. Nevertheless, the values provided by LSMS can be

considered as close-enough approximations for many biological tasks. The im-

portant message here is that, approximations generated by LSMS may prove

useful for very large molecules, where exact techniques are unable to produce

any quantitative results (Table 2).

Interior cavity detection. The outer boundary of the solvent accessible

surface is found by shrinking an initial enclosing boundary at a constant speed

with the Fast Marching Method. Figure 8 shows such an outer surface of the

protein 2ptn computed and displayed by LSMS. However, as we stated earlier

there may exist inaccessible cavities inside the molecular surface that are not

visible, i.e., occluded by the molecular surface. Nevertheless, analysis of these

cavities may be required to study the buried water molecules inside them

which may contribute to protein folding stability.

Figure 9 shows the internal cavities of the same protein 2ptn that can accom-

modate one or more water molecules. The Cα trace is also shown along with

the cavities to provide visual clues of relative locations of the cavities inside

the molecule.
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In order to assess the interior cavity detection capabilities of LSMS, we ana-

lyzed internal cavities of a set of seven protein molecules. The interior cavities

of the tested molecules were visually inspected and compared to the interior

cavities reported by Swiss-PDBViewer (SPDBV). As for quantitative mea-

sures of detected cavities, we use the number of distinct cavities obtained by

visual inspection and the total volume of cavities computed numerically by

the programs (Table 3). We also provide the molecular volume, in Table 3,

as a reference for possible differences in volume computation methodologies

employed by the compared programs. The results show discrepancies between

LSMS and SPDBV both in terms of the number of distinct cavities detected

and the volume occupied by these interior cavities. In general, LSMS tends to

find more distinct cavities compared to SPDBV. However, the total volume of

the cavities are comparable, and in four of the test proteins, SPDBV reports a

larger total cavity volume. We verified by further visual inspection that larger

cavities reported by SPDBV is split by LSMS into a number of smaller cavities

(with all of the large cavities in SPDBV accounted for).

Several factors may cause the disagreements in the number and total volume of

detected cavities. As we address in the next section, grid size is an important

parameter that effects the size and number of cavities detected by LSMS.

Other factors include the employment of different van der Waals radii by the

two methods and SPDBV’s fixed atom radii strategy, i.e., fixed radius for all

the atoms in the molecule.

Effect of the grid size. The chosen grid size is an important factor that

effects the running time of the molecular surface generation process as well

as the quality of the generated surfaces and cavities. Here, we provide both

visual and numerical analysis of the effect of different grid sizes on the protein
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molecule, 2cha. Figure 10 shows the molecular surface and cavities of 2cha

under three different grid sizes. A coarser molecular surface is generated at a

grid of size 64×64×64, while the 256×256×256 grid provides a more accurate

surface of the same molecule. The figure also shows that the detected cavities

increase in volume and in number with the size of the grid. With a more refined

grid, the probe molecule (i.e, water molecule) is able to trace the interior

cavities of the molecule more accurately. Table 4 gives numerical values of

solvent-accessible and molecular surface areas, solvent-excluded volume, and

the total surface area and volume of the interior cavities. With an increasing

grid size the molecular surface is refined and therefore the volume decreases,

i.e., the surface can be represented in more detail by smaller grids. As the

molecular surface is refined, the details of the surface areas become apparent

and the total size of the area increases.

4 Conclusions

In this article, we presented a method to calculate all kinds of protein sur-

faces, such as van der Waals, solvent-accessible, and solvent-excluded surface,

as well as the interior inaccessible cavities of a molecular structure in a unified

framework based on level-set methods. In particular, the proposed method is

based on a fast marching level-set method that efficiently formulates a con-

stant signed speed evolving boundary. We showed that the surface generation

and cavity detection tasks can be solved in a unified and efficient manner

using level-set surface evolution. The benefits of our proposed technique is

apparent especially for very large molecular structures that contain 25K or

more atoms, for which some of the existing molecular surface packages cannot
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even generate a surface. However, potential users of LSMS should note that

the grid based computation of molecular surfaces by LSMS provides approx-

imate surfaces and for smaller molecules processed in a coarser grid, existing

molecular surface packages will provide a more accurate and smoother looking

surfaces than LSMS. Therefore, we do not envision LSMS as a replacement

for all molecular surface packages, but as a molecular surface generation tool

that can scale very well to extremely large molecules. Moreover, the quanti-

tative surface measures and the interior cavities provided by LSMS are good

approximations to the corresponding measures provided by commonly used

packages such as MSMS and Swiss-PDBViewer.

Availability: LSMS is available free of charge with source code at

http://www.ceng.metu.edu.tr/˜tcan/LSMS/. The distribution is tested under

Microsoft Windows XP environment.
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Table 1

Molecular surface generation times for LSMS compared to those of Swiss-

PDBViewer, PyMol, and Chimera. Note: Protein sizes are shown as number of

atoms. Surface quality is given as the the number of grid cells per 1.4 Å. u means

that the program is not able to generate a molecular surface.

surface generation time (sec.) surface quality

Protein size LSMS SPDBV PyMol Chimera LSMS SPDBV

1a8r 27375 11.66 14.96 51.34 16.36 1.03 1

1h2i 32802 15.66 17.33 40.78 40.04 1.29 1

1fka 34977 37.14 51.56 85.14 77.25 1.34 1

1gtp 35060 15.81 19.75 50.17 67.04 1.28 1

1gav 43335 20.31 35.24 86.62 78.35 1.28 1

1g3i 45528 26.80 37.51 63.90 u 1.41 1

1pma 45892 40.78 u 51.10 u 1.67 1

1gt7 46180 14.91 22.60 57.75 54.39 1.16 1

1fjg 51995 30.34 48.44 85.79 u 1.33 1

1aon 58884 47.28 61.20 95.84 u 1.41 1

1j0b 60948 18.28 44.97 100.14 u 1.18 1

1ffk 64281 69.83 72.07 135.80 196.65 1.27 1

1otz 68620 42.05 51.27 78.05 u 1.45 1

1ir2 87087 21.09 u 120.52 93.87 1.23 1

1hto 97872 38.95 89.68 u u 1.28 1
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Table 2

Quantitative measures of molecular surfaces compared to corresponding measures

reported by MSMS. (SAS: Solvent-accessible Surface Area, SES: Solvent-excluded

Surface Ares, SEV: Solvent-excluded Volume) (u: the program is unable to process

the protein molecule)

LSMS MSMS

Protein id: SAS (Å2) SES (Å2) SEV (Å3) SAS (Å2) SES (Å2) SEV (Å3)

1eca 6797 5812 17139 6959 5875 20998

2act 8878 7477 27040 11484 9331 33941

2cha 10354 9021 29174 10607 9086 31078

2lyz 6471 5350 16101 7740 6420 19099

2ptn 8957 7746 27333 9153 7866 29342

5mbn 7946 6864 20262 8982 7790 24783

8tln 12005 10447 40760 12708 10975 44895

1pma 193157 185487 851062 u u u

1ffk 453675 463387 1272399 u u u
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Table 3

Cavities computed using LSMS and comparison with results from Swiss-

PDBViewer.

# of cavities cavity volume (Å3) molecule volume (Å3)

Protein LSMS SPDBV LSMS SPDBV LSMS SPDBV

1eca 1 1 31.46 134 16688.98 16824

2act 7 2 322.33 281 6842.76 6509

2cha 10 4 338.01 436 28728.13 27705

2lyz 3 2 96.12 162 15778.44 15133

2ptn 6 3 394.41 380 27037.94 25897

5mbn 4 2 127.05 189 19796.24 19768

8tln 14 2 356.28 170 40280.45 38498
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Table 4

The effect of varying grid size on the generated molecular surface and detected

interior cavities for the protein molecule 2cha. (SAS: Solvent-accessible Surface,

SES: Solvent-excluded Surface)

Outer Surface Interior Cavities

Grid Size SAS (Å2) SES (Å2) Volume (Å3) # Surface (Å2) Volume (Å3)

64×64×64 9919 8969 34217 7 238 109

128×128×128 10289 9060 30629 10 395 241

256×256×256 10475 9163 28728 10 504 338
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Fig. 1. A two-dimensional illustration of surface definitions.
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Fig. 2. The grid cells whose centers fall inside the volume defined by the solvent-ac-

cessible surface is marked as inside.
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Fig. 3. Surface front propagation from an initial seed atom. The vertical dimension

is exaggerated for viewing.
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Fig. 4. A 2D illustration of the shape of the surface where fronts from different

atoms meet and quench each other.
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Fig. 5. The grid cells whose centers fall inside the probe circles are marked as outside.
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Fig. 6. A two-dimensional illustration of an inaccessible cavity.
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Fig. 7. The molecular surface of 1hto generated by LSMS. The boundaries of the

256×256×256 resolution grid are also shown.
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Fig. 8. The molecular surface of 2ptn generated by LSMS. The boundaries of the

256×256×256 resolution grid are also shown.
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Fig. 9. Cavities inside 2ptn along with its Cα trace.
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Fig. 10. The molecular surface (top row) and interior cavities (bottom row) of the

protein molecule, 2cha, generated at varying grid sizes: (a) 64×64×64 grid, (b)

128×128×128 grid, (c) 258×256×256 grid.
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