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Abstract

We propose invariant formulations that can potentially be combined into a single system.
In particular, we describe a framework for computing invariant features which are insensitive to
rigid motion, a�ne transform, changes of parameterization and scene illumination, perspective
transform, and view point change. This is unlike most current research on image invariants
which concentrates on either geometric or illumination invariants exclusively. The formulations
are widely applicable to many popular basis representations, such as wavelets [3, 4, 24, 25],
short-time Fourier analysis [13, 35], and splines [2, 5, 37]. Exploiting formulations that examine
information about shape and color at di�erent resolution levels, the new approach is neither
strictly global nor local. It enables a quasi-localized, hierarchical shape analysis which is rarely
found in other known invariant techniques, such as global invariants. Furthermore, it does
not require estimating high-order derivatives in computing invariants (unlike local invariants),
whence is more robust. We provide results of numerous experiments on both synthetic and real
data to demonstrate the validity and 
exibility of the proposed framework.

1 Introduction

Image features and shape descriptors that capture the essential traits of an object and are insensitive

to environmental changes are ideal for recognition. The search for invariants (e.g., algebraic and

projective invariants) is a classical problem in mathematics dating back to the 18th century [7,

21, 36]. The need for invariant image descriptors has long been recognized in computer vision

[36, 47]. Invariant features form a compact, intrinsic description of an object, and can be used to

design recognition algorithms that are potentially more e�cient than, say, aspect-based approaches

[6, 8, 9]. Hence, it was even argued that object recognition is the search for invariants [47].

Image invariants can be designed to �t the needs of speci�c systems. Some require only that it

be non-discriminating to an object's geometric pose or orientation. Others may be only interested

in it being insensitive to the change of illumination. More complex systems, however, demand that

it be insensitive to a combination of several environmental changes. Clearly, the latter case is more

di�cult to achieve.

Furthermore, invariant features can be designed based on many di�erent methods. It can be

computed either globally, which requires knowledge of the shape as a whole, or locally, which are

based on local properties such as curvature and arc length. Global invariants su�er when some

parts of the image data are unavailable (i:e:; occlusion). On the other hand, most local invariants

have di�culties tolerating noise because its computation usually involves solving for high order

derivatives.
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Most current research has focused almost exclusively on single aspects of the problem, con-

centrating on a few geometric transformations, or on illumination invariants only. Sec. 2 reviews

research done in the past which re
ects this trend. Unfortunately, some formulations are di�cult,

if not impossible, to extend to handle a wider scope of transformations.

The proposed framework builds upon past research on image invariants. It allows for the design

of invariants that are insensitive to rigid motion, general a�ne transform, changes of parameter-

ization and scene illumination, perspective transform, and view point change. Furthermore, it

tolerates a relatively large degree of noise.

Exploiting formulations that examine information about shape and color at di�erent resolution

scales, the new approach is neither strictly global nor local. We feel that the proposed framework

has the following salient features:

1.) It is an invariant technique that enables a quasi-localized, hierarchical shape analysis. The

additional degree of freedom in designing a basis function|be it the scale in wavelet, the frequency

in short-time Fourier analysis, or the polynomial degree in spline (Fig. 1)|gives the technique an

additional descriptive power that is rarely found in other invariant techniques. The result is an

invariant framework which is more 
exible and tolerant to noise.

2.) Unlike most current research which concentrates exclusively on either geometric invariants or

illumination invariants, the proposed framework is very general and produces invariants insensitive

to rigid motion, a�ne transform, changes of parameterization and scene illumination, noise, and

perspective transform.

3.) The proposed framework is applicable to many basis functions. We propose to use the

framework with wavelet, short-time Fourier analysis, and spline bases, which have been widely

used in signal and speech processing, image analysis, computer vision, and computer graphics

[3, 4, 5, 24, 25, 35, 37].

4.) It ameliorates some di�culties encountered in computing global or local image invariants. We

employ basis functions of a compact support (wavelets, short-time Fourier analysis, and splines).

Although the invariant features computed capture local shape traits, it does not require estimating

high order derivatives unlike in the case of invariants strictly using local analysis. Whence, the new

method is more robust.

5.) We introduce the use of rational basis functions to facilitate the analysis of invariants under

perspective transform. Rational basis functions, such as NURBS, have been widely used in the

computer graphics community [2, 5, 10, 33, 44]. However, their usage in perspective invariants is

novel.

The remainder of this paper is organized as follows: Sec. 2 reviews related work done in the

past, Sec. 3 presents the framework of image-derived invariants. Sec. 4 presents some experimental

results, and �nally, Sec. 5 contains concluding remarks.

2 Review of Related Literature

Geometric invariants such as those insensitive to a�ne and perspective transformations have been

studied extensively. Similarly, many have focused their research on illumination invariants. A few

have attempted to combine the two.

Invariants under a�ne transformations have been studied by [20] using Hough-based methods,
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Figure 1: (a) Wavelet, (b) short-time Fourier analysis, and (c) b-spline bases showing two orthogonal
dimensions.

by [1, 30] using Fourier descriptors, and by [43] using wavelets. In these cases, a�ne invariants

were used to recognize planar objects in 3D space. Orthographic projection was used to approxi-

mate perspective projection, and the \shear" e�ect in a�ne transformations modeled perspective

distortion. Hence, the assumption is that the size of the observed object is small relative to its

distance from the camera, i:e:; a weak perspective.

Under large perspective distortion, however, a more rigorous treatment of perspective invariants

is needed. Lei [22] demonstrated how cross ratios can be used to recognize planar objects in 3D

space. In this case, \true" perspective invariants were formulated. However, objects were restricted

to polygons and required accurate identi�cation of vertex positions.

Illumination invariants have also been studied extensively in [12, 16, 15, 27, 28, 29, 40, 41, 46].

These invariants allowed for changes that may include altering the position and number of light

sources, the brightness and contrast, and even hue. Illumination invariants have been applied to

recognize textures [17], 3D objects [39], and 3D textures [19]. A physics-based approach is used

in [29], to produce illumination invariants from infrared imagery. Many, including our proposed

technique, assumes a Lambertian surface model [11] for simplicity.

There has been limited success in combining geometric and illumination invariants. For instance,

Slater and Healey [39] used local color invariants to recognize 3D objects. In this study, they derived

invariants of local color pixel distributions, which were independent of the position and orientation

of an object's surface. Recognition of the object's actual position and pose, however, was achieved

using a technique that is similar to template matching. The position was estimated by sliding a

set of circular windows over the entire image, while object distance was estimated by trying all

possible sizes of the circular window. The advantage here is that segmentation is not necessary. The

disadvantage, however, is apparent. Computing invariants for each region in the image is necessary

for recognition. Furthermore, the allowable range of the object's distance from the camera must be

pre-determined, with each window size corresponding to one possible distance measure. This comes

close to estimating geometric features by brute-force methods. Their later study [41] describes

a recognition system invariant to illumination, rotation and scale. Scale invariance was limited

to regions that were locally radially invariant, i:e:; the circular image region appears the same,

regardless of radius.

Another study [48] proposed an algorithm for classifying textures invariant to rotation and

gray-scale transformation. It used spiral resampling, subband decomposition, and Hidden Markov

Model. Two-dimensional texture images were converted to 1-D signals in a spiral fashion to achieve
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rotation invariance. This, however, meant that it was limited to recognizing regions that looked

similar, independent of its position in the image. While this might be suitable for recognizing

textures, extending it to objects in general is nontrivial.

A signi�cant feature of our proposed technique is its ability to perform hierarchical shape

analysis. This is possible because of the additional degree of freedom in designing a basis function

e:g:; the speci�cation of which scale to use in wavelets. Recent research has exploited the properties

of wavelets to formulate invariants that allow analysis to be performed at di�erent resolution levels.

Dyadic wavelets were used in [42] to decompose object contours into several components at di�erent

resolution levels. The resolution levels that were to be used for matching were pre-determined, by

selecting the levels where most of its energy was concentrated. Data was analyzed in the frequency

domain to limit the e�ect of noise, but at the same time, spatial information was preserved to

establish point correspondence. Hence, the advantages of spatial and frequency domain methods

were combined. The result was a curve representation invariant to translation, rotation, and scaling.

They used a similar technique in [43] to formulate a�ne invariants to recognize planar objects in

3D space. However, only a weak perspective was assumed.

Recently, it has become popular to use wavelets (or quadrature mirror �lters QMF's) in de-

composing and representing signals at multiple scales [38, 26]. Indeed, we use wavelets to achieve

multi-resolution analysis in our invariant formulation. However, one caveat in doing this is that

orthogonal wavelets are critically sampled. They achieve representation through scaling and trans-

lation. They are not invariant to translation, i.e., the content of wavelet subbands is unstable under

a translation of input signals. The result is that even though basis functions at a scale are translated

versions of each other, it does not imply that the transform coe�cients behave in the same way

when the input signal undergoes a simple translation. One remedy was proposed by Simoncelli,

et. al. [38], where they de�ne a shiftable transform in which the information represented within a

subband remains in the same subband as the signal is translated. Another approach is described

by Mallat [26], wherein a signal uses the local extreme in its wavelet transform domain to make it

invariant to time shifts. Properties of the wavelet transform are discussed in [45].

A comprehensive survey on the subject of invariants in general is presented by [36]. A review

of geometric invariants is presented in [31, 47]. Other approaches to invariants and recognition are

discussed in [34, 31, 23]. Numerous papers on invariance, with emphasis in their applications in

computer vision, can be found in [32].

3 Technical Rationale

A word on the notational convention: matrices and vectors will be represented by bold-face charac-

ters, such asM and V, while scalar quantities by plain-face characters such as S. 2D quantities will

be in small letters while 3D quantities in capital letters. Hence, a 3D coordinate will be denoted

as (X;Y;Z) while a 2D coordinate as (x; y), and coordinates (bold for vector quantities) of a 2D

curve (small letter for 2D quantities) will be denoted by c.

We will illustrate the mathematical frameworks using speci�c scenarios where invariants for

curves are sought. For shape invariants, these directly apply to the silhouette (contour) of imaged

objects. For illumination invariants, the same technique applies by linearizing internal regions by

a characteristic sampling curve and computing invariant color signatures along the characteristic
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curve. In both cases, the invariant signatures produced can be examined at di�erent resolution

scales, making the invariant features both 
exible and noise tolerant. The particular basis functions

we will use in the illustration are the wavelet bases and spline functions. However, the same

framework can be easily extended to other bases such as the short-time Fourier analysis, and for

3D surfaces.

We �rst examine a proper parameterization under a�ne transformations. We then consider

variation in an object's image induced by rigid motion, general a�ne transform, changes in pa-

rameterization and scene illumination, and perspective projection. In each case, we give examples

of how invariants can be designed based on simple basis expansion. It is assumed that the object

contours have been properly extracted (i:e:; the background can easily be distinguished from the

object.) Segmentation is a di�cult problem in itself, and is beyond the scope of this study.

Each formulation can be used alone, or in conjunction with others. For example, the formula-

tion for perspective invariants can be used solely, or it may be combined with the formulation for

illumination invariants, so that it becomes insensitive to both perspective and illumination trans-

formations. Furthermore, invariant signatures can be examined separately, at di�erent resolution

levels. This hierarchical approach makes the invariant features both 
exible and noise tolerant.

A�ne Invariant Parameterization When de�ning parameterized curves c(t) = [x(t); y(t)]T ,

most prefer to use the intrinsic arc length parameter, t, because of its simplicity. Intrinsic arc length

transforms linearly under any rigid-body transformation. Translation and rotation do not a�ect the

arc length, and scaling only scales the parameter uniformly. However, under a�ne transformation,

the arc length parameter is nonlinearly transformed [1]. A more suitable parameterization is thus

required. We describe two parameterizations which are linear under an a�ne transformation.

The �rst, called a�ne arc length, is de�ned [14] as:

� =

Z b

a

3
p
_x�y � �x _y dt

where _x; _y are the �rst and �x; �y are the second derivatives with respect to any parameter t (possibly

the arc length), and (a; b) is the path along a segment of the curve.

The a�ne arc length parameter is proportional to the curvature of the contour. Hence, on

high (low) curvature segments of the curve, the parameter covers less (more) distance, producing

a shorter (longer) projected segment. This parameter transforms linearly under a general a�ne

transform. It can easily be made an absolute invariant by normalizing it with respect to the the

a�ne arc length of the entire curve.

Because the parameterization involves second derivatives, it becomes susceptible to noise ef-

fects. If the points along the curve is discretized (say into pixels), the curve becomes a polyline (or

polygon if enclosed). The e�ect is a parameterization which is zero along the sides of the polyline,

and in�nite at the vertices. To avoid this, [1] using a �rst order form, de�ned a second parameter

which some later called the enclosed area parameter:

� =
1

2

Z b

a
jx _y � y _xj dt:

The drawback here is that this parameter is not invariant to translation, and requires a closed

contour. This can easily be remedied by moving the object's coordinate system to its centroid.

The curve can be forced to close by drawing a line between the �rst and last vertices of the curve.
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One can interpret the enclosed area parameter as the area of the triangular region enclosed by

the two line segments from the centroid to two points a and b on the contour, respectively. Since

the a�ne transform linearly changes area, a parameterization that sweeps a constant area will be

an invariant of weight 1 [36, 47]. By normalizing this parameter with respect to the total enclosed

area of the contour, it too can be made completely invariant to a�ne transform.

Of course, these parameters assume knowledge of a one-point correspondence (i:e:; the starting

point), and knowledge of the direction of the contour (i:e:; clockwise or counter-clockwise). It can

be easily shown that the invariant signatures of two contours, di�ering only by the starting point,

is just a phase-shifted version of each other. Similarly, two contours parameterized in opposing

directions is just a mirror image of each other. Hence, a match can be chosen that maximizes the

cross-correlation between two signatures.

Allowing an arbitrary change of origin and traversal direction, together with the use of an a�ne

invariant parameterization, implies that no point correspondence is required, when computing a�ne

invariants.

In the case of large perspective distortion, however, these a�ne invariant parameterizations

will not be able to produce exact point correspondence. In fact, for the enclosed area parameter,

the centroid of one contour may not accurately correspond to the centroid of the other contour.

However, our experience indicated that these a�ne invariant parameters still provide a good initial

estimate for �nding the correct point correspondence. In the perspective transform section, we

provide a method for adjusting the position of each corresponding point to account for perspective

foreshortening. To increase its accuracy, the centroid may also be adjusted over the local vicinity

iteratively, and choosing the one which maximizes perspective invariance. Furthermore, geometrical

cues, such as points of discontinuity (i:e:; sharp turns), can be used as a rough guide for accurate

point correspondence.

Rigid Motion and A�ne Transform Consider a 2D curve, where t denotes a parameterization

which is invariant under a�ne transform (as described above),

c(t) =

"
x(t)
y(t)

#

and its expansion onto the wavelet basis  a;b =
1p
a
g( t�b

a
) (where g(t) is the mother wavelet [4]) as

ua;b =

Z
c a;bdt :

If the curve is allowed a general a�ne transform with the transformed curve denoted by:

c0(t) =mc(t0) + t =mc(�t+ t0) + t =m

"
x(�t+ t0)
y(�t+ t0)

#
+ t ; (1)

where m is any nonsingular 2 � 2 matrix, t represents the translational motion, t0 represents a

change of the origin in traversal, and � represents the possibility of traversing the curve either
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counterclockwise or clockwise 1. It follows that:

u0a;b =
R
c0 a;bdt

=
R
(mc(�t+ t0) + t) a;bdt =

R
mc(�t+ t0) a;bdt+

R
t a;bdt

= m
R
c(�t+ t0) a;bdt+ t

R
 a;bdt =

R
mc(t0) 1p

a
g(�(t

0�t0)�b
a

)dt0 +
R
t a;bdt

= m
R
c(t0) 1p

a
g( t

0�(�b+t0)
a

)dt0 = m
R
c(t0) (t0)a;�b+t0dt

0

= mua;�b+t0 :

(2)

Note that we use the wavelet property
R
 a;bdt = 0 to simplify the second term in Eq. 2.

Hence, the transformed curve can be generated using the transformed wavelet coe�cients and the

same wavelet bases, instead of transforming the curve point-by-point. This is an observation which

is commonly made in the computer graphics community about curves generated by the spline

functions and associated control vertices [2, 5, 37]. In that sense, ua;b's function the same way as

the control vertices in a spline curve.

If m represents a rotation (or the a�ne transform is a rigid motion of a translation plus a

rotation), it is easily seen that invariant features can be derived using the ratio expression���u0a;b������u0c;d
��� =

jmua;�b+t0 j
jmuc;�d+t0 j

=
jua;�b+t0 j
juc;�d+t0 j

: (3)

The resulting wavelet coe�cients u0a;b and ua;�b+t0 are functions of two variables: the scale a

and the displacement b and �b + t0. If we hold the scale a constant, by taking the same number

of sample points in each curve, we can construct expressions based on correlation coe�cients to

cancel out the e�ect of a di�erent traversal starting point (t0) and direction (�t). Therefore, no

point correspondence information is required in the analysis.

Let us de�ne

f(x) =
jua;xj

jua;x+x0 j
(4)

and

f 0(x) =

���u0a;x������u0a;x+x0
��� =

jmua;�x+t0 j���mua;�(x+x0)+t0
��� =

jua;�x+t0 j���ua;�(x+x0)+t0
��� ; (5)

where x0 represents a constant value separating two indices. Thus, f(x) and f 0(x) represent the
signatures of the original curve and the transformed curve, respectively. Then we have two cases:

Case 1: The direction of traversal is the same for both contours.

f 0(x) =
jua;x+t0 j

jua;x+x0+t0 j
= f(x+ t0)

We can compute the correlation coe�cient as

Rf(x)f 0(x)(�) =

R
f(x)f 0(x+ �)dx

kfk � kf 0k
=

R
f(x)f(x+ � + t0)dx

kfk � kf 0k

1In the implementation, the parameter is computed in a modular manner over a closed contour.
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which is maximized when � = �t0.

Case 2: The direction of traversal is reversed.

f 0(x) =
jua;�x+t0 j

jua;�x�x0+t0 j
=

1

f(�x� x0 + t0)

We can compute the correlation coe�cient as

Rf(x) 1

f 0(�x)

(�) =

R
f(x) 1

f 0(�x+�)dx

kfk � k 1

f 0
k

=

R
f(x)f(x� � � x0 + t0)dx

kfk � k 1

f 0
k

which is maximized when � = t0 � x0.

Hence, we take the larger of the two R(�)'s to obtain the invariant measure:

I(f; f 0) = max�;� 0fRf(x)f 0(x)(�); Rf(x) 1

f 0(�x)

(� 0)g : (6)

Other invariant features based on ratios may still be derived where the same technique can be

employed to measure similarity, making it independent of the parameterization used. For simplicity,

we only show the invariant expressions from this point on.

If the second term in Eq. 2 is not zero, but is a constant (e.g., for spline functions, the area under

a spline basis integrates to a constant 1 for a uniformly spaced knot vector [37]), then invariant

expressions can still be derived, albeit in a slightly more complicated form:��u0
a;b
�u0

c;d

����u0
e;f

�u0
g;h

�� =
j(mua;�b+t0+v)�(muc;�d+t0+v)j
j(mue;�f+t0+v)�(mug;�h+t0+v)j

=
jm(ua;�b+t0�uc;�d+t0)j
jm(ue;�f+t0�ug;�h+t0)j

=
j(ua;�b+t0�uc;�d+t0)j
j(ue;�f+t0�ug;�h+t0 )j

;

where v denotes the constant second term in Eq. 2.

For invariants under general a�ne transform, many forms using ratios, cross ratios, and ratios

of ratios have already been derived [36, 47]. For example, it is known that the cross ratio of four

collinear points are invariant under the a�ne transform, and the area of the triangle formed by any

three ua;b changes linearly in an a�ne transform (an invariant of weight 1 [36, 47]). So we have:

����� u
0
a;b u0c;d u0e;f
1 1 1

����� =
�������
m11 m12 0
m21 m22 0
0 0 1

�������
����� ua;�b+t0 uc;�d+t0 ue;�f+t0

1 1 1

����� :
Hence, we have the following invariants 2 :����� u

0
a;b u0c;d u0e;f
1 1 1

���������� u
0
g;h u0i;j u0k;l
1 1 1

�����
=

����� ua;�b+t0 uc;�d+t0 ue;�f+t0
1 1 1

���������� ug;�h+t0 ui;�j+t0 uk;�l+t0
1 1 1

�����
: (7)

2Note that there are many valid expressions for a�ne invariants. Some may require a smaller number of coe�cients

than that in Eq. 7. For example, when wavelet bases are used where
R
 a;bdt = 0, Eq. 7 can be simpli�ed as�� u0a;b u0c;d

���� u0e;f u0g;h
�� =

�� ua;�b+t0 uc;�d+t0

���� ue;�f+t0 ug;�h+t0

�� ;
where only four coe�cients are needed.
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Perspective Transform The a�ne invariant derived above assumes a planar curve under par-

allel projection. Distortion caused by perspective foreshortening was not addressed. Allowing

perspective transform with an arbitrary view point and large perspective distortion makes the

problem much harder as the projection is a non-linear process, involving a division in computing

2D coordinates. Extending the curve to 3D makes it even more di�cult.

A simpli�ed model is possible, using a parallel or quasi-perspective model. In this case, the size

of the object is assumed to be much smaller than the average distance of the object to the camera.

Then the projection can be linearized by replacing the division by varying Z coordinates with a

multiplication of a constant magni�cation factor. In essence this reduces the problem of perspective

invariants to one of a�ne invariants, which is linear. However, such simpli�cation holds only to a

certain degree under a small perspective distortion.

Fortunately, a more rigorous treatment of perspective invariants is possible. The projection

process can be linearized using a tool which is well-established in computer graphics, the rational

form of a basis function [2, 5, 10, 33, 44]. The most famous of such an expression is probably

NURBS (Non-Uniform Rational B-Spline), which was adopted as a standard for IGES (Initial

Graphics Exchange Speci�cation) [18]. By using a rational basis form, we will show that perspective

invariance can be veri�ed e�ciently and in a linear manner.

We will use NURBS for illustration. In a nutshell, a b-spline function is a polynomial of a �nite

support. Non-rational b-spline functions of order k (or a polynomial of degree k� 1) are generated

by the Cox-deBoor recursion formulas [37]:

Ni;1(t) =

(
1 if xi � t < xi+1
0 otherwise

; and

Ni;k(t) =
(t� xi)Ni;k�1(t)
xi+k�1 � xi

+
(xi+k � t)Ni+1;k�1(t)

xi+k � xi+1
:

The values of xi are elements of a knot vector satisfying the relations xi � xi+1. The rational form

of a b-spline function in 2D (3D) is the projection of a non-rational b-spline function in 3D (4D).

Speci�cally, let

C(t) =

2
64 X(t)
Y (t)
Z(t)

3
75 =

X
i

PiNi;k(t) =
X
i

2
64 Xi

Yi
Zi

3
75Ni;k(t)

represent a non-rational curve in 3D with Pi's as its control vertices. Its projection in 2D will be:

c(t) =

"
x(t)
y(t)

#
=

2
4 X(t)

Z(t)
Y (t)

Z(t)

3
5 =

P
i piRi;k(t)

=
P

i

"
xi
yi

#
Ri;k(t) =

P
i

"
Xi

Zi
Yi
Zi

#
Ri;k(t) ; where

(8)

Ri;k(t) =
ZiNi;k(t)P
j ZjNj;k(t)

; (9)

and pi's represent the projected control vertices in 2D. We assume the focal length of the camera

is 1.

To illustrate, Fig. 2 shows the rational b-spline bases of order four (third-degree polynomial)

for an open knot vector [X] = [000012222] [37]. By varying the Z coordinates of the associated
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Figure 2: Various rational b-spline bases of order 4 with an open knot vector [X] = [000012222]
and �ve control vertices. The middle control vertex was placed at di�erent depths ranging from
0.5, 1, 5, to 20 from left to right. All others are at a depth of 1.

control vertices, the shape of the bases adapts accordingly. This adaptation correctly accounts for

the perspective distortion in image formation, and a control vertex can exert greater (or smaller)

in
uence on the shape and traversal speed of the image curve given the particular perspective.

When all the Z's are equal, the rational bases reduce to the non-rational bases as expected in

Eq. 9.

Fig. 3 shows sample b-spline curves using both periodical and open knot vectors [37]. Column

(a) in Fig. 3 shows curves generated using non-rational spline bases in space. Columns (b) and

(c) show the projections of the 3D curves using two di�erent methods: One is generating points

along the 3D curves in Fig. 3(a), then projecting them one by one. The other is projecting only

the control vertices and then using the rational spline bases to interpolate them in 2D. The two

methods produce identical results in Fig. 3.

We can now formulate the problem of �nding perspective invariants as a curve �tting problem.

Intuitively, if a 2D curve results from the projection of a 3D curve, then it should be possible to

interpolate the observed 2D curve using the projected control vertices and the rational spline bases

and obtain a good �t. If that is not the case, then the curve probably does not come from the

projection of the particular 3D curve. Hence, the error in curve �tting is a measure of invariance.

(In the ideal case, the error should be zero.)

In more details, if we let the \canonical" view of a general, 3D space curve be represented as in

Eq. 3, then for all other views we have:

P0

i =

�
X0

i
Y 0

i
Z0

i

�
=MPi +T =

�
r11 r12 r13
r21 r22 r23
r31 r32 r33

��
Xi

Yi
Zi

�
+

�
Tx
Ty
Tz

�
=

�
r11Xi + r12Yi + r13Zi + Tx
r21Xi + r22Yi + r23Zi + Ty
r31Xi + r32Yi + r33Zi + Tz

�
; (10)

where M and T represent the rotation and translation in between the two views, respectively.
Hence perspective projection gives

p0i =

2
4 X0

i

Z0
i

Y 0
i

Z0
i

3
5 =

2
4 r11Xi+r12Yi+r13Zi+Tx

r31Xi+r32Yi+r33Zi+Tz

r21Xi+r22Yi+r23Zi+Ty
r31Xi+r32Yi+r33Zi+Tz

3
5 (11)

R0
i;k =

(r31Xi + r32Yi + r33Zi + Tz)Ni;k(t)P
j(r31Xj + r32Yj + r33Zj + Tz)Nj;k(t)

: (12)
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Figure 3: (a) 3D b-spline curves generated using non-rational bases, (b) 2D b-spline curves gener-
ated by projecting points on the 3D curves one by one, and (c) 2D b-spline curves generated by
projecting the control vertices and interpolating them with the rational bases in 2D. \o" marks a
control vertex location.

Image invariant de�ned by the goodness of �tting is:

I =

Z
t
(d(t)�

X
i

p0iR
0
i;k(t))

2 ; (13)

where d(t) denotes the observed image curve. There are a total of twelve unknowns in Eqs. 11 and
12, nine for rotation and three for translation. The number of rotation unknowns can be reduced
to three which specify the direction of the rotation axis and the rotation angle around the axis.
However, computing such an invariant can still be very expensive in a general scenario where the
camera undergoes an arbitrary motion and a search in a six dimensional space is required.

By using rational bases, it is possible to drastically reduces the search e�ort in verifying the

perspective invariance in Eq. 13 while maintaining the linearity of the formulation. Observe that
in Eq. 8 the shape of a 2D curve is determined by the projected control vertices and the rational

spline bases, both of which are unknown. To estimate both the locations of the projected control
vertices and the rational spline bases can be a highly nonlinear process. Instead, our approach

minimizes I by a two-step gradient descent which maintains the linearity of the whole formulation.
The algorithm comprises the following two steps:

STEP 0: Initialization Speci�cation of the rational bases requires knowledge of the depth of
the control vertices Zi, which is not known. As a �rst approximation we can assume that all Zi's are
equal. This is equivalent to approximating the rational bases using the corresponding non-rational

bases, which do not require knowledge of the object depth. Using the non-rational bases in place
of the rational bases in Eq. 8, we estimate the 2D control vertex positions.

Furthermore, a�ne invariant parameters can be used as an initial estimate for point corre-
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spondence. Since a�ne transformations assume a weak perspective model, we will not obtain
exact correspondence. However, the points will be adjusted in the succeeding steps to account for
perspective foreshortening.

STEP 1: Iterative Update Observe from Eq. 13

dI =
X
i

(
@I

@pi
dpi +

@I

@Ri;k

dRi;k) ;

and we drop the prime symbol to simplify the notation from now on. This suggests that minimiza-
tion can be broken into two stages: that of updating 2D control vertex positions (dpi) and that of
updating rational bases (dRi;k).

Updating rational bases: Continuing from Step 0, the estimated 2D control vertex positions
are used to constrain the unknown rotation and translation parameters using Eq. 11. A linear

formulation results using at least six 2D control vertices estimated from Eq. 8. Note that even
though there are twelve motion parameters, one of them contributes to a scale change and cannot
be determined uniquely. Furthermore, in the case where the 3D curve is planar (or Zi = 0 in
Eq. 10), four 2D control vertex positions will su�ce. The motion parameters allow Ri;k's to be
updated using Eq. 12.

Updating 2D control vertices: The updated Ri;k's allow a better prediction of the appearance
of the curve in images, and any discrepancy in the predicted and actual appearance of the curve
is used in a gradient search to further verify the consistency. The prediction involves updating the
parameterization t and the 2D control vertex positions pi (using Eq. 13).

The updated control vertex positions are then used to estimate the unknown motion parameters
through Eq. 11. Hence a recursive process results to re�ne the positions of the 2D control vertices,
the shapes of the rational spline functions, the parameterization, and the 3D motion parameters,
until a convergence is achieved. The procedure is summarized in the following pseudo-code program:

� Step 0 Initialize

� the iteration number to 0, or n � 0

� Z
(0)

i  � 1 and R
(0)

i;k  � Ni;k for all i

� r
(0)

i;j  � 0 and T
(0)

k  � 0, for i = 1; 2; 3; j = 1; 2; 3, and k = x; y:

� Solve

"
x
(0)

l

y
(0)

l

#
using p(t) and the current estimate of R

(0)

i;k based on Eq. 8.

� Step 1 Repeat

Step 1.a Use

"
x
(n)

l

y
(n)

l

#
to estimate r

(n+1)

i;j and T
(n+1)

k , i = 1; 2; 3; j = 1; 2; 3, and k = x; y, based on

Eq. 11.

Step 1.b Update R
(n+1)

i;k using Eq. 12.

Step 1.c Use r
(n+1)

i;j and T
(n+1)

k , i = 1; 2; 3; j = 1; 2; 3, and k = x; y, and R
(n+1)

i;k to compute p
(n+1)

i and

c(n+1)(t) based on Eqs. 8 and 11.

Step 1.d Update the parameterization of the predicted curve for a better correspondence with that of
the observed image curve.

Step 1.e Compute the deviation between d(t) and c(n+1)(t) to generate a gradient direction �p
(n+1)

i for
updating 2D control vertex positions.

12



Step 1.f Update 2D control vertices p
(n+1)

i by p
(n+1)0

i = p
(n+1)

i � ��p
(n+1)

i where � is the update rate.

Step 1.g If jr
(n+1)

i;j � r
(n)

i;j j and jT
(n+1)

k � T
(n)

k j, i = 1; 2; 3; j = 1; 2; 3, and k = x; y, are smaller than a
preset threshold, then stop. Otherwise n � n+ 1, go back to Step 1.

For Step 0 above, assume that J points, d(tj) = [x(tj); y(tj)]
T ; j = 0 � � � J � 1 are sampled

from the image curve. Then it is readily shown that pi can be estimated by:2
66664
R
(0)

0;k(t0) R
(0)

1;k(t0) � � � R
(0)

I�1;k(t0)

R
(0)

0;k(t1) R
(0)

1;k(t1) � � � R
(0)

I�1;k(t1)
� � � � � � � � � � � �

R
(0)

0;k(tJ�1) R
(0)

1;k(tJ�1) � � � R
(0)

I�1;k(tJ�1)

3
77775

2
66664
x
(0)

0
y
(0)

0

x
(0)

1
y
(0)

1

� � � � � �

x
(0)

I�1 y
(0)

I�1

3
77775 =

2
6664
x(t0) y(t0)
x(t1) y(t1)
� � � � � �

x(tJ�1) y(tJ�1)

3
7775 ; (14)

where tj is approximated by an a�ne invariant parameter.

For Step 1.a, one can easily show that2
6666666666664

X0 Y0 Z0 0 0 0
0 0 0 X0 Y0 Z0
X1 Y1 Z1 0 0 0
0 0 0 X1 Y1 Z1
� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

XI�1 YI�1 ZI�1 0 0 0
0 0 0 XI�1 YI�1 ZI�1

�X0x
(n)
0

�Y0x
(n)
0

�Z0x
(n)
0

1 0

�X0y
(n)
0

�Y0y
(n)
0

�Z0y
(n)
0

0 1

�X1x
(n)
1

�Y1x
(n)
1

�Z1x
(n)
1

1 0

�X1y
(n)
1

�Y1y
(n)
1

�Z1y
(n)
1

0 1
� � � � � � � � �

� � � � � � � � �

�XI�1x
(n)

I�1 �YI�1x
(n)

I�1 �ZI�1x
(n)

I�1 1 0

�XI�1y
(n)

I�1 �YI�1y
(n)

I�1 �ZI�1y
(n)

I�1 0 1

3
777777777777775

2
66666666666666666664

r11
r12
r13
r21
r22
r23
r31
r32
r33
Tx
Ty

3
77777777777777777775

=

2
666666666666664

x
(n)
0

y
(n)
0

x
(n)
1

y
(n)
1

� � �

� � �

x
(n)

I�1
y
(n)

I�1

3
777777777777775

; (15)

by normalizing Tz to 1. The above equations are linear and can be easily solved.

For Step 1.d, once the Z coordinate of a control point is updated, the shape of the associated
rational basis function changes accordingly (See Fig. 2). Such a change a�ects the \speed" of
traversal of the curve in the image plane (i.e., even when the curve is traversed with a uniform
speed in space, it may sweep across di�erent image distances over unit time due to perspective
distortion). To establish a better correspondence of the predicted and the observed curves, we
update the predicted curve positions at tj; j = 1; � � � ; J � 1, which are speci�ed by the data points
on the observed image curve. Or

tj =

Pj
k=1 jd(tk)� d(tk�1)jPJ�1
k=1 jd(tk)� d(tk�1)j

=

R t
�=0 j

P
i pi

_Ri;k(�)jd�R tmax

�=0 j
P

i pi
_Ri;k(�)jd�

where tmax is the maximum parameter range used in de�ning the curve. We solve for t in the above
equation and generate the corresponding point on the predicted curve at tj.
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For Step 1.e and Step 1.f above, de�ne

E =
X
j

(
X
i

piRi;k(tj)� d(tj))
2 :

By holding Ri;k constant, we have:

�p =

2
6664

�p0
�p1
� � �

�pI�1

3
7775 =

2
66664

@E
@p0
@E
@p1

� � �
@E

@pI�1

3
77775 =

2
6664

�
P

j(
P

i piRi;k(tj)� d(tj))R1;k(tj)

�
P

j(
P

i piRi;k(tj)� d(tj))R2;k(tj)

� � �

�
P

j(
P

i piRi;k(tj)� d(tj))RI�1;k(tj)

3
7775

which can be readily computed from the current estimate of pi and Ri;k.

Variation in Lighting Condition So far, all the discussions deal with changes in the geometry,
or the shape, of a curve. Another possible variation in the appearance is due to di�erent lighting:
By this we mean that objects can be illuminated by light sources of di�erent numbers and types.
To simplify the notation, in the following derivation we will consider three spectral bands of red,
green, and blue. Generalizing to an n-band illumination model is straightforward.

Assuming two 2D images di�er only by scene illumination (i:e:; no geometrical changes), we
can linearize interesting (or important) 2D regions by well-known techniques. We can then treat
the problem as an illumination invariance problem for points along a characteristic curve. In fact,
the image regions can be linearized in many di�erent ways, each producing its own signature. The
signature for the whole region will then be just a concatenation of all the individual signatures.

Alternatively, we can include the a�ne or perspective case, to produce an invariant which is
insensitive to both geometric (a�ne or perspective) and illumination changes. By solving for the
deformation and translation parameters from the a�ne or perspective invariants (Eq. 15), we can
reconstruct the same transformation for any point or curve between two images. Hence, any char-
acteristic curve constructed from one image can be matched, point by point, to its corresponding
characteristic curve in the transformed image. Illumination invariants for curves can then be ap-
plied, to verify if the two image regions, as the de�ned by the characteristic curves, are the same.
The choice of the length and shape of the characteristic curve is arbitrary, and may be di�erent
for each model in a database. Normally, characteristic curves should be chosen that highlight par-
ticular regions of interest in the image, while avoiding those regions that could be ambiguous. For
example, in recognizing airplanes, it would be ideal for the characteristic curve to pass through any
unique pattern imprinted in the body of the airplane that would distinguish it from others, such
as a logo, a 
ag, a name, or maybe the color pattern in which the plane was painted.

Let L(t) denote the perceived image color distribution along a curve, we have:

L(t) =

2
64 r(t)
g(t)
b(t)

3
75 =

Z 2
64 f r(�)
fg(�)
f b(�)

3
75 s(�; t)d� ;

where � denotes the wavelength, and f r(�) the sensitivity of the red sensor (similar interpretations
for the green and blue channels). Based on a Lambertian model [11], s(�; t) is

s(�; t) = (
nX
i=1

li(�)N �Ni + ai(�))�(�; t) ;
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where n is the number of light sources used to illuminate the scene, li(�) the source luminance
spectral distribution, N the surface normal, Ni the incident direction for source i, �(�; t) the
surface re
ectivity, and ai the ambient light luminance.

When the lighting condition changes, because lights are moved, turned on, or turned o�, or the
ambient light intensity changes, we have

s0(�; t) = (
Pm

j l
0
j(�)N �N0

j + aj(�))�(�;�t+ t0) ;

=

Pm

j
l0
j
(�)N�N0

j
+a0

j
(�)Pn

i
li(�)N�Ni+ai(�)

[(
Pn

i li(�)N �Ni + ai(�))�(�;�t + t0)]

= c(�)s(�;�t+ t0) ;

where

c(�) =

Pm

j
l0
j
(�)N�N0

j
+a0

j
(�)Pn

i
li(�)N�Ni+ai(�)

capture the changes in the two di�erent lighting conditions. As with Eq. 1, t0 represents a change of
the origin in traversal, and � represents the possibility of traversing the curve either counterclock-
wise or clockwise. Following a path similar to that adopted by several researchers [17, 27, 28, 39],
we assume that re
ected radiance functions are modeled as a linear combination of a small number
of basis functions sk(�), whence,

s(�; t) =
X
k

�k(t)sk(�) ;

where sk(�) denotes the k-th basis function for representing the re
ected radiance properties, and
�k(t) is the space varying expansion coe�cients. Then using an analysis which is similar to that
employed in the a�ne case, we have

ua;b =
R
L a;bdt

=
R
t

R
�

2
64 f r(�)
fg(�)
f b(�)

3
75 s(�; t)d� a;bdt

=
R
t

R
�

2
64 f r(�)
fg(�)
f b(�)

3
75 (Pk �k(t)sk(�))d� a;bdt

=
P

k(
R
�

2
64 f r(�)sk(�)
fg(�)sk(�)
f b(�)sk(�)

3
75 d�)(Rt �k(t) a;bdt)

=
P

k

2
64 Lr

k

L
g
k

Lb
k

3
75 vka;b

=

2
64 Lr

1
Lr
2

� � � Lr
k

L
g
1

L
g
2

� � � L
g
k

Lb
1

Lb
2

� � � Lb
k

3
75
2
6664
v1a;b
v2a;b
� � �

vka;b

3
7775

= Lrgbva;b ;
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where 2
64 Lr

k

L
g
k

Lb
k

3
75 =

R
�

2
64 f r(�)sk(�)
fg(�)sk(�)
f b(�)sk(�)

3
75 d�

vka;b =
R
t �k(t) a;bdt :

Similarly,

u0a;b =
R
L0 a;bdt

=
R
t

R
�

2
64 f r(�)
fg(�)
f b(�)

3
75 [c(�)s(�;�t+ t0)] d� a;bdt

=
R
t

R
�

2
64 f r(�)
fg(�)
f b(�)

3
75 [c(�)(Pk �k(�t+ t0)sk(�))] d� a;bdt

=
P

k

2
64(R�

2
64 c(�)f r(�)sk(�)
c(�)fg(�)sk(�)
c(�)f b(�)sk(�)

3
75 d�)(Rt �k(�t+ t0) a;bdt)

3
75

=
P

k

2
64(R�

2
64 c(�)f r(�)sk(�)
c(�)fg(�)sk(�)
c(�)f b(�)sk(�)

3
75 d�)(Rt �k(t0) 1p

a
g(�(t

0�t0)�b
a

)dt0)

3
75

=
P

k

2
64(R�

2
64 c(�)f r(�)sk(�)
c(�)fg(�)sk(�)
c(�)f b(�)sk(�)

3
75 d�)(Rt �k(t0) 1p

a
g( t

0�(�b+t0)
a

)dt0)

3
75

=
P

k

2
64(R�

2
64 c(�)f r(�)sk(�)
c(�)fg(�)sk(�)
c(�)f b(�)sk(�)

3
75 d�)(Rt �k(t0) (t0)a;�b+t0dt0)

3
75

=
P

k

2
64
Lr0

k

L
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k

Lb0

k

3
75 vka;�b+t0

=

2
64
Lr0

1
Lr0

2
� � � Lr0

k

L
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1
L
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2
� � � L

g0

k
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1
Lb0

2
� � � Lb0

k

3
75
2
6664
v1a;�b+t0
v2a;�b+t0
� � �

vka;�b+t0

3
7775

= L0rgbva;�b+t0 :

Then it is easily shown that the following expression is invariant under di�erent lighting conditions
(similar to Eq. 7):����hu0a1;b1u0a2;b2 � � � u0ak;bk

iT h
u0a1;b1u

0
a2;b2

� � � u0ak;bk
i��������hu0c1;d1u0c2;d2 � � � u0ck;dk

iT h
u0c1;d1u

0
c2;d2

� � � u0ck;dk
i����
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=

���[va1;�b1+t0va2;�b2+t0 ��� vak;�bk+t0 ]TL0TrgbL0rgb[va1;�b1+t0va2;�b2+t0 ��� vak;�bk+t0 ]������[vc1;�d1+t0vc2;�d2+t0 ��� vck;�dk+t0 ]TL0TrgbL0rgb[vc1;�d1+t0vc2;�d2+t0 ��� vck;�dk+t0 ]���
=

���[va1;�b1+t0va2;�b2+t0 ��� vak;�bk+t0 ]TLTrgbLrgb[va1;�b1+t0va2;�b2+t0 ��� vak;�bk+t0 ]������[vc1;�d1+t0vc2;�d2+t0 ��� vck;�dk+t0 ]TLTrgbLrgb[vc1;�d1+t0vc2;�d2+t0 ��� vck;�dk+t0 ]���
=

���[ua1;�b1+t0ua2;�b2+t0 ��� uak;�bk+t0 ]T [ua1;�b1+t0ua2;�b2+t0 ��� uak;�bk+t0 ]������[uc1;�d1+t0uc2;�d2+t0 ��� uck;�dk+t0 ]T [uc1;�d1+t0uc2;�d2+t0 ��� uck;�dk+t0 ]��� :
(16)

This derivation is in spirit similar to that of [15, 17]. By using a ratio expression, we obtain a
much simpler and computationally e�cient form of invariants which does not require computing
the color correlation matrix and the singular value decomposition of such a matrix [15, 17].

We can follow the same technique used for Eq. 3 in order to measure similarity under di�erent
parameterizations (Eqs. 4-refeq-invmeasure).

4 Experimental Results

We will �rst show the results of applying a�ne, perspective and illumination invariant formulations
individually for both real and synthetic images. Then we will put all these invariant formulations
together in a real recognition experiments.

General A�ne Transform with Change of Parameterization Fig. 4 shows (a) a star pat-
tern on a book cover and (b) the same pattern after undergoing an a�ne transformation (simulated
by a rigid-body transform in 3D - a rotation and translation of the book cover). The extracted
patterns are shown in Fig. 4(c) as solid (original pattern) and dashed lines (transformed pattern).
We use the second-order b-spline function of a uniform knot vector [37] in the basis expansion.
Fig. 4(d) shows the invariant signatures (based on Eq. 7) of the original (solid) and transformed
(dashed) curves along the contours. The invariant signatures were aligned by maximizing the
cross-correlation. As can be seen from the �gure, the invariant signatures are quite consistent.

Figs. 5(a) and (b) show a shirt with a dolphin imprint and a stretched and deformed version of
the same imprint. Fig. 4(c) shows the extracted patterns. The invariant signatures are plotted in
4(d), and, again, they are quite consistent.

Perspective Transform Our formulation, though recursive in nature, is nonetheless linear and
achieves fast convergence in our preliminary experiments. Initially, a good search point was es-
tablished by using non-rational spline bases to approximate rational spline bases. Subsequently,
the number of iterations needed to verify the invariance was small (about 3 to 4) even for large
perspective distortion. Furthermore, by using rational spline functions and partitioning the search
in two stages, we maintain the linearity of the whole formulation.

Fig. 6 depicts some preliminary results on synthetic images. Both the star and knot shapes
have a canonical head-on view. A 2D perspective image was generated by applying an arbitrary
rotation and translation to the shape before perspective projection. In Fig. 6, we show in solid
lines in the �rst and third columns the projected 2D shapes and in the second and fourth columns
the depth pro�les of the control vertices from the particular view point. The search for invariance
started by assuming there was no rotation nor translation and the depth was a constant 1. Under
this assumption, the predicted 2D shapes (the head-on view) and the depth pro�les (a constant 1)
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Figure 4: (a) Original image, (b) comparison image, (c) original and deformed patterns after
undergoing a rigid-body motion, and (d) invariant signatures of the original (solid) and transformed
(dashed) patterns plotted along the contours.
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Figure 5: (a) Original image, (b) comparison image, (c) original and deformed patterns after
undergoing an a�ne transform, and (d) invariant signatures of the original (solid) and transformed
(dashed) patterns plotted along the contours.
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are shown (in dashed line) in the �rst row in Fig. 6. As can be seen by comparing the two curves,
perspective distortion was quite severe.

We then applied our algorithm of estimating the motion parameters, updating the control vertex
positions, revising the shapes of the rational spline bases (using Eqs. 11 and 12), and updating the
parameterization. The revised 2D shapes and depth pro�les, generated using updated control
vertices and rational bases, are displayed in Fig. 6 after 1, 3, and 10 updates. Convergence was fast
and most signi�cant changes occurred in the �rst three iterations. The depth pro�les converged
only qualitatively as a scaling factor cannot be recovered.

Figs. 7 and 8 show results on real images. To demonstrate the accuracy of the new perspective
invariance formulation, we compared our results with the initial estimate, using traditional a�ne
invariants. It can be easily seen that the a�ne transform models faithfully a planar curve (with
Z = 0) under a parallel projection, and hence, is linear. Its e�cacy in producing an invariant
signature by itself, for a general 3D curve under a perspective projection is in doubt.

Fig. 7(a) shows the canonical view of a toy duck and Fig. 7(b) shows a perspective view of it.
The initial �tting results and invariant signatures, using the traditional a�ne invariant formulation,
are depicted in Figs.7(c) and (d) respectively. Fig. 7(e) depicts the 2D image curve (in solid line)
and the curve derived from the perspective invariant �tting after seven iterations (in dashed line).
Fig. 7(f) depicts the invariant shape signatures computed along the 2D image curve (solid) and
along the curve computed using the perspective invariant �tting after seven iterations (dashed). As
can be seen from these �gures, the �tting and signature based on perspective invariants are much
closer to the true curve and signature. This is because the perspective framework gives a better
approximation both in terms of curve �tting and parameterization. The results were obtained with
only seven iterations.

Fig. 8 shows another example on real images. Now the curve is embedded on a curved surface
(a cylindrical pail) and a�ne transform does not even apply. Figs. 8(a) and (b) show the canonical
view and another perspective, respectively. We extracted the silhouette of the car from both images
for verifying the perspective invariance. Curve �tting and invariant signature (after �ve iterations)
thus computed are displayed in Figs. 8(c) and (d) respectively. It can be seen that our invariance
framework produces consistent results for general, non-planar 3D curves, all with a small number
(in this case �ve) of iterations.

Change of Illumination To illustrate the correctness of the invariance formulation under illu-
mination changes, we placed di�erent color �lters in front of the light sources used to illuminate
the scene and verify the similarity of illumination invariant signatures. It should be noted that
the particular examples we show here only serve to demonstrate the validity and correctness of the
framework. A recognition experiment presented later in this section will illustrate the use of curves
of arbitrary shape for illumination invariants.

Two examples are shown below. Fig. 9 shows the same mouse pad under white and blue
illumination. For simplicity, we randomly placed three circular curves (the red, green, and blue
curves in Fig. 9) and computed the invariant signatures along these three curves for both the
images under white and blue illumination. As discussed in the previous section, we can linearize
the image to obtain an invariant signature for the whole image. Fig. 10(a), (c), and (e) show the
r-g-b pro�les along the red, green, and blue circles in Fig. 9 under white (solid) and blue (dashed)
illumination. Fig. 10(b), (d), and (f) show the invariant pro�les computed from the white (solid)
and blue (dashed) illumination. As can be seen from the �gure, they are quite consistent.

The degree of consistency of illumination invariants is best appreciated by comparing the above
results with the following: Tbl. 1 tabulates the RMS deviation of the invariant signatures computed
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Figure 6: Real (solid) and estimated (dashed) shape and depth pro�les for star (columns 1 and
2) and knot (columns 3 and 4) after 0th, 1st, 3rd, and 10th iterations. \o" and \+" denote the
projected control vertex positions.
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Figure 7: (a) The canonical view, (b) another perspective, (c) 2D image curve (solid) and the curve
derived w. perspective invariant �tting (dashed), (d) shape signatures of the 2D image curve (solid)
and the curve derived w. perspective invariant �tting (dashed), (e) 2D image curve (solid) and the
curve derived w. a�ne invariant �tting (dashed), and (f) shape signatures of the 2D image curve
(solid) and the curve derived w. a�ne invariant �tting (dashed).
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Figure 8: (a) The canonical view, (b) another perspective, (c) 2D image curve (solid) and the curve
derived w. perspective invariant �tting (dashed), and (d) shape signatures of the 2D image curve
(solid) and the curve derived w. perspective invariant �tting (dashed)

red-red curve green-green curve blue-blue curve red-green curve green-blue curve blue-red curve

0.3392 0.3544 0.5465 0.8831 0.8039 0.8983

Table 1: RMS deviation in invariant signatures computed based on Eq. 16 for Fig. 9

on the same curves vs. those computed on di�erent curves in Fig. 9. As can be seen, the results are
much less consistent when invariant signatures are compared on di�erent curves. In fact, the RMS
deviation of the invariant features computed from di�erent curves is 147% to 265% those computed
from the same curves.

Hierarchical Invariant Analysis The additional degree of freedom in designing the basis func-
tion enables a hierarchical shape analysis. To illustrate, Fig. 13 shows the original (solid lines) and
deformed (dashed lines) shapes with di�erent amounts of noise added. The noise level in Fig. 13(b)
is 15 times higher than that in Fig. 13(a). As can be seen from Fig. 14, our approach, which
analyzes the shape at di�erent scales locally, will eventually discover the similarity, even though
the similarity may manifest at di�erent levels of details. This is the case in Fig. 14, where shape
similarity is apparent from scale 3 onward for small noise case and from scale 7 onward for large
noise case. Traditional analysis relying on a single scale or requiring high-order derivatives of the
contour function will have di�culty handling both cases.
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Figure 9: The same mouse pad under (a) white and (b) blue illumination.
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Figure 10: R-g-b pro�les and invariant signatures computed for the mouse pad under white (solid)
and blue (dashed) illumination. Pro�les and invariant signatures were computed on the red (a)
and (b), green (c) and (d), and blue (e) and (f) circles in Fig. 9.
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Figure 11: The same cookbook cover under (a) white and (b) red illumination.
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Figure 12: R-g-b pro�les and invariant signatures computed for the cookbook cover under white
(solid) and red (dashed) illumination. Pro�les and invariant signatures were both computed on the
red circle in Fig. 11 for (a) and (b), and on the green circle in Fig. 11 for (c) and (d)
.
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Figure 13: Original and transformed shapes with noise added. The noise level in (b) is 15 times
that in (a). Solid lines for original shapes and dashed lines for transformed and noise-corrupted
shapes.

A Recognition Experiment To further illustrate the use of these invariant expressions, we
conducted a recognition experiment on real images. The scenario is that of a digital library appli-
cation. The database comprises a collection of sixteen airplane models in canonical (top) view. The
airplanes were automatically extracted from the images and invariant shape and color signatures
computed o�-line. The query images were photographed from a di�erent perspective and under
varying illumination. The airplanes in the query images were extracted using a semi-automated
process possibly with user intervention. We then used a two-stage approach where features invari-
ant to a�ne and perspective projection were �rst used to match the silhouette of the query airplane
with the silhouettes of those in the database. We then employed the illumination invariant features
to verify the match and disambiguate among models with similar shape but di�erent colors. The
results show that we were able to achieve 100% accuracy for a database comprising very similar
models, presented with query images of large perspective shape distortion and illumination change.
This is in contrast with most image digital library retrieval schemes which can perform between-
class (e.g., airplanes vs. cars) retrievals but not within-c-class (e.g., di�erent types of airplanes)
retrievals.

Furthermore, we exploit both geometric properties and color to produce a more robust recogni-
tion strategy. The integration of geometric and illumination invariants is a novel approach which
has produced only limited success in object recognition so far [39, 41, 48]. Our integration of
geometric and illumination invariants has produced promising results.

We �rst demonstrate the performance of a�ne invariants. It will be shown that a�ne invariants
work well with objects that are relatively far from the camera, but fails miserably with objects that
are near the camera or otherwise showing large perspective distortion. We then present the results
of using perspective invariants, which correctly identi�ed all sample images. Finally, we show the
results of applying illumination invariants to further verify a correct match.

Fig. 15 shows 16 models of airplanes from a database, each posed in a canonic view, under
standard lighting. It should be noted that many of the airplane models have approximately the
same shape (e.g., models 5 and 6, and models 3, 7 and 14), making the recognition problem di�cult.
Eleven sample images of the same airplanes are shown in Fig. 16, each in a di�erent pose. Moreover,
colored �lters were placed in front of the light sources (and the number of light sources varied) to
simulate changes in illumination. From these images, we extracted the silhouettes of these airplanes

25



0 20 40 60 80 100 120
−40

−20

0

20

40

60

80

100

Arc length

In
va

ria
nt

 fe
at

ur
es

Invariant features of original (solid) and deformed (dashed
) shapes at scale 1

0 20 40 60 80 100 120
−20

0

20

40

60

80

100

120

Arc length

In
va

ria
nt

 fe
at

ur
es

Invariant features of original (solid) and deformed (dashed
) shapes at scale 1

0 10 20 30 40 50 60
−30

−20

−10

0

10

20

30

40

50

Arc length

In
va

ria
nt

 fe
at

ur
es

Invariant features of original (solid) and deformed (dashed
) shapes at scale 2

0 10 20 30 40 50 60
−50

0

50

100

150

Arc length

In
va

ria
nt

 fe
at

ur
es

Invariant features of original (solid) and deformed (dashed
) shapes at scale 2

0 5 10 15 20 25 30 35
−10

−8

−6

−4

−2

0

2

4

6

8

10

Arc length

In
va

ria
nt

 fe
at

ur
es

Invariant features of original (solid) and deformed (dashed
) shapes at scale 3

0 5 10 15 20 25 30 35
−10

0

10

20

30

40

50

60

70

80

90

Arc length

In
va

ria
nt

 fe
at

ur
es

Invariant features of original (solid) and deformed (dashed
) shapes at scale 3

0 5 10 15 20 25 30
−10

−5

0

5

Arc length

In
va

ria
nt

 fe
at

ur
es

Invariant features of original (solid) and deformed (dashed
) shapes at scale 4

0 5 10 15 20 25 30
−10

−8

−6

−4

−2

0

2

4

6

Arc length

In
va

ria
nt

 fe
at

ur
es

Invariant features of original (solid) and deformed (dashed
) shapes at scale 4

Figure 14: Invariant shape descriptors for the original and deformed shapes with noise added at
di�erent scales. Solid lines for original shape and shape descriptors and dashed lines for transformed
and noise-corrupted shapes and shape descriptors (continued on the next page).
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Figure: (continued from previous page) Invariant shape descriptors for the original and deformed
shapes with noise added at di�erent scales. Solid lines for original shapes and shape descriptors

and dashed lines for transformed and noise-corrupted shapes and shape descriptors.
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Figure 15: A database of airplane models.
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Figure 16: The same airplanes in varying poses and illumination: observed images A-C, D-E, F, G,
H, I, and J-K correspond to airplanes models 1, 2, 4, 6, 7, 13, and 14 in the database, respectively.
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and used both a�ne and perspective invariants to verify their similarity.

Rank (using a�ne invariants)

Image 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

A ( 5 ) ( 14 ) ( 3 ) ( 12 ) ( 9 ) ( 11 ) ( 16 ) ( 4 ) ( 8 ) ( 10 )

0.7919 0.0222 0.0077 -0.0054 -0.0081 -0.0103 -0.0244 -0.0258 -0.0584 -0.0703

B ( 1 ) ( 8 ) ( 9 ) ( 2 ) ( 6 ) ( 15 ) ( 13 ) ( 14 ) ( 3 ) ( 16 )

0.6772 0.2487 0.1879 0.1556 0.1512 0.1350 0.1327 0.1053 0.0739 0.0655

C ( 16 ) ( 14 ) ( 6 ) ( 2 ) ( 13 ) ( 3 ) ( 1 ) ( 8 ) ( 5 ) ( 12 )

0.3473 0.2944 0.1457 0.1046 0.0781 0.0758 0.0562 0.0528 0.0432 0.0278

D ( 2 ) ( 14 ) ( 11 ) ( 6 ) ( 3 ) ( 16 ) ( 8 ) ( 15 ) ( 10 ) ( 9 )

0.7236 0.4480 0.3666 0.3650 0.2065 0.1739 0.0486 0.0421 0.0370 -0.0600

E ( 6 ) ( 12 ) ( 9 ) ( 2 ) ( 14 ) ( 7 ) ( 15 ) ( 13 ) ( 3 ) ( 8 )

0.3014 0.2680 0.2555 0.2541 0.2262 0.1981 0.1404 0.1224 0.0887 0.0365

F ( 15 ) ( 16 ) ( 9 ) ( 14 ) ( 8 ) ( 6 ) ( 13 ) ( 2 ) ( 3 ) ( 4 )

0.3350 0.2513 0.2492 0.2490 0.1634 0.1535 0.1335 0.1087 0.0794 0.0633

G ( 12 ) ( 14 ) ( 2 ) ( 3 ) ( 5 ) ( 9 ) ( 4 ) ( 6 ) ( 10 ) ( 1 )

0.6979 0.4114 0.2093 0.1452 0.0531 0.0007 -0.0140 -0.0194 -0.0356 -0.0518

H ( 14 ) ( 13 ) ( 6 ) ( 2 ) ( 10 ) ( 12 ) ( 11 ) ( 15 ) ( 16 ) ( 9 )

0.5241 0.4595 0.4225 0.3987 0.2601 0.2424 0.1617 0.0281 0.0161 0.0100

I ( 15 ) ( 2 ) ( 7 ) ( 3 ) ( 1 ) ( 10 ) ( 9 ) ( 8 ) ( 16 ) ( 6 )

0.3693 0.3445 0.1674 0.1644 0.0487 0.0340 -0.0186 -0.0306 -0.0545 -0.0549

J ( 14 ) ( 6 ) ( 2 ) ( 11 ) ( 8 ) ( 3 ) ( 7 ) ( 16 ) ( 5 ) ( 9 )

0.4709 0.3821 0.3416 0.3314 0.2884 0.2849 0.2573 0.0699 0.0003 -0.0504

K ( 7 ) ( 4 ) ( 11 ) ( 9 ) ( 8 ) ( 1 ) ( 5 ) ( 15 ) ( 10 ) ( 2 )

0.7407 0.5313 0.3247 0.0994 0.0372 -0.0175 -0.0306 -0.0345 -0.0489 -0.0917

Table 2: Top matches between a�ne invariant signatures of observed images and models in the
database. Numbers in parentheses indicate the airplane model selected. The value beneath it is the
correlation coe�cient of the two signatures. The expected (correct) airplane model is in boldface.
Each row corresponds to an observed image. The columns are arranged left to right, from the best
match to worse.

Table 2 shows both the e�ectiveness and limitations of using a�ne invariants (Eq. 7), when
dealing with objects under perspective transformations. A�ne invariant signatures of the airplane
models were stored in a database (performed o�-line). The resolution scale used3 for recognition
was pre-determined by computing the energy of the models' signatures at di�erent scales. The
scale where energy appeared to be concentrated, was selected. (i:e; Large values of energy implies
more information). Scale 3 was selected for this database. For each observed image (A through
K), the a�ne invariant signature was computed, and compared with the signatures of all models
in the database. Correlation coe�cients were used to determine the similarity between each pair of
signatures. Each row in Table 2 refers to an observed image. Each of the ten columns represents
the rank given to each airplane model from the database (shown in parentheses). The columns are
ordered from left to right, with the leftmost column being the best match found. Only the top ten
matches are shown. The values (not in parentheses) are the correlation coe�cients. Entries printed
in boldface are the expected (correct) matches.

It is clear from Table 2 that the a�ne invariant works well in cases where the object is far from
the camera relative to its size. The observed images B and D are consistent with this scenario. For
observed images B and D, the correlation between their signatures and that of the correct model in
the database is signi�cantly higher (both rank the 1st), relative to that for the rest of the models.
Fig. 17 shows the a�ne invariant signature of airplane B (solid) correctly matched with that of

3It is possible to select a range of scales. We simply use some statistical measure to get a scalar value.
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Figure 17: (a) A�ne invariant signature of airplane B (solid) correctly matched with that of model
1 (dashed) (best match found), and (b)-(c) the next two best matches.
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Figure 18: (a) A�ne invariant signature of airplane D (solid) correctly matched with that of model
2 (dashed) (best match found), and (b)-(c) the next two best matches.
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model 1 (dashed) (best match found). The next two best matches (models 8 and 9) are shown in
Figs. 17(b) and (c). Similarly for airplane D, Fig. 18(a) is the best (and correct) match (model 2).
Fig. 18(b) and (c) are the next two best matches (models 14 and 11).

However, the performance with other images was unsatisfactory. Fig. 19(a) shows the signature
match between airplane E and model 2 (supposedly a correct match). Because of large perspective
distortion, the signatures are inconsistent, and the match is ranked the 4th. Instead, the match in
Fig. 19(b) is (incorrectly) ranked the 1st (model 6). Hence, the a�ne invariant formulation can be
used to approximate perspective invariance only when the object is relatively far from the camera.
For our test images, the a�ne invariant correctly identi�ed only three of them. For four of the
images, the correct models were not even among the top ten candidates.

Rank (using perspective invariants)

Image 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

A ( 1 ) ( 9 ) ( 4 ) ( 6 ) ( 5 ) ( 10 ) ( 2 ) ( 7 ) ( 11 ) ( 14 )

120.82 279.01 383.86 503.34 533.66 542.16 596.96 675.19 755.74 761.19

B ( 1 ) ( 9 ) ( 10 ) ( 4 ) ( 6 ) ( 2 ) ( 5 ) ( 15 ) ( 16 ) ( 7 )

47.30 146.81 233.45 252.14 337.03 389.68 405.70 463.60 524.44 542.40

C ( 1 ) ( 4 ) ( 2 ) ( 9 ) ( 6 ) ( 5 ) ( 10 ) ( 14 ) ( 7 ) ( 11 )

146.16 319.36 347.87 398.37 437.71 464.66 555.42 664.10 690.55 761.43

D ( 2 ) ( 6 ) ( 5 ) ( 4 ) ( 13 ) ( 14 ) ( 1 ) ( 7 ) ( 3 ) ( 12 )

71.67 99.78 103.76 182.25 190.34 219.87 226.97 233.68 249.75 256.10

E ( 2 ) ( 5 ) ( 6 ) ( 14 ) ( 12 ) ( 4 ) ( 3 ) ( 13 ) ( 7 ) ( 15 )

77.18 225.33 237.78 302.50 383.28 383.29 385.40 409.81 429.61 518.69

F ( 4 ) ( 1 ) ( 9 ) ( 6 ) ( 10 ) ( 14 ) ( 5 ) ( 11 ) ( 2 ) ( 7 )

363.12 399.78 418.96 470.93 479.52 494.35 551.37 571.67 596.43 605.42

G ( 6 ) ( 13 ) ( 5 ) ( 4 ) ( 2 ) ( 14 ) ( 12 ) ( 3 ) ( 1 ) ( 7 )

174.62 270.70 297.42 338.39 354.01 360.44 371.27 396.45 406.96 436.25

H ( 7 ) ( 14 ) ( 3 ) ( 11 ) ( 13 ) ( 6 ) ( 12 ) ( 5 ) ( 2 ) ( 4 )

125.27 144.79 160.16 177.42 215.16 233.24 233.71 271.79 299.27 301.98

I ( 13 ) ( 6 ) ( 3 ) ( 14 ) ( 12 ) ( 5 ) ( 7 ) ( 2 ) ( 15 ) ( 1 )

139.15 310.96 343.69 353.16 365.75 389.29 408.44 415.15 422.48 448.38

J ( 14 ) ( 3 ) ( 12 ) ( 13 ) ( 7 ) ( 11 ) ( 6 ) ( 4 ) ( 5 ) ( 15 )

118.53 198.34 243.56 248.79 294.51 319.46 349.93 365.38 416.17 428.91

K ( 14 ) ( 3 ) ( 7 ) ( 13 ) ( 12 ) ( 6 ) ( 11 ) ( 2 ) ( 5 ) ( 4 )

122.10 144.23 237.71 272.76 272.96 276.52 279.11 349.75 380.91 454.06

Table 3: Top ten matches between each observed image and models in the database, using perspec-
tive invariants. Numbers in parentheses indicate the airplane model selected. The value beneath
it is the relative shape deviation (error) between the estimated image and observed image. The
expected (correct) airplane model is in boldface. Each row corresponds to an observed image. The
columns are arranged left to right, from the best match to worse.

In cases of large perspective distortion, the a�ne invariant performs poorly as expected. For-
tunately, a more suitable invariant can be used. Table 3 shows the results of using the perspective
invariants on the same observed images. A polynomial degree of order 2 was used, since we want
to treat the observed image points as control points. (I:e:, The curve passes through each of the
observed image points exactly.) Only the top 10 matches are shown, with the leftmost column as
the top match. The values shown are the relative shape deviations (error) between the observed
image and the best estimate using a particular model. The numbers in parentheses correspond
to the model number from the database. Entries printed in boldface are the expected (correct)
matches. As can be seen, all observed images were identi�ed correctly. Figs. 20 to 22 show the
results in more detail. In these �gures, the leftmost image is the observed image. The top three
matches are in the next three columns { the observed image (solid) and estimated image (dashed)
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Figure 19: (a) A�ne invariant signature of airplane C (incorrectly) failed to match with that of
model 2 (ranked the 4th); (b) instead, model 6 was the top match found.

100 150 200 250 300 350 400 450 500 550 600
50

100

150

200

250

300

350

400

450

100 200 300 400 500 600 700
50

100

150

200

250

300

350

400

450

100 150 200 250 300 350 400 450 500 550 600
0

50

100

150

200

250

300

350

400

450

(1st) (2nd) (3rd)

Figure 20: Observed image A, with the top three matches from the database, using perspective
invariants. (Solid for the observed image, dashed for the estimated image.)
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Figure 21: Observed image I, with the top three matches from the database, using perspective
invariants. (Solid for the observed image, dashed for the estimated image.)
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Figure 22: Observed image K, with the top three matches from the database, using perspective
invariants. (Solid for the observed image, dashed for the estimated image.)
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with the corresponding database model are shown.

In order to show the superior performance of using perspective invariants over a�ne invariants,
we computed the signatures of two images, after obtaining the estimated a�ne and perspective
transformations. In Fig. 23, (a) is the observed image E, (b) is the best match using the a�ne
transformation, and (c) is the signature match for the observed image (solid) and the best a�ne
estimate (dashed). In contrast, (d) is the best estimated image using perspective invariants, and
(e) is their signature match. Clearly, using perspective invariants is superior over a�ne invariants,
in cases of large perspective distortion. Fig. 24 show similar results for observed image J.

For this experiment, all observed images were correctly matched with the models from the
database, using perspective invariants. However, the system is far from perfect. The results for
observed image F show that it was correctly identi�ed (model 4). Nonetheless, the relatively large
error (possibly due to noise) between the observed image and estimated image may be unacceptable.
On the other hand, the di�erence between the error of two di�erent matches may not be signi�cantly
high enough, which decreases the level of con�dence in the correctness of the object identi�cation.
For instance, the error values of the top two matches for airplane K were very close to each other.

This con�dence can be strengthened by testing whether the regions inside the object contours
are also consistent. Illumination invariants readily applies here.

For illumination invariants, curves were uniquely de�ned on the surface of each airplane model in
the database (performed o�-line), so that its superimposition over the image emphasizes important
(or interesting) color patterns in the image. Figs. 25(a) and (d) and Fig. 26(d) show one of many
such curves de�ned for models 7, 14 and 3, respectively. (in this case, a zig-zagging curve over the
di�erent colors of the airplane). A di�erent set of curves for other models in the database were
also de�ned. Using the same strategy as that for a�ne invariants, we determined a resolution level
(possibly many) to be used for recognition; in this case, level 7. Computation of the illumination
invariant signatures were done o�-line.

After computing the perspective invariants, the transformation parameters were easily obtained
(Eq. 15). The same parameters were used to transform the curve de�ned for each model, to its
correct pose in the observed image. Hence, the colors de�ned by the curve in the model should
match the colors de�ned by the transformed curve in the observed image (except for changes due
to illumination). Illumination invariant signatures for the observed images were then computed,
and compared with the signatures stored in the database. Again, correlation coe�cients were used
to measure the similarity between the pairs of signatures.

Illumination invariants were computed only for those matches that had a certain level of uncer-
tainty. Here, we only show results of illumination invariant computations where the (perspective
invariant) errors of the 1st and 2nd best matches di�er by a small amount; in this case, observed
images H and K.

In Fig. 25, (a) and (d) show one of many curves superimposed (in red) over the image of models 7
and 14. The transformed curves, shown in (b) and (e), is superimposed (in green) over the observed
image H. The estimated image (from perspective invariants) is outlined in blue. Finally, (c) and
(f) show the illumination invariant signatures. Clearly, the signatures in (c) is more consistent.

Fig. 26 shows similar results for observed image K, with models 14 and 3.

As a �nal measure for recognition, the weighted average between perspective invariants and
illumination invariants can be computed (depending on their relative importance). For this ex-
periment, any weighting will produce the correct results, since both the perspective invariants and
illumination invariants always ranked the correct pair as the best match. It should be noted how-
ever, that the success of the illumination invariants relies heavily on the success of the perspective
invariants. (I:e, If the estimated image does not accurately match the observed image, then the
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Figure 23: (a) Observed image E (solid), (b) the best a�ne estimate (dashed), (c) signature match
using a�ne invariants, (d) the best perspective estimate (dashed), and (e) signature match using
perspective invariants.
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Figure 24: (a) Observed image J (solid), (b) the best a�ne estimate (dashed), (c) signature match
using a�ne invariants, (d) the best perspective estimate (dashed), and (e) signature match using
perspective invariants.
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Figure 25: (a),(d) Airplane models with one of the de�ned curves (in red) superimposed, (b),(e)
observed image with the transformed curve superimposed (in green). The transformed contour of
the model is in blue, and (c),(f) illumination invariant signatures for observed image H (solid) and
for models 7 and 14 (dashed).
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Figure 26: (a),(d) Airplane models with one of the de�ned curves (in red) superimposed, (b),(e)
observed image with the transformed curve superimposed (in green). The transformed contour of
the model is in blue, and (c),(f) illumination invariant signatures for observed image K (solid) and
for models 14 and 3 (dashed).
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illumination invariants will probably not match as well.)

5 Conclusion

In this paper we present a new framework for computing image invariants. The framework utilizes
many desirable properties of wavelet and basis expansion techniques, including the ability to analyze
the shape and color at di�erent resolution levels. Both geometric and illumination invariants
were discussed, including the potential for combining them into one system. Furthermore, the
formulations are quite simple and straightforward to implement.

Preliminary results on both real and synthetic images are very promising. These results demon-
strate the tolerance to noise, a�ne transformations, perspective distortion and illumination changes,
and the ability for hierarchical shape analysis.
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