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Abstract—Vision-language navigation (VLN) is the task of navigating an embodied agent to carry out natural language instructions
inside real 3D environments. In this paper, we study how to address three critical challenges for this task: the cross-modal grounding,
the ill-posed feedback, and the generalization problems. First, we propose a novel Reinforced Cross-Modal Matching (RCM) approach
that enforces cross-modal grounding both locally and globally via reinforcement learning (RL). Particularly, a matching critic is used to
provide an intrinsic reward to encourage global matching between instructions and trajectories, and a reasoning navigator is employed
to perform cross-modal grounding in the local visual scene. Evaluation on a VLN benchmark dataset shows that our RCM model
significantly outperforms baseline methods by 10% on Success Rate weighted by Path Length (SPL) and achieves the state-of-the-art
performance. To improve the generalizability of the learned policy, we further introduce a Self-Supervised Imitation Learning (SIL)
method to explore and adapt to unseen environments by imitating its own past, good decisions. We demonstrate that SIL can
approximate a better and more efficient policy, which tremendously minimizes the success rate performance gap between seen and
unseen environments (from 30.7% to 11.7%).

Index Terms—Vision-Language Navigation, Reinforcement Learning, Imitation Learning, Multimodal Machine Learning.
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1 INTRODUCTION

V ISION and language grounded embodied agents have re-
ceived increased attention [1]–[3] due to their popularity

in many intriguing real-world applications, e.g., in-home robots
and personal assistants. Meanwhile, such an agent pushes forward
visual and language grounding by putting itself in an active
learning scenario through first-person vision. In particular, Vision-
Language Navigation (VLN) [4] is the task of navigating an
agent inside real environments by following natural language
instructions. VLN requires a deep understanding of linguistic
semantics, visual perception, and most importantly, the alignment
of the two. The agent must reason about the vision-language
dynamics in order to move towards the target that is inferred from
the instructions.

VLN presents some unique challenges. First, reasoning over
visual images and natural language instructions can be difficult. As
we demonstrate in Figure 1, to reach a destination, the agent needs
to ground an instruction in the local visual scene, represented
as a sequence of words, as well as match the instruction to the
visual trajectory in the global temporal space. Secondly, except
for strictly following expert demonstrations, the feedback is rather
coarse, since the “Success” feedback is provided only when the
agent reaches a target position, completely ignoring whether the
agent has followed the instructions (e.g., Path A in Figure 1) or
followed a random path to reach the destination (e.g., Path C in
Figure 1). Even a “good” trajectory that matches an instruction can
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Fig. 1: Demonstration of the VLN task. The instruction, the local
visual scene, and the global trajectories in a top-down view is
shown. The agent does not have access to the top-down view. Path
A is the demonstration path following the instruction. Path B and
C are two different paths executed by the agent.

be considered unsuccessful if the agent stops marginally earlier
than it should be (e.g., Path B in Figure 1). An ill-posed feedback
can potentially deviate from the optimal policy learning. Thirdly,
existing work suffers from the generalization problem, causing a
huge performance gap between seen and unseen environments.

In this paper, we propose to combine the power of reinforce-
ment learning (RL) and imitation learning (IL) to address the chal-
lenges above. First, we introduce a novel Reinforced Cross-Modal
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Matching (RCM) approach that enforces cross-modal grounding
both locally and globally via RL. Specifically, we design a rea-
soning navigator that learns the cross-modal grounding in both the
textual instruction and the local visual scene, so that the agent can
infer which sub-instruction to focus on and where to look at. From
the global perspective, we equip the agent with a matching critic
that evaluates an executed path by the probability of reconstructing
the original instruction from it, which we refer to as the cycle-
reconstruction reward. Locally, the cycle-reconstruction reward
provides a fine-grained intrinsic reward signal to encourage the
agent to better understand the language input and penalize the
trajectories that do not match the instructions. For instance, using
the proposed reward, Path B is considered better than Path C (see
Figure 1).

Being trained with the intrinsic reward from the matching
critic and the extrinsic reward from the environment, the reasoning
navigator learns to ground the natural language instruction on both
local spatial visual scene and global temporal visual trajectory. Our
RCM model significantly outperforms the existing methods and
achieves new state-of-the-art performance on the Room-to-Room
(R2R) dataset.

Our experimental results indicate a large performance gap
between seen and unseen environments. To narrow the gap, we
propose an effective solution to explore unseen environments
with self-supervision. This technique is valuable because it can
facilitate lifelong learning and adaption to new environments. For
example, domestic robots can explore a new home it arrives at
and iteratively improve the navigation policy by learning from
previous experience. Motivated by this fact, we introduce a Self-
Supervised Imitation Learning (SIL) method in favor of explo-
ration on unseen environments that do not have labeled data. The
agent learns to imitate its own past, good experience. Specifically,
in our framework, the navigator performs multiple roll-outs, of
which good trajectories (determined by the matching critic) are
stored in the replay buffer and later used for the navigator to im-
itate. In this way, the navigator can approximate its best behavior
that leads to a better policy. To summarize, our contributions are
mainly four-fold:

• We propose a novel Reinforced Cross-Modal Matching
(RCM) framework that utilizes both extrinsic and intrinsic
rewards for reinforcement learning, of which we introduce
a cycle-reconstruction reward as the intrinsic reward to
enforce the global matching between the language instruc-
tion and the agent’s trajectory.

• Our reasoning navigator learns the cross-modal contexts
and makes decisions based on trajectory history, textual
context, and visual context.

• Experiments show the effectiveness of the RCM model,
which achieves the state-of-the-art performance on the
R2R dataset.

• We introduce a new learning scenario for VLN, where
exploring unseen environments prior to testing is allowed,
and then propose a Self-Supervised Imitation Learning
(SIL) method for exploration and adaptation, whose effec-
tiveness and efficiency are validated on the R2R dataset.

2 RELATED WORK

2.1 Vision-and-Language Grounding
Recently, researchers in both computer vision and natural language
processing are striving to bridge vision and natural language

towards a deeper understanding of the world [5]–[11], e.g., cap-
tioning an image or a video with natural language [12]–[18] or
localizing desired objects within an image given a natural language
description [19]–[22]. Moreover, visual question answering [23]
and visual dialog [24] aim to generate one-turn or multi-turn
response by grounding it on both visual and textual modalities.
However, those tasks focus on passive visual perception in the
sense that the visual inputs are usually fixed. In this work, we
are particularly interested in solving the dynamic multi-modal
grounding problem in both temporal and spatial spaces. Thus, we
focus on the task of vision-language navigation (VLN) [4] which
requires the agent to actively interact with the environment.

2.2 Embodied Navigation Agent

Navigation in 3D environments [25]–[28] is an essential capability
of a mobile intelligent system that functions in the physical world.
In the past two years, a plethora of tasks and evaluation proto-
cols [1], [2], [4], [29], [30] have been proposed as summarized
in [31]. VLN [4] focuses on language-grounded navigation in the
real 3D environment. In order to solve the VLN task, Anderson et
al. [4] set up an attention-based sequence-to-sequence baseline
model. Then Wang et al. [32] introduced a hybrid approach
that combines model-free and model-based reinforcement learn-
ing (RL) to improve the model’s generalizability. Lately, Fried
et al. [33] proposed a speaker-follower model that adopts data
augmentation, panoramic action space and modified beam search
for VLN, establishing the current state-of-the-art performance on
the Room-to-Room dataset. Extending prior work, we propose a
Reinforced Cross-Modal Matching (RCM) approach to VLN. The
RCM model is built upon [33] but differs in many significant
aspects: (1) we combine a novel multi-reward RL with imitation
learning for VLN while Speaker-Follower models [33] only uses
supervised learning as in [4]. (2) Our reasoning navigator per-
forms cross-modal grounding rather than the temporal attention
mechanism on single-modality input. (3) Our matching critic is
similar to Speaker in terms of the architecture design, but the
former is used to provide the cycle-reconstruction intrinsic reward
for both RL and SIL training while the latter is used to augment
training data for supervised learning. Moreover, we introduce a
self-supervised imitation learning method for exploration in order
to explicitly address the generalization issue, which is a problem
not well-studied in prior work. Concurrent to our work, [34]–[37]
studies the VLN tasks from various aspects, and [38] introduces
a variant of the VLN task to find objects by requesting language
assistance when needed. Note that we are the first to propose to
explore unseen environments for the VLN task.

2.3 Exploration

Much work has been done on improving exploration [39]–[43]
because the trade-off between exploration and exploitation is
one of the fundamental challenges in RL. The agent needs to
exploit what it has learned to maximize reward and explore new
territories for better policy search. Curiosity or uncertainty has
been used as a signal for exploration [44]–[46]. Most recently,
Oh et al. [47] proposed to exploit past good experience for better
exploration in RL and theoretically justified its effectiveness. Our
Self-Supervised Imitation Learning (SIL) method shares the same
spirit. But instead of testing on games, we adapt SIL and validate
its effectiveness and efficiency on the more practical task of VLN.
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Fig. 2: Overview of our RCM framework.

3 REINFORCED CROSS-MODAL MATCHING

3.1 Overview
Here we consider an embodied agent that learns to navigate
inside real indoor environments by following natural language
instructions. The RCM framework mainly consists of two modules
(see Figure 2): a reasoning navigator πθ and a matching critic
Vβ . Given the initial state s0 and the natural language instruction
(a sequence of words)X = x1, x2, ..., xn, the reasoning navigator
learns to perform a sequence of actions a1, a2, ..., aT ∈ A, which
generates a trajectory τ , in order to arrive at the target location
starget indicated by the instruction X . The navigator interacts
with the environment and perceives new visual states as it executes
actions. To promote the generalizability and reinforce the policy
learning, we introduce two reward functions: an extrinsic reward
that is provided by the environment and measures the success
signal and the navigation error of each action, and an intrinsic
reward that comes from our matching critic and measures the
alignment between the language instruction X and the navigator’s
trajectory τ .

3.2 Model
Here we discuss the reasoning navigator and matching critic in
details, both of which are end-to-end trainable.

3.2.1 Cross-Modal Reasoning Navigator
The navigator πθ is a policy-based agent that maps the input
instruction X onto a sequence of actions {at}Tt=1. At each time
step t, the navigator receives a state st from the environment and
needs to ground the textual instruction in the local visual scene.
Thus, we design a cross-modal reasoning navigator that learns the
trajectory history, the focus of the textual instruction, and the local
visual attention in order, which forms a cross-modal reasoning
path to encourage the local dynamics of both modalities at step t.

Figure 3 shows the unrolled version of the navigator at time
step t. Similar to [33], we equip the navigator with a panoramic
view, which is split into image patches of m different viewpoints,
so the panoramic features that are extracted from the visual state
st can be represented as {vt,j}mj=1, where vt,j denotes the pre-
trained CNN feature of the image patch at viewpoint j.
History Context: Once the navigator runs one step, the visual
scene would change accordingly. The history of the trajectory τ1:t
till step t is encoded as a history context vector ht by an attention-
based trajectory encoder LSTM [48]:

ht = LSTM([vt, at−1], ht−1) (1)

where at−1 is the action taken at previous step, and vt =∑
j αt,jvt,j , the weighted sum of the panoramic features. αt,j
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Fig. 3: Cross-modal reasoning navigator at step t.

is the attention weight of the visual feature vt,j , representing its
importance with respect to the previous history context ht−1. Note
that we adopt the dot-product attention [49] hereafter, which we
denote as (taking the attention over visual features above for an
example)

vt = attention(ht−1, {vt,j}mj=1) (2)

=
∑
j

softmax(ht−1Wh(vt,jWv)
T )vt,j (3)

where Wh and Wv are learnable projection matrices.
Visually Grounded Textual Context: Memorizing the past can
enable the recognition of the current status and thus understanding
which words or sub-instructions to focus on next. Hence, we
further learn the textual context ctextt conditioned on the history
context ht. We let a language encoder LSTM to encode the
language instruction X into a set of textual features {wi}ni=1.
Then at every time step, the textual context is computed as

ctextt = attention(ht, {wi}ni=1) (4)

Note that ctextt weighs more on the words that are more relevant
to the trajectory history and the current visual state.
Textually Grounded Visual Context: Knowing where to look at
requires a dynamic understanding of the language instruction; so
we compute the visual context cvisualt based on the textual context
ctextt :

cvisualt = attention(ctextt , {vj}mj=1) (5)

Action Prediction: In the end, our action predictor considers the
history context ht, the textual context ctextt , and the visual context
cvisualt , and decides which direction to go next based on them. It
calculates the probability pk of each navigable direction using a
bilinear dot product as follows:

pk = softmax([ht, c
text
t , cvisualt ]Wc(ukWu)

T ) (6)

where uk is the action embedding that represents the k-th naviga-
ble direction, which is obtained by concatenating an appearance
feature vector (CNN feature vector extracted from the image
patch around that view angle or direction) and a 4-dimensional
orientation feature vector [sinψ; cosψ; sinω; cosω], where ψ and
ω are the heading and elevation angles respectively. The learning
objectives for training the navigator are introduced in Section 3.3.
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3.2.2 Cross-Modal Matching Critic
In addition to the extrinsic reward signal from the environment,
we also derive an intrinsic reward Rintr provided by the matching
critic Vβ to encourage the global matching between the language
instruction X and the navigator πθ’s trajectory τ = {< s1, a1 >
,< s2, a2 >, ..., < sT , aT >}:

Rintr = Vβ(X , τ) = Vβ(X , πθ(X )) (7)

One way to realize this goal is to measure the cycle-reconstruction
reward p(X̂ = X|πθ(X )), the probability of reconstructing the
language instruction X given the trajectory τ = πθ(X ) executed
by the navigator. The higher the probability is, the better the
produced trajectory is aligned with the instruction.

Therefore as shown in Figure 4, we adopt an attention-based
sequence-to-sequence language model as our matching critic Vβ ,
which encodes the trajectory τ with a trajectory encoder and
produces the probability distributions of generating each word of
the instruction X with a language decoder. Hence the intrinsic
reward

Rintr = pβ(X|πθ(X )) = pβ(X|τ) =
1

n

n∑
i

log pβ(xi|τ) (8)

which is normalized by the instruction length n. In our experi-
ments, the matching critic is pre-trained with human demonstra-
tions (the ground-truth instruction-trajectory pairs < X ∗, τ∗ >)
via supervised learning.

3.3 Learning
In order to quickly approximate a relatively good policy, we use
the demonstration actions to conduct supervised learning with
maximum likelihood estimation (MLE). The training loss Lsl is
defined as

Lsl = −E[log(πθ(a∗t |st))] (9)

where a∗t is the demonstration action provided by the simulator.
Warm starting the agent with supervised learning can ensure a
relatively good policy on the seen environments. But it also limits
the agent’s generalizability to recover from erroneous actions in
unseen environments, since it only clones the behaviors of expert
demonstrations.

To learn a better and more generalizable policy, we then switch
to reinforcement learning and introduce the extrinsic and intrinsic
reward functions to refine the policy from different perspectives.

3.3.1 Extrinsic Reward
A common practice in RL is to directly optimize the evaluation
metrics. Since the objective of the VLN task is to successfully
reach the target location starget, we consider two metrics for the
reward design. The first metric is the relative navigation distance

similar to [32]. We denote the distance between st and starget
as Dtarget(st). Then the immediate reward r(st, at) after taking
action at at state st (t < T ) becomes:

r(st, at) = Dtarget(st)−Dtarget(st+1), t < T (10)

This indicates the reduced distance to the target location after
taking action at. Our second choice considers the “Success” as an
additional criterion. If the agent reaches a point within a threshold
measured by the distance d from the target (d is preset as 3m in
the R2R dataset), then it is counted as “Success”. Particularly, the
immediate reward function at last step T is defined as

r(sT , aT ) = 1(Dtarget(sT ) ≤ d) (11)

where 1() is an indicator function. To incorporate the influence
of the action at on the future and account for the local greedy
search, we use the discounted cumulative reward rather than the
immediate reward to train the policy:

Rextr(st, at) = r(st, at)︸ ︷︷ ︸
immediate reward

+
T∑

t′=t+1

γt
′−tr(st′ , at′)︸ ︷︷ ︸

discounted future reward

(12)

where γ is the discounted factor (0.95 in our experiments).

3.3.2 Intrinsic Reward
As discussed in Section 3.2.2, we pre-train a matching critic
to calculate the cycle-reconstruction intrinsic reward Rintr (see
Equation 8), promoting the alignment between the language in-
struction X and the trajectory τ . It encourages the agent to respect
the instruction and penalizes the paths that deviate from what the
instruction indicates.

With both the extrinsic and intrinsic reward functions, the RL
loss can be written as

Lrl = −Eat∼πθ [At] (13)

where the advantage function At = Rextr+ δRintr. δ is a hyper-
parameter weighing the intrinsic reward. Based on REINFORCE
algorithm [50], the gradient of non-differentiable, reward-based
loss function can be derived as

∇θLrl = −At∇θ log πθ(at|st) (14)

4 SELF-SUPERVISED IMITATION LEARNING

The last section introduces the effective RCM method for generic
vision-language navigation task, whose standard setting is to train
the agent on seen environments and test it on unseen environ-
ments without exploration. In this section we discuss a different
setting where the agent is allowed to explore unseen environments
without ground-truth demonstrations. This is of practical benefit
because it facilitates lifelong learning and adaption to new envi-
ronments.

To this end, we propose a Self-Supervised Imitation Learning
(SIL) method to imitate the agent’s own past good decisions.
As shown in Figure 5, given a natural language instruction X
without paired demonstrations and ground-truth target location,
the navigator produces a set of possible trajectories and then stores
the best trajectory τ̂ that is determined by matching critic Vβ into
a replay buffer, in formula,

τ̂ = argmax
τ

Vβ(X , τ) (15)
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Fig. 5: SIL for exploration on unlabeled data.

The matching critic evaluates the trajectories with the cycle-
reconstruction reward as introduced in Section 3.2.2. Then by
exploiting the good trajectories in the replay buffer, the agent is
indeed optimizing the following objective with self-supervision.
The target location is unknown and thus there is no supervision
from the environment.

Lsil = −Rintr log πθ(at|st) (16)

Note that Lsil can be viewed as the loss for policy gradient except
that the off-policy Monte-Carlo return Rintr is used instead of
on-policy return. Lsil can also be interpreted as the supervised
learning loss with τ̂ as the “ground truths”:

Lsil = −E[log(πθ(ât|st))] (17)

where ât is the action stored in the replay buffer using Equa-
tion 15. Paired with a matching critic, the SIL method can be
combined with various learning methods to approximate a better
policy by imitating the previous best of itself.

5 EXPERIMENTAL SETUP

5.1 R2R Dataset
We evaluate our approaches on the Room-to-Room (R2R)
dataset [4] for vision-language navigation in real 3D envi-
ronments. The R2R dataset is built upon the Matterport3D
dataset [51], which consists of 10,800 panoramic views con-
structed from 194,400 RGB-D images of 90 building-scale scenes
(Many of the scenes can be viewed in the Matterport 3D spaces
gallery2 ). The R2R dataset samples 7,189 paths capturing most
of the visual diversity in the dataset and collects 21,567 navigation
instructions with an average length of 29 words (each path is
paired with 3 different instructions). the R2R dataset is split
into training (14,025 instructions), seen validation (1,020), unseen
validation (2,349), and test (4,173) sets. The seen validation set
shares the same environments with the training set. While both
the unseen validation and test sets contain distinct environments
that do not appear in the other sets.

5.2 Testing Scenarios
The standard testing scenario of the VLN task is to train the
agent in seen environments and then test it in previously unseen
environments in a zero-shot fashion. There is no prior exploration
on the test set. This setting is preferred and able to clearly measure
the generalizability of the navigation policy, so we evaluate our
RCM approach under the standard testing scenario.

Furthermore, exploration in unseen environments is certainly
meaningful in practice, e.g., in-home robots are expected to ex-
plore and adapt to a new environment. So we introduce a lifelong

learning scenario where the agent is encouraged to learn from
trials and errors on the unseen environments. In this case, how to
effectively explore the unseen validation or test set where there are
no expert demonstrations becomes an important task to study.

5.3 Evaluation Metrics
We report five evaluation metrics as used by the VLN Challenge:
(1) Path Length (PL): the total length of the executed path; (2)
Navigation Error (NE): the shortest-path distance between the
agent’s final position and the target; (3) Oracle Success Rate
(OSR): the success rate at the closest point to the goal that the
agent has visited along the trajectory; (4) Success Rate (SR):
the percentage of predicted end-locations within 3m of the target
locations; (5) Success rate weighted by inverse Path Length (SPL):
SPL trades-off Success Rate against Path Length. Among those
metrics, SPL is the recommended primary measure of navigation
performance [31], as it considers both effectiveness and efficiency.
The other metrics are also reported as auxiliary measures.

5.4 Training Details
Following prior work [4], [32], [33], ResNet-152 CNN fea-
tures [52] are extracted for all images without fine-tuning. The
pretrained GloVe word embeddings [53] are used for initialization
and then fine-tuned during training. All the hyper-parameters are
tuned on the validation sets. We adopt the panoramic action
space [33] where the action is to choose a navigable direction
from the possible candidates. We set the maximal length of the
action path as 10. The maximum length of the instruction is set as
80 and longer instructions are truncated.

We train the matching critic with a learning rate 1e-4 and then
fix it during policy learning. Then we warm start the policy via
supervised learning loss with a learning rate 1e-4, and then switch
to RL training with a learning rate 1e-5. Self-supervised imitation
learning can be performed to further improve the policy: during
the first epoch of SIL, the loaded policy produces 10 trajectories,
of which the one with the highest intrinsic reward is stored in
the replay buffer; those saved trajectories are then utilized to fine-
tune the policy for a fixed number of iterations (the learning rate
is 1e-5). Early stopping is used for all the training and Adam
optimizer [54] is used to optimize all the parameters. To avoid
overfitting, we use an L2 weight decay of 0.0005 and a dropout
ratio of 0.5. The discounted factor γ of our cumulative reward is
0.95. The weight σ of the intrinsic reward is set as 2.

5.5 Network Architecture
5.5.1 Reasoning Navigator
The language encoder consists of an LSTM with hidden size 512
and a word embedding layer of size 300. The inner dimensions
of the three attention modules used to compute the history con-
text, the textual context, and the visual context are 256, 512,
and 256 respectively. The trajectory encoder is an LSTM with
hidden size 512. The action embedding is a concatenation of the
visual appearance feature vector of size 2048 and the orientation
feature vector of size 128 (the 4-dimensional orientation feature
[sinψ; cosψ; sinω; cosω] are tiled 32 times as used in [33]).
The action predictor is composed of three weight matrices: the
projection dimensions of Wc and Wu are both 256, and then an
output layer Wo together with a softmax layer are followed to
obtain the probabilities over the possible navigable directions.
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Test Set (VLN Challenge Leaderboard)
Model PL ↓ NE ↓ OSR ↑ SR ↑ SPL ↑

Low-level Visuomotor Action Space

Random 9.89 9.79 18.3 13.2 12
seq2seq [4] 8.13 7.85 26.6 20.4 18
RPA [32] 9.15 7.53 32.5 25.3 23

High-level Panoramic Action Space

Speaker-Follower [33] 14.82 6.62 44.0 35.0 28
+ beam search 1257.38 4.87 96.0 53.5 1

RCM 15.22 6.01 50.8 43.1 35
RCM + SIL (train) 11.97 6.12 49.5 43.0 38

RCM + SIL (unseen)1 9.48 4.21 66.8 60.5 59

TABLE 1: Comparison on the R2R test set [4]. Our RCM model
significantly outperforms the prior work, especially on SPL (the
primary metric for navigation tasks [31]). Moreover, using SIL to
imitate itself on the training set can further improve its efficiency:
the path length is shortened by 3.25m. Note that with beam search,
the agent executes K trajectories at test time and chooses the most
confident one as the ending point, which results in a super long
path and is heavily penalized by SPL.

5.5.2 Matching Critic
The matching critic consists of an attention-based trajectory en-
coder with the same architecture as the one in the navigator,
its own word embedding layer of size 300, and an attention-
based language decoder. The language decoder is composed of
an attention module (whose projection dimension is 512) over
the encoded features, an LSTM of hidden size 512, and a multi-
layer perceptron (Linear → Tanh → Linear → SoftMax) that
converts the hidden state into probabilities of all the words in
the vocabulary.

6 EXPERIMENTS AND ANALYSIS

6.1 Results on the Test Set

6.1.1 Comparison with Prior Work
We mainly compare the performance of RCM to the previous base-
line methods on the test set of the R2R dataset, which is held out
as the VLN Challenge. The results are shown in Table 1, where we
compare RCM to a set of baselines: (1) Random: randomly take a
direction to move forward at each step until five steps. (2) seq2seq:
the best-performing sequence-to-sequence model as reported in
the original dataset paper [4], which is trained with the student-
forcing method. (3) RPA: a reinforced planning-ahead model that
combines model-free and model-based reinforcement learning
for VLN [32]. (4) Speaker-Follower: a compositional Speaker-
Follower method that combines data augmentation, panoramic
action space, and beam search for VLN [33].

As can be seen in Table 1, RCM significantly outperforms the
existing methods, improving the SPL score from 28% to 35%2.
The improvement is consistently observed on the other metrics,

1. The results of using SIL to explore unseen environments are only used to
validate its effectiveness for lifelong learning, which is not directly comparable
to other models due to different learning scenarios.

2. Note that our RCM model also utilizes the panoramic action space and
augmented data in [33] for a fair comparison.

e.g., the success rate is increased by 8.1%. Moreover, using SIL to
imitate the RCM agent’s previous best behaviors on the training
set can approximate a more efficient policy, whose average path
length is reduced from 15.22m to 11.97m and which achieves the
best result (38%) on SPL. Therefore, we submit the results of
RCM + SIL (train) to the VLN Challenge, ranking first among
prior work in terms of SPL. It is worth noticing that beam search
is not practical in reality, because it needs to execute a very long
trajectory before making the decision, which is punished heavily
by the primary metric SPL. So we are mainly comparing the
results without beam search.

6.1.2 Self-Supervised Imitation Learning
As mentioned above, for a standard VLN setting, we employ SIL
on the training set to learn an efficient policy. For the lifelong
learning scenario, we test the effectiveness of SIL on exploring
unseen environments (the validation and test sets). It is noticeable
in Table 1 that SIL indeed leads to a better policy even without
knowing the target locations. SIL improves RCM by 17.5% on SR
and 21% on SPL. Similarly, the agent also learns a more efficient
policy that takes less number of steps (the average path length
is reduced from 15.22m to 9.48m) but obtains a higher success
rate. The key difference between SIL and beam search is that
SIL optimizes the policy itself by play-and-imitate while beam
search only makes a greedy selection of the rollouts of the existing
policy. But we would like to point out that due to different learning
scenarios, the results of RCM + SIL (unseen) cannot be directly
compared with other methods following the standard settings of
the VLN challenge.

6.2 Effect of Individual Components

We conduct an ablation study to illustrate the effect of each
component on both seen and unseen validation sets in Table 2.
Comparing Row 1 and Row 2, we observe the efficiency of the
learned policy by imitating the best of itself on the training set.
Then we start with the RCM model in Row 2, and successively
remove the intrinsic reward, extrinsic reward, and cross-modal
reasoning to demonstrate their importance.

Removing the intrinsic reward (Row 3), we notice that the
success rate (SR) on unseen environments drops 1.9 points while
it is almost fixed on seen environments (0.2↑). It evaluates
the alignment between instructions and trajectories, serving as
a complementary supervision besides of the feedback from the
environment, therefore it works better for the unseen environments
that require more supervision due to lack of exploration. This
also indirectly validates the importance of exploration on unseen
environments.

Furthermore, the results of Row 4 (the RCM model with
only supervised learning) validate the superiority of reinforcement
learning compared to purely supervised learning on the VLN task.
Meanwhile, since eventually the results are evaluated based on
the success rate (SR) and path length (PL), directly optimizing
the extrinsic reward signals can guarantee the stability of the
reinforcement learning and bring a big performance gain.

We then verify the strength of our cross-modal reasoning nav-
igator by comparing it (Row 4) with an attention-based sequence-
to-sequence model (Row 5) that utilizes the previous hidden state
ht−1 to attend to both the visual and textual features at decoding
time. Everything else is exactly the same except the cross-modal
attention design. Evidently, our navigator improves upon the
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Seen Validation Unseen Validation

# Model PL ↓ NE ↓ OSR ↑ SR ↑ PL ↓ NE ↓ OSR ↑ SR ↑
0 Speaker-Follower (no beam search) [33] - 3.36 73.8 66.4 - 6.62 45.0 35.5

1 RCM + SIL (train) 10.65 3.53 75.0 66.7 11.46 6.09 50.1 42.8
2 RCM 11.92 3.37 76.6 67.4 14.84 5.88 51.9 42.5
3 − intrinsic reward 12.08 3.25 77.2 67.6 15.00 6.02 50.5 40.6
4 − extrinsic reward = pure SL 11.99 3.22 76.7 66.9 14.83 6.29 46.5 37.7
5 − cross-modal reasoning 11.88 3.18 73.9 66.4 14.51 6.47 44.8 35.7

6 RCM + SIL (unseen) 10.13 2.78 79.7 73.0 9.12 4.17 69.31 61.3

TABLE 2: Ablation study on seen and unseen validation sets as reported in [55]. We report the performance of the speaker-follower
model without beam search as the baseline. Row 1-5 shows the influence of each individual component by successively removing it
from the final model. Row 6 illustrates the power of SIL on exploring unseen environments with self-supervision. Please see Section 6.2
for more detailed analysis.

(a) Seen Validation (b) Unseen Validation

Fig. 6: Visualization of the intrinsic reward on seen and unseen
validation sets.

baseline by considering history context, visually-conditioned tex-
tual context, and textually-conditioned visual context for decision
making.

In the end, we demonstrate the effectiveness of the proposed
SIL method for exploration in Row 6. Considerable performance
boosts have been obtained on both seen and unseen environments,
as the agent learns how to better execute the instructions from its
own previous experience.

6.3 Generalizability

Another observation from the experiments (e.g., see Table 2) is
that our RCM approach is much more generalizable to unseen
environments compared with the baseline. The improvements
on the seen and unseen validation sets are 0.3 and 7.1 points,
respectively. So is the SIL method, which explicitly explores the
unseen environments and tremendously reduces the success rate
performance gap between seen and unseen environments from
30.7% (Row 5) to 11.7% (Row 6).

6.4 Visualizing Intrinsic Reward

In Figure 6, we plot the histogram distributions of the intrinsic re-
wards (produced by our submitted model) on both seen and unseen
validation sets. On the one hand, the intrinsic reward is aligned
with the success rate to some extent, because the successful
examples are receiving higher averaged intrinsic rewards than the
failed ones. On the other hand, the complementary intrinsic reward
provides more fine-grained reward signals to reinforce multi-
modal grounding and improve the navigation policy learning.

6.5 Case Study
For a more intuitive view of how our model works for the VLN
task, we visualize two qualitative examples in Figure 7. Particu-
larly, we choose two examples, both with high intrinsic rewards.
In (a), the agent successfully reaches the target destination, with a
comprehensive understanding of the natural language instruction.
While in (b), the intrinsic reward is also high, which indicates
most of the agent’s actions are good, but it is also noticeable
that the agent fails to recognize the laundry room at the end of
the trajectory, which shows the importance of more precise visual
grounding in the navigation task.

6.6 ML + RL vs. MIXER
Inspired by the recent work by Tan et al. [58], instead of using
MIXER [57] where the policy model is first warmed up with
behavior cloning and then finetuned with reinforcement learning
objective, we conduct additional experiments where we train the
model with a weighted sum of both supervised learning and
reinforcement learning objectives (ML + RL) as in [56]. The
updated results are shown in Table 3. As you can see, switching
from MIXER to ML + RL, the RCM model can achieve 48.1%
Success Rate on the unseen validation set, improving by 5.6%.
The experiments also demonstrate that it is not stable to only use
the intrinsic reward to finetune the model and the mixed reward
works the best.

6.7 Error Analysis
In this section, we further analyze the negative examples and
showcase a few common errors in the vision-language navigation
task. First, a common mistake comes from the misunderstanding
of the natural language instruction. Figure 8 demonstrate such a
qualitative example, where the agent successfully perceived the
concepts “hallway”, “turn left”, and “mirror” etc., but misinter-
preted the meaning of the whole instruction. It turned left earlier
and mistakenly entered the bathroom instead of the bedroom at
Step 3.

Secondly, failing to ground objects in the visual scene can
usually result in an error. As shown in Figure 9 (a), the agent
did not recognize the “mannequins” in the end (Step 5) and
stopped at a wrong place even though it executed the instruction
pretty well. Similar in Figure 9 (b), the agent failed to detect
the “red ropes” at the beginning (Step 1) and thus took a wrong
direction which also has the “red carpet”. Note that “mannequins”
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Seen Validation Unseen Validation

Training Method PL ↓ NE ↓ OSR ↑ SR ↑ PL ↓ NE ↓ OSR ↑ SR ↑
MIXER 11.92 3.37 76.6 67.4 14.84 5.88 51.9 42.5

ML + RL 10.47 4.68 66.3 58.4 12.16 5.45 51.6 44.5
+ finetuning w Extrinsic Reward 11.41 4.32 64.4 56.6 14.69 5.35 54.7 46.7
+ finetuning w Intrinsic Reward 9.66 5.14 56.4 48.3 9.42 6.08 48.7 41.8
+ finetuning w Extrinsic & Intrinsic Rewards 11.92 4.21 66.3 57.4 14.62 5.32 56.8 48.1

TABLE 3: Updated results on seen and unseen validation sets with ML + RL objective [56] instead of MIXER [57].

Instruction: Exit the door and turn left towards the 
staircase. Walk all the way up the stairs, and stop at 
the top of the stairs.

Intrinsic	Reward:	0.53				Result:	Success	(error	=	0m)	

:

Instruction: Turn right and go down the stairs. Turn 
left and go straight until you get to the laundry room. 
Wait there.

Intrinsic	Reward:	0.54				Result:	Failure	(error	=	5.5m)	

(a) A successful case (b) A failure case

Above	steps	are	all	good,	but	it	stops	at	a	wrong	place	in	the	end.	

step	1	panorama	view

step	2	panorama	view

step	3	panorama	view

step	4	panorama	view

step	6	panorama	view

step	1	panorama	view

step	2	panorama	view

step	3	panorama	view

step	4	panorama	view

step	5	panorama	view

Fig. 7: Qualitative examples from the unseen validation set.

is an out-of-vocabulary word in the training data; besides, both
“mannequins” and ”red ropes” do not belong to the 1000 classes of
the ImageNet [59], so the visual features extracted from a pretrain
ImageNet model [52] are not able to represent them.

In Figure 10, we illustrate a long negative trajectory which our
agent produced by following a relatively complicated instruction.
In this case, the agent match “the floor is in a circle pattern”
with the visual scene, which seems to be another limitation of
the current visual recognition systems. The above examples also
suffer from the error accumulation issue as pointed out by Wang et
al. [32], where one bad decision leads to a series of bad decisions
during the navigation process. Therefore, an agent capable of
being aware of and recovering from errors is desired for future
study.

7 CONCLUSION

In this paper we present two novel approaches, RCM and SIL,
which combine the strength of reinforcement learning and self-
supervised imitation learning for the vision-language navigation
task. Experiments illustrate the effectiveness and efficiency of
our methods under both the standard testing scenario and the
lifelong learning scenario. Moreover, our methods show strong
generalizability in unseen environments. The proposed learning
frameworks are modular and model-agnostic, which allow the
components to be improved separately. We also believe that the
idea of learning more fine-grained intrinsic rewards, in addition
to the coarse external signals, is commonly applicable to various
embodied agent tasks, and the idea SIL can be generally adopted
to explore other unseen environments.
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Instruction: Through	hallway	toward	clock	on	the	wall.	Turn	left	
at	the	mirror.	Enter	bedroom.	Walk	straight	through	the	bedroom	
stopping	just	inside	of	walk-in	closest.

Intrinsic	Reward:	0.18			Result:	Failure	(error	=	13.5m)	
step	1	panorama	view

step	2	panorama	view

step	3	panorama	view

step	4	panorama	view

Fig. 8: Misunderstanding of the instruction.
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Instruction: Go	up	the	stairs	to	the	right,	turn	left	and	go	into	the	
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(a) (b)

step	1	panorama	view

step	2	panorama	view

step	3	panorama	view

step	4	panorama	view

step	5	panorama	view

step	1	panorama	view

step	2	panorama	view

step	3	panorama	view

step	4	panorama	view

step	5	panorama	view

Fig. 9: Ground errors where objects were not recognized from the visual scene.
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Fig. 10: Failure of executing a relatively complicated instruction.
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