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a b s t r a c t 

Kernel sparse representation for classification (KSRC) has attracted much attention in pattern recognition 

community in recent years. Although it has been widely used in many applications such as face recog- 

nition, KSRC still has some open problems needed to be addressed. One is that if the training set is of 

a small scale, KSRC may potentially suffer from lack of training samples when a nonlinear mapping is 

used to transform the original input data into a high dimensional feature space, which is often accom- 

plished using a kernel-based method. In order to address this problem, this work proposes a scheme 

that automatically yields a number of new training samples, termed virtual dictionary, from the original 

training set. We then use the yielded virtual dictionary and the original training set to build the KSRC 

model. To improve the computational efficiency of KSRC, we exploit the coordinate descend algorithm to 

solve the KSRC model. Our approach is referred to as kernel coordinate descent based on virtual dictio- 

nary (KCDVD). KCDVD is easy to implement and is computationally efficient. Experiments on many face 

databases show that the proposed algorithm is effective at remedying the problem with small training 

samples. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

In recent years, sparse representation for classification (SRC)

1,2] has attracted much attention in machine learning and pattern

ecognition community, particularly for face recognition [3–5] . It is

ell known that the typical SRC method contains two main steps.

he first step is the sparse representation (SR). Given a sample or

ata point, SR exploits some or all training samples or data points

o represent this sample (data point) based on one or more vec-

or norm minimization, e.g., L 1 norm minimization, which leads to

he representation coefficients that are sparse. Here sparse coeffi-

ients mean that most representation coefficients are zeros or ap-

roaching zeros. The second step is the classification. That is, SRC

ses the representation results to classify the test samples. SRC can

chieve robust classification effectiveness, since it can deal well

ith noisy data. In face recognition, SRC has been shown to be

 robust method to classify face image data with corruption and

cclusion [3] . 

Besides L 1 norm minimization, there are a number of norm

inimization methods to produce sparse coefficients in SRC based
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pproaches. Actually, SRC is essentially based on L 0 norm mini-

ization [4] . L 0 norm means the number of the non-zero entries in

 vector. Although it is not really a vector norm in a mathematics

ense, the L 0 norm minimization can lead to the sparsest represen-

ation. In [5] , Xu et al. proposed a SRC method based on L 1 / 2 norm

inimization which is performed by iterative L 1 norm minimiza-

ion. In addition, L 2,1 can also yield the sparse representation [6,7] .

n general, directly applying L 2 norm minimization cannot yield

he sparse representation [8] . Nevertheless, Xu et al. proposed a

wo phase test sparse representation (TPTSR) for face recognition

9] using a modified L 2 norm minimization, which was shown to

roduce a sparse representation and achieve good recognition re-

ults. 

A typical SRC algorithm is performed in the original input

pace. It is widely believed that standard SRC algorithms cannot

apture the nonlinear information within the data, especially for

igh-dimensional data sets such as face image databases [10] . In

rder to capture the nonlinear information within the data, Gao

t al. proposed a kernel sparse representation for classification

KSRC) method [11] . They first applied a nonlinear mapping to

ransform the input data into a high dimensional (even infinite di-

ensional) feature space that is called the reproducing kernel Hi-

ert space (RKHS) [12] . Then the typical SRC algorithm was per-
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formed in this space. KSRC can also theoretically solve the prob-

lem that the sample vectors belonging to different classes have

very similar, or identical, direction, which the typical SRC algo-

rithm cannot well address without nonlinear warping of data [13] .

Kernel sparse representation and its variants have been used in

many applications. In [14] , Jian proposed the class-discriminative

kernel sparse representation-based classification by using multi-

objective optimization. Aiming to deal well with the nonlinearity

within in multimodal biometrics data, Shekhar developed a kernel-

ized multimodal sparse representation approach [15] . Also, Shri-

vastava proposed a multiple kernel learning approach to repre-

sent the nonlinearity in a high-dimensional RKHS. This approach

uses two-step training procedure to learn the kernel weights and

sparse representation coefficients [16] . By exploiting the empir-

ical mode decomposition and morphological wavelet-based fea-

tures, He et al. introduced kernel sparse multitask learning for hy-

perspectral image classification [17] . In order to perform gesture

recognition, Zhou et al. proposed a kernel sparse representation

for classifying complicated human gesture. Their approach is ro-

bust to the large variability within human gestures [18] . Huang

successfully combined sparse representation classifier and kernel

discriminant analysis (KDA), and proposed kernel extended dictio-

nary (KED) for face recognition, which was extended to multiker-

nel space to fuse different types of features [19] . Similarly, Zhang

proposed a multiple kernel sparse representation approach for face

recognition [20] , and Gu introduced a multiple kernel sparse rep-

resentation classification framework for airborne LiDAR data classi-

fication [21] . By utilizing the high-dimensional nonlinear informa-

tion, Feng proposed a kernel combined sparse representation for

disease recognition [22] . Based on the assumption that data points

belong to Riemannian manifolds, Wu developed a manifold kernel

sparse representation of symmetric positive-definite matrices for

image classification, face recognition and visual tracking [23] . In

[24] , Wang applied the kernel sparse representation to the visual

tracking task. Our previous work, KTSRC [25] , based on L 2 norm

minimization, is essentially the kernel version of TPTSR. Hence, KT-

SRC is a kernel sparse representation method to some extent. Sim-

ilarly, kernel collaborative representation with locality constrained

dictionary (KCRC-LCD) [26] is the kernel version of the collabo-

rative representation based classification (CRC) [8] combining lo-

cal structure information. Since locality usually leads to sparsity,

KCRC-LCD can also be viewed as one type of the kernel sparse rep-

resentation methods. 

As previously mentioned, using the L 0 norm minimization can

produce the sparsest representation. However, it is well known

that the L 0 norm minimization is an NP hard problem [4] . Never-

theless, if the representation model solution is sufficiently sparse,

the L 0 norm minimization can be replaced by the L 1 norm min-

imization on the condition that each class has sufficient train-

ing samples [3] . When the training samples are not enough, the

representation model solution may not be sufficiently sparse, and

the L 1 norm minimization tends to be unsuitable for the repre-

sentation model and fails to achieve desirable representation re-

sults. Aiming to address this problem, Deng et al. introduced an

auxiliary intraclass variant dictionary to the classical SRC model

and proposed an extended SRC (ESRC) [27] to deal with the un-

dersampling problem, i.e., each class has a few, or even a sin-

gle, training samples. Note that the ESRC algorithm is performed

in the original input space rather than the kernel induced fea-

ture space in which the nonlinear information can be well cap-

tured. In addition, the computational efficiency of the ESRC algo-

rithm is very poor, which hinders its application in many real-time

applications. 

On the other hand, if the training set is of a small scale, map-

ping the original input data into the high-dimensional feature

space may worsen the undersampling problem, since the training
et becomes even more sparse in a higher dimensional space. It

eems that the kernel version of the above ESRC algorithm may

ddress the undersampling problem in the feature space. However,

f the auxiliary intraclass variant dictionary of ESRC in the original

nput space is mapped into the high dimensional feature space, it

s uncertain if the new mapped dictionary can still play the impor-

ant role to the representation. Besides, the computational com-

lexity may be higher than the original ESRC algorithm. One pos-

ible solution is that we can directly generate some new training

amples from the original training set to deal with the above un-

ersampling problem. For instance, Zhu proposed a kernel sparse

epresentation approach combing the virtual dictionary obtained

rom the original training set via Metafaces framework [28] . By

dding random noise to original training samples, Tang formed a

ew training set to perform sparse representation approach [29] .

hese two methods can achieve good recognition results but do

ot pay attention on the computational efficiency. 

Recently, Xu et al. developed a new algorithm to yield the

irtual face images that can effectively improve the typical SRC

ethod for face recognition [30] . Nevertheless, Xu’s method fails

o capture the nonlinear information within the data, and hence,

an be further improved if it considers the nonlinear information.

o this end, we will use Xu’s method to generate the new train-

ng samples and then map them into the RKHS space in our work.

he new mapped training samples are referred to as virtual dic-

ionary. Also, the original samples are transformed into the RKHS

pace. Thus, we can use the virtual dictionary and the mapped

raining samples to represent and classify the mapped test sam-

les in the high dimensional feature space. Similar to the typical

RC algorithm, the typical KSRC approach is also time consuming.

n order to improve the computational efficiency of solving kernel

parse representation (KSR) model in the feature space, we apply

he coordinate descent approach [31] to solve the KSR model based

n the virtual dictionary. Hereafter, our proposed algorithm is re-

erred to as kernel coordinate descent based on virtual dictionary

KCDVD) approach. 

Our KCDVD approach has the following salient properties. First,

ompared with the typical SRC method, the proposed KCDVD algo-

ithm that exploits the nonlinear mapping can capture the non-

inear information within the data. This property is helpful for

orrectly classifying the samples. Second, the typical KSRC al-

orithm suffers from the undersampling problem in the high-

imensional space. Our method yields the virtual dictionary and

an alleviate this problem. Third, KCDVD is significantly more ef-

cient than other SRC based methods using auxiliary dictionary

erived from the training samples, since our method applies the

oordinate descent approach which is a fast scheme to solve the

RC based model. Finally, our method is simple and can be eas-

ly implemented. In short, KCDVD is an effective and efficient

ace recognition algorithm. Extensive experiments on many pop-

lar face databases demonstrate that our method is a promising

pproach. 

The remainder of the paper is organized as follows: In

ection 2 , we describe the related work of KSRC. Section 3 gives

he procedure of yielding the virtual dictionary. Section 4 presents

he kernel coordinate descent based on the virtual dictionary.

ection 5 reports the experimental results and illustrates the effec-

iveness and efficiency of the proposed algorithms. Section 6 offers

ur conclusions. 

. Related work 

In this section, we briefly review the related works on sparse

epresentation for classification (SRC) and Kernel SRC (KSRC). 
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.1. Sparse representation for classification (SRC) 

SRC is first proposed to perform face recognition by Wright [3] .

uppose there are N training samples in the original input space

 = [ x 1 , x 2 , ..., x N ] ∈ R d×N and a test sample y ∈ R d . They are all from

classes. SRC deals with test samples one by one. The typical SRC

odel is to resolve the following L 1 norm minimization problem.

ˆ = min 

α
( ‖ 

y − X α‖ 

2 + λ‖ 

α‖ 1 ) (1) 

here α = [ a 1 , a 2 , ..., a N ] 
T ∈ R N is the representation coefficient

ector and λ is a balance parameter between the sparseness of

he coefficient vector and the reconstruction error. If the coeffi-

ient vector α is obtained, we compute the representation residual

f each class as follows 

 k (y ) = ‖ 

y − X δk (α) ‖ 

2 
2 , (k = 1 , 2 , ..., c) (2)

here c is the number of the classes, and δk (α) ∈ R N is a vector

hose only nonzero entries are the entries in α associated with

lass k . Thus, we can classify the test sample y by using the fol-

owing equation 

abel (y ) = arg min 

k 
r k (y ) , (k = 1 , 2 , ..., c) (3)

.2. Kernel SRC (KSRC) 

Compared with the typical SRC algorithm, KSRC can capture

ell the nonlinear information within the data set which is help-

ul for classification task. It can overcome the drawbacks of SRC

13,32] . The main procedure of KSRC is that all samples are

apped into a high-dimensional RKHS space via a nonlinear map-

ing. Then, we perform the typical SRC algorithm in this new

pace and obtain the KSRC learning model. By using a nonlin-

ar mapping, we map the training samples X = [ x 1 , x 2 , ..., x N ] ∈
 

d×N and the test sample y ∈ R d in the original input space

nto the RKHS space. They are respectively denoted as ϕ(X ) =
 ϕ ( x 1 ) , ϕ ( x 2 ) , ..., ϕ( x N )] ∈ R D ×N and ϕ(y ) ∈ R D . The kernel sparse

epresentation (KSR) model is as follows 

ˆ = min 

β
( ‖ 

ϕ(y ) − ϕ(X ) β‖ 

2 + μ‖ 

β‖ 1 ) (4) 

Similarly, in the above equation, β = [ β1 , β2 , ..., βN ] 
T ∈ R N is the

epresentation coefficient vector and μ is also a balance parame-

er between the sparseness of the coefficient vector and the recon-

truction error. After obtaining the coefficient vector β , we com-

ute the representation residual of each class as follows 

 k (y ) = ‖ 

ϕ(y ) − ϕ(X ) δk (β) ‖ 

2 
2 , (k = 1 , 2 , ..., c) (5)

here δk (β) ∈ R N is a vector whose only nonzero entries are the

ntries in β associated with class k . Thus, we can classify the test

ample y by using the following equation 

abel (y ) = arg min 

k 
R k (y ) , (k = 1 , 2 , ..., c) (6)

The above equation is based on the representation residual.

pecifically, in the representation of the test sample, if a class

chieves the minimal representation residual, the test sample is

lassified into this class. This scheme is not similar to the support

ector machine (SVM) classifier that aims to find the support vec-

ors leading to maximal margin between data classes. 

. Virtual dictionary 

In this section, we will introduce the method to generate new

raining samples- Approximately symmetrical face images (ASFI),

roposed by Xu et al. for face recognition [30] . Note that while we
se ASFI to generate the virtual dictionary in this article, our recog-

ition scheme is general enough to use other suitable schemes for

opulating a virtual dictionary. 

It is well known that the face of a person is symmetrical or

early symmetrical. That is, if we know the left half of a face, the

ight half of the face can be similarly inferred, and vice versa. The

SFI method was proposed based on this fact. Suppose that there

s a face image I ∈ R m ×n where n is even. We first reshape the left

alf part of this image to a column vector, denoted by I 1 . Con-

retely, the first column of the left half image is changed to the

rst m entries of the vector I 1 , and the second column of the left

alf image is changed to the second m entries of the vector I 1 . This

rocedure repeats until the last column of the left half image is

hanged to the last m entries of the vector I 1 . Hence, I 1 ∈ R 
mn 
2 

×1 .

imilarly, the right half of this image is first reversed column-wise

nd then reshaped into another column vector, denoted by I 2 . The

im of the ASFI method is to minimize ‖ I 1 − I 2 ‖ 2 . To this end, Xu

pplied the gradient descent scheme to iteratively minimize it. We

enote the initial values of I 1 and I 2 , as I 0 
1 

and I 0 
2 

, respectively.

hen, they are iteratively updated as follows 

 

t+1 
1 = I t 1 − ξ (I t 1 − I t 2 ) (7)

 

t+1 
2 = I t 2 − ξ (I t 2 − I t 1 ) (8)

here ξ is the learning rate and I t 
1 

and I t 
2 

are the values of I 1 
nd I 2 at time t , respectively. The updating procedure repeats until

 I 1 − I 2 ‖ 2 ≤ δ, where δ is a small positive constant, or when the 

umber of iterations is larger than a preset value. After obtaining

he final vectors I t 
1 

and I t 
2 
, ASFI reshapes them to two images and

everses column-wise the image corresponds to the vector I t 
2 
. Fi-

ally, a new virtual face image is produced by juxtaposing these

wo images. That is, the image associated with I t 
1 

is the left half of

he new image, and the image associated with I t 
2 

is the right half

f the new face image. 

Fig. 1 shows some examples of the virtual images obtained by

he ASFI method. Fig. 1 (a) gives some original face images from the

ace database ORL that has 40 persons each providing 10 images

33,34] . Fig. 1 (b) shows the corresponding virtual images yielded

rom the original face images by using the ASFI method. From this

gure, we can see that although the virtual images are slightly dif-

erent from their associated original face images, the virtual images

nd their corresponding original face images appear to be from the

ame class (person). According to the theory of the SRC method,

ll images or samples in a class should span a subspace associ-

ted with this class. Therefore, the virtual face images and their

orresponding images are located in the same subspace associated

ith their class. Except for large pose variants, the ASFI method is

obust to different illuminations, expressions and small pose vari-

nts in principle. In other words, the virtual images obtained by

he ASFI method are often located in the subspace spanned by the

lass to which those images, including the generated virtual im-

ges and their corresponding face images, belong. From the view-

oint of the sparse representation, the denser subspace of each

lass tends to lead to the sparser solution to the sparse represen-

ation model [3] , and hence, we expect to achieve better classifica-

ion results using the enhanced sparse representation. 

Essentially, ASFI can be viewed as one type of data augmenta-

ion approaches that construct sampling algorithms by introduc-

ng the unobserved data [35] . Unlike the marginal and conditional

ugmentation methods in [35] that are based on statistical distri-

ution, ASFI is based on the geometric structure of images and is

ery suitable for dealing with symmetrical data. ASFI may also gen-

rate abnormal images from the original face images, particularly

hen the data are not symmetrical. These abnormal images can

e viewed as noise in the SRC or KSRC algorithm. It is well known
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Fig. 1. Original face images and their corresponding virtual images. (a) Original face images; (b) corresponding virtual images. 
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that SRC and KSRC are robust to the noises since it is based on the

L 1 norm minimization [1,36] . Therefore, the abnormal images or

noising images can hopefully be tolerated in the SRC and KSRC al-

gorithms, as long as the process does not yield too many such bad

images. In our method, we exploit nonlinear mapping to transform

the virtual images into the high dimensional feature space. These

mapped virtual images are referred to as the virtual dictionary. For

a test sample image, our method uses the virtual dictionary com-

bining the mapped training samples to represent this test sample

and build a new representation model. This model is presented in

the following section. 

4. Kernel sparse representation using virtual dictionary 

The KSR model in Section 2 may achieve desirable results if

the training samples are sufficient. Nevertheless, we deal with the

case where training samples are not sufficient in face recognition.

Moreover, the nonlinear mapping in KSR usually worsens the situ-

ation that training samples are insufficient. Increasing the training

samples is a natural way to address the above problem of insuffi-

cient training samples. Therefore, besides ϕ(X ) , we use the virtual

dictionary that has M training samples to represent the test sam-

ple ϕ(y ) in the RKHS space. Thus, we have M + N training sam-

ples, and they are denoted by ϕ( X ∗) = [ ϕ (x ∗1 ) , ϕ (x ∗2 ) , ..., ϕ(x ∗M+N )]

∈ R D ×(M+ N) . Then, the new KSR model using the virtual dictionary

is as follows 

ˆ θ = min 

θ
( ‖ 

ϕ(y ) − ϕ( X 

∗) θ‖ 

2 + μ‖ 

θ‖ 1 ) (9)

where θ = [ θ1 , θ2 , ..., θM+ N ] T ∈ R M+ N is the representation coeffi-

cient vector and μ is also a balance parameter between the sparse-

ness of the coefficient vector and the reconstruction error. 

Note that the typical kernel sparse representation based on

the L 1 norm minimization is computationally inefficient. In or-

der to improve the computational efficiency of this method, we

apply the coordinate descent scheme to infer representing sam-

ples in the feature space. In our method, we exploit the kernel

trick [37,38] which is a well-known technique widely used in the

kernel-based methods. By using this technique, we do not need

to explicitly specify the nonlinear mapping and can use a suit-

able kernel function to express the inner product of two sam-

ples in the RKHS space. That is, given two samples ϕ(x ) and ϕ(z)

in the feature space, their inner production is ϕ (x ) T ϕ(z) = k (x, z)

where k (x, z) is a kernel function, e.g., the Gaussian kernel func-

tion: k (x, z) = exp (−‖ x − z ‖ 2 / 2 σ 2 ) where σ is the Gaussian kernel

width required to be specified in practice. 
The above Eq. (9) can be reformulated as 

ˆ = min 

θ

⎛ 

⎝ 

∥∥∥∥∥ϕ(y ) −
M+ N ∑ 

i =1 

θi ϕ(x ∗i ) 

∥∥∥∥∥
2 

+ μ‖ 

θ‖ 1 

⎞ 

⎠ (10)

Note that in the AFSI method we use, M = N. By using the ker-

el trick, we obtain 

ˆ = min 

θ
(k (y, y ) − 2 k (·, y ) T θ + θ T Kθ + μ‖ 

θ‖ 1 ) (11)

here k (·, y ) = (k (x ∗
1 
, y ) , k (x ∗

2 
, y ) , ..., k (x ∗

2 N 
, y )) T , and 

 = 

⎛ 

⎝ 

k ( x 1 , x 1 ) · · · k ( x 1 , x 2 N ) 
. . . 

. . . 
. . . 

k ( x 2 N , x 1 ) · · · k ( x 2 N , x 2 N ) 

⎞ 

⎠ . 

Next, we will solve Eq. (11) and obtain the coefficient vector

. Aiming to improve the computational efficiency, we adopt the

oordinate descent [24,31] scheme to solve Eq. (11) . We first define

he cost function 

(θ ) = k (y, y ) − 2 k (·, y ) T θ + θ T Kθ + μ‖ 

θ‖ 1 (12)

Then, the partial derivative of J(θ ) with respect to θi ( i =
 , 2 , ..., 2 N) is computed as 

∂ J(θ ) 

∂ θi 

= 2 

2 N ∑ 

j=1 

θ j k (x ∗j , x 
∗
i ) − 2 k (x ∗i , y ) + μsgn ( θi ) (13)

In this work, we use the Gaussian kernel function. Thus, for

ny vector ϕ(x ) of the feature space, ϕ (x ) T ϕ(x ) = k (x, x ) = 1. We

et ∂ J(θ ) 
∂ θi 

to 0, and have 

i = k (x ∗i , y ) −
2 N ∑ 

j =1 , j � = i 
θ j k (x ∗j , x 

∗
i ) −

μ

2 

sgn ( θi ) (14)

Let 

 θ ( x i ) = k ( x ∗i , y ) −
2 N ∑ 

j =1 , j � = i 
θ j k ( x 

∗
j , x 

∗
i ) (15)

Then, we obtain 

i = w θ ( x i ) −
μ

2 

sgn ( θi ) (16)

Thus, updating coefficient θi is independent of all other coeffi-

ients θ j ( j � = i ). The coefficient θi is computed as 

i = sgn ( w θ ( x i )) 
[ 
| w θ ( x i ) | − μ

2 

] 
+ 

(17)
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Algorithm 1 KCDVD algorithm. 

1. Input : training set X = [ x 1 , x 2 , ..., x N ] ∈ R d×N , and testing set Y = [ y 1 , y 2 , ..., y T ] ∈ R d×T . 

2. Initialize : Compute the matrix K in Eq. (11) , and Q in Eq. (22) , and the number of iterations m . 

3. for t = 1 to T 

Compute θin = QK(·, y t ) 
for j = 1 to m 

for i = 1 to 2 N 

Compute w θ ( x i ) by using Eq. (15) and Update θi by using Eq. (16) ; 

end 

end 

4. Calculate the residuals r k ( y t ) ( k = 1 , 2 , ..., c) by using Eq. (20) ; 

5. Assign the class label of y t by using Eq. (21) . 

6. end 

w
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here the function [ ·] + is defined as 

 

q ] + = 

{
q, q > 0 

0 , q ≤ 0 

}
(18) 

After obtaining the coefficients θi ( i = 1 , 2 , ..., 2 N), we can ex-

loit them to classify the testing sample y in the original space.

hen, we need to compute the following residuals 

 k (y ) = ‖ 

ϕ(y ) − ϕ( X 

∗) δk (θ ) ‖ 

2 
2 , (k = 1 , 2 , ..., c) (19)

here c is the number of the classes, and δk (θ ) ∈ R 2 N is a vector

hose only nonzero entries are the entries in θ associated with

lass k . Then, Eq. (19) can be rewritten as 

 k (y ) = 1 − 2 k (·, y ) δk (θ ) + δT 
k (θ ) K δk (θ ) (20)

Thus, we can classify the testing sample y by using the follow-

ng equation 

ab el(y ) = arg min 

k 
r k (y ) , (k = 1 , 2 , ..., c) (21)

In our approach, the coefficient vector θ is updated iteratively

y Eq. (17) . The initialization of vectors θ is computed as 

in = (K + εI) −1 K(·, y ) = QK(·, y ) (22)

here ε is a small positive value, I is the identity matrix and Q =
(K + εI) −1 . Our KCDVD is summarized in Algorithm 1. 

In our KCDVD algorithm, the number of iterations m is usually

 small integer, say, 5 to 10, that easily leads to a sparse solution.

n the following experiments, m is set to 5. 

In order to intuitively show the effectiveness of KCDVD, we also

ake the ORL database as an example. ORL contains 40 persons

nd each person has 10 face images. Here, ORL is divided into two

arts. One part is the training set, and another part is the test set.

e choose the first three faces of each person for training, and the

emaining faces of each person for testing. Fig. 2 shows two test

amples (the fifth and tenth images of the first person, i.e., Class

) and their corresponding representation residuals of each class,

btained by our KCDVD and the typical SRC algorithms. For the

rst test image shown in Fig. 2 (a), both KCDVD and SRC correctly

lassify this image into Class 1. Nevertheless, from Fig. 2 (c) and (d),

e can see that KCDVD can achieve the less representation resid-

al of Class 1 than SRC. The least residual obtained by KCDVD is

.2539, and the largest one is 1.1489. Note that the least residual

btained by SRC is 0.5430 and the largest one is 1.0887. From the

oint of view of the representation residual, the classification abil-

ty of KCDVD is stronger than that of SRC. From Fig. 2 (e) and (f),

e observe that KCDVD correctly classifies the second test sam-

le shown in Fig. 2 (b), whereas SRC fails to correctly classify this

ample (classify it into Class 17). This case can further demonstrate

hat the classification effectiveness of KCDVD is better than SRC. 

. Experiments 

In order to demonstrate the recognition effectiveness and

epresentation efficiency of our proposed KCDVD algorithm, we
onducted many experiments on four popular real-world face

atabases. The face databases are the GT [30] , FERET [39] , LFW

40] and CMU PIE [41] databases. For each database, we use a gen-

ral cross validation scheme [42] for experimentation. That is, we

andomly choose some portion of the available samples for train-

ng, and the rest of the samples are used for verification. This

rocedure repeats 10 times for estimating the recognition rates

f all experimental methods on each dataset. This technique has

he merit that randomly choosing the training set ensures that the

lassification results will be unbiased [3] . 

For comparison, we have implemented many classical state-of-

he-art representation-based classification schemes: SRC [3] , CRC

8] , KSRC [13] , ESRC [27] , kernel coordinate descent for classi-

cation (KCD) [24] , and SRC based on virtual face images (de-

oted as SRCVF in our experiments) [24] . Except for CRC, all other

ethods are based on L 1 norm minimization. The minimization of

RC, KSRC and ESRC is implemented by the popular l1_ls mod-

lar [43] which can yield robust recognition results. Besides the

bove representation-based methods, we have selected the princi-

al component analysis (PCA) combining the nearest neighbor clas-

ifier (NNC) as the baseline algorithm for comparison. Here, it is

enoted as PCA. Also, we have implemented the linear discrimi-

ant analysis (LDA) [44] combining NNC method, denoted as LDA

n the experiments. In addition, we have implemented SVM with

 1 norm [45–47] , denoted as L1_SVM, and its variant based on

irtual face images, i.e., the algorithm L1_SVM using virtual face

mages obtained by ASFI, which is denoted as SVMVF in the ex-

eriment section. These two algorithms are implemented by the

opular LIBLINEAR modular [47] . Among all algorithms, there are

our algorithms that use the virtual training set. They are SVMVF,

SRC, SRCVF and our method, and the last three methods are based

n the SRC algorithm. And other seven algorithms use the original

raining set. 

For the KSRC, KCD and our methods, the kernel function used

s the Gaussian kernel function and the kernel parameter is set to

e r × d , where d is the average Euclidean distance of the train-

ng samples and r , referred to as kernel ratio, needs to be carefully

uned on each data set. Here, we select the best kernel ratio from

he set {0.0 0 01, 0.0 01,0.01, 0.1, 1, 10, 100, 10 0 0} which leads to the

ighest recognition rates. The selection scheme of penalty param-

ter in L1_SVM and SVMVF is the same as that of kernel ratio. The

enalty parameter in these two algorithms is set to 10. The balance

arameter λ in Eq. (3) is set to 1e-3. Also, this parameter in SRC

nd ESRC is equal to 1e-3. In SRCVF, SVMVF and our KCDVD algo-

ithms, the number of the iterations is 30 in the procedure of gen-

rating the virtual face images. Note that the SRC, KSRC, SRCVR and

SRC algorithms are computationally inefficient. The dimensional-

ty of all face images in all compared algorithms is reduced using

rincipal component analysis (PCA) in all experiments to save the

omputational time. For a fair comparison, the image dimensional-

ty in our proposed algorithm is also reduced by PCA. 
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Fig. 2. Two samples in ORL and their corresponding representation residuals of each class, obtained by KCDVD and SRC. (a) The fifth image of the first person; (b) the tenth 

image of the first person; (c) representation residuals of the fifth image by KCDVD; (d) representation residuals of the fifth image by SRC; (e) representation residuals of the 

tenth image by KCDVD; (f) representation residuals of the tenth image by SRC. 
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5.1. Experiment on the GT face database 

We conducted the first experiment on GT (Georgia Tech) face

database. The GT database contains 50 persons with 15 color im-

ages per person. The face images of each person characterize sev-
ral variations such as pose, expression, and illumination [33] .

ig. 3 gives a number of samples of this database. Each image is

rst changed to grayscale, and then cropped and resized to a reso-

ution of 60 × 50 pixels. We randomly grouped the image samples

f each person into two parts, i.e., the training and testing parts.
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Fig. 3. Some face images of GT face database. 

Fig. 4. Some image samples of PIE face database. 

Table 1 

Recognition rates on the GT database. 

Algorithms N = 2 N = 3 N = 4 N = 5 

PCA 43.32 ±2.36 50.52 ±2.76 55.31 ±1.81 59.46 ±2.12 

LDA 33.45 ±3.56 46.65 ±2.51 57.07 ±2.92 64.12 ±1.78 

SRC 46.31 ±1.31 54.67 ±2.67 58.53 ±1.82 62.90 ±1.93 

CRC 46.98 ±1.39 54.47 ±2.94 57.38 ±1.99 61.40 ±1.89 

L1_SVM 43.78 ±1.13 49.82 ±1.73 53.45 ±1.49 58.10 ±2.27 

KSRC 52.18 ±1.46 59.0 ±2.18 63.20 ±2.14 67.78 ±1.60 

KCD 49.26 ±1.59 58.97 ±3.65 64.45 ±1.71 69.22 ±2.11 

SVMVF 46.58 ±1.55 50.98 ±2.66 55.55 ±1.64 59.20 ±1.85 

SRCVF 48.0 ±1.40 56.12 ±1.97 59.40 ±1.84 64.84 ±1.15 

ESRC 48.26 ±1.12 58.18 ±3.30 62.91 ±2.01 67.72 ±2.58 

KCDVD 52.65 ±1.13 61.98 ±2.47 68.42 ±1.42 72.14 ±2.09 
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Table 2 

Recognition rates on the CMU PIE database. 

Algorithms N = 5 N = 10 N = 15 

PCA 36.74 ±1.69 49.64 ±1.53 58.52 ±1.17 

LDA 64.41 ±1.81 80.85 ±1.86 88.28 ±0.65 

SRC 61.78 ±1.84 77.13 ±1.77 84.84 ±0.92 

CRC 62.09 ±1.76 75.75 ±1.71 82.65 ±1.36 

L1_SVM 70.18 ±2.16 82.86 ±2.05 87.74 ±0.88 

KSRC 66.63 ±1.61 80.43 ±1.47 86.33 ±0.61 

KCD 70.49 ±1.98 82.54 ±1.65 87.99 ±1.04 

SVMVF 74.70 ±1.83 86.10 ±1.46 90.61 ±0.83 

SRCVF 66.53 ±1.75 79.28 ±1.31 85.71 ±0.73 

ESRC 68.60 ±2.08 82.45 ±1.75 88.46 ±0.93 

KCDVD 74.60 ±1.62 85.15 ±1.73 89.72 ±0.78 
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or each person, we randomly select a few images ( N = 2, 3, 4 and

) for training, and the rest are used for testing. 

In this experiment, the dimensionality of the face image data

s reduced to 50 using PCA. In the KSRC algorithm, the Gaussian

ernel parameter is set to 0.001 × d . That is, the kernel ratio is set

o 0.001. In the following experiments, i.e., the second, third and

ourth experiments, all the kernel ratios in the KSRC method are

lso set to 0.001. In the KCD and our KCDVD algorithms, the kernel

arameter is set to d , i.e., r = 1. We ran each algorithm 10 times on

ach training subset. Table 1 reports the recognition rates (MEAN

STD-DEV PERCENT) on four training subsets (denoted by N = 2,

, 4 and 5 in Table 1 ). 

From Table 1 , we can observe that our proposed KCDVD scheme

erforms the best among the compared methods. Comparing with

CD, KCDVD exploits the virtual dictionary that can yield the

parser representation coefficients, and can achieve more desirable

ecognition results. Although SRCVF also introduces virtual face

mages to the typical SRC model, it fails to capture the nonlin-

ar information within the data like KCDVD. As shown in Table 1 ,

CDVD is better than SRCVF in terms of the recognition rate.

ote that the ESRC algorithm also uses the virtual samples to

epresent the test samples and can address well the undersam-

ling problem in some cases. Nevertheless, since it is directly

erformed in the original input data space, ESRC cannot capture

ell the nonlinear information within the data set, which may be

he reason why our proposed algorithm is better than the ESRC

lgorithm. 

.2. Experiment on the CMU PIE face database 

The second experiment was conducted on the Carnegie Mellon

niversity (CMU) PIE face database that has 68 individuals. Each

ndividual has photos captured under 13 different poses and 43 dif-

erent illumination conditions and with four different expressions
41,48] . Fig.4 gives some image samples of CMU PIE face database.

his experiment uses the first 30 individuals. All images are man-

ally aligned, cropped and resized to a resolution of 32 × 32 pix-

ls. We randomly grouped the image samples of each individual

nto two parts. One part is used for training and the other part is

sed for testing. The number of training images that is chosen for

ach individual is 5, 10 and 15, which make up three subsets of

he training data. 

The face image data dimensionality is reduced to 100 using PCA

n this experiment. In the KCD and our KCDVD algorithms, the

ernel ratio is set to 3. Also, we run each algorithm 10 times on

ach training subset and average the results. Table 2 reports the

ecognition rates on three training subsets. From this table, we can

lso make a conclusion that our KCDVD algorithm performs signif-

cantly better than the SRC algorithm and outperforms other stat-

f-the-art face recognition methods as a whole (except for SVMVF)

n terms of recognition rates. 

.3. Experiment on the LFW face database 

We have conducted the third experiment on the labels faces in

he wild (LFW) face database that contains more than 13,0 0 0 im-

ges of faces. LFW investigates the unconstrained face recognition

nd verification. All the face images of this database are collected

rom the web [40,49] . We select 946 images of 86 subjects, i.e., 11

mages per subject, to perform face recognition experiment. Each

mage is manually cropped and resized to a resolution of 32 × 32

ixels. Fig. 5 gives some samples of this database. The number of

raining images that is chosen for each subject is 7 and 9, which

ake up two subsets of the training data. 

Similarly, the face image data dimensionality is reduced to 200

sing PCA in this experiment. The kernel ratio in the KCDVD and

CD algorithms is set to 1 ( r = 1). Again, we ran each algorithm

0 times on each training subset. Table 3 gives the average recog-
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Fig. 5. Some image samples of LFW face database. 

Fig. 6. Some image samples of FERET face database. 

Table 3 

Recognition rates on the LFW database. 

Algorithms N = 7 N = 9 

PCA 27.91 ±2.04 30.93 ±3.56 

LDA 24.45 ±2.24 28.95 ±2.37 

SRC 37.56 ±1.64 42.33 ±2.68 

CRC 37.15 ±2.40 42.62 ±2.81 

L1_SVM 34.16 ±1.87 38.37 ±2.93 

KSRC 40.52 ±1.76 45.93 ±2.71 

KCD 42.06 ±2.95 47.50 ±3.35 

SVMVF 34.22 ±1.21 37.03 ±3.33 

SRCVF 39.80 ±2.21 45.12 ±2.78 

ESRC 39.74 ±1.68 46.22 ±2.92 

KCDVD 46.66 ±2.76 51.63 ±2.60 

Table 4 

Recognition rates on the FERET database. 

Algorithms N = 2 N = 3 

PCA 26.52 ±1.26 32.38 ±1.33 

LDA 25.57 ±1.89 47.96 ±1.27 

SRC 29.47 ±0.69 30.64 ±1.32 

CRC 42.80 ±1.41 52.84 ±1.10 

L1_SVM 44.02 ±1.36 55.21 ±1.13 

KSRC 46.66 ±0.74 58.67 ±1.29 

KCD 48.01 ±0.99 61.73 ±1.15 

SVMVF 50.10 ±1.93 62.46 ±1.31 

SRCVF 4 8.4 8 ±1.28 60.50 ±1.21 

ESRC 48.78 ±1.32 67.17 ±1.56 

KCDVD 53.34 ±1.11 67.22 ±1.16 
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nition rates on the two training subsets. As demonstrated in this

table, our KCDVD approach achieves the highest recognition rate,

and significantly outperforms other methods. 

5.4. Experiment on the FERET face database 

The fourth experiment is conducted on the FERET face database

in which the images were collected in a semi-controlled envi-

ronment. We used a subset contains 200 persons and each per-

son has 7 face images. Each of image is resized to a resolu-

tion of 40 × 40 pixels [30,39] . Fig. 6 gives some samples of this

database. The number of training images that is chosen for each

subject is 2 and 3, which make up two subsets of the training

data. 

In this experiment, the face image data dimensionality is re-

duced to 200 using PCA. In the KCD and KCDVD algorithms, the

kernel ratio is set to 1. Table 4 reports the average recognition rates

on the two training subsets, using 10-fold validation. As expected,

we observe from this table that our KCDVD approach is the best

method among these state-of-the-art representation-based meth-

ods in terms of the recognition rates. 
From above experimental results, we can make the conclusion

hat our KCDVD algorithm achieves superior recognition results.

rom Tables 1–4 , we can also observe that KCDVD tends to per-

orm better when the training set is of small scale in general.

his fact verifies that the KCDVD algorithm can usually address the

ndersampling problem better than other compared algorithms.

oreover, our algorithm is more computationally efficient than the

parse representation based algorithms SRCVF and ESRC that also

ntroduce the virtual samples in the representation models. This is

emonstrated in Section 5.6 . 

.5. Recognition rates of different dimensions 

In order to further investigate the recognition performance of

ll algorithms, we report their recognition rates of different di-

ensions in Figs. 7–10 , which respectively show the recognition

ates on the GT, LFW, FERET and CMU PIE face databases. In each

gure, "Dimensions" indicates the dimensions or number of fea-

ures of each face datum reduced by PCA. Due to the space lim-

tation, we cannot report the recognition rate corresponding to

ach dimension here. The larger the training set, the more fea-

ures we used in all algorithms. Since LDA usually requires that

he data dimension is not less than the number of data classes,

e do not report the recognition rates associated with the data

imensions that are less than the number of data classes on all

atabases. 

From Figs. 7–10 , we can observe that our KCDVD method can

chieve the best recognition result as a whole. Our method sig-

ificantly outperforms compared algorithms except for the SVMVF

lgorithm on the CMU PIE database when N = 5 and N = 10. Nev-

rtheless, SVMVF is not stable since it fails to achieve good per-

ormance on other face databases. From these figures, we can con-

lude that SRCVF outperforms SRC, SVMVF outperforms L1_SVM,

nd our KCDVD outperforms KCD in general. This fact demonstrates

hat the virtual dictionary used in our method can indeed suc-

essfully improve the recognition effectiveness of the traditional

lgorithms when the training set is small-scale. Note that all al-

orithms fail to achieve high recognition rates on the LFW and

ERET face databases that are well-known complicated face data

ets in our experiments. The main reason is that the training set

s relatively small and we do not preprocess each face image ex-

ept for cropping and resizing it. From the point of view of sparse

epresentation, we need sufficient samples to span a subspace if

ts structure is complicated. In such subspaces, if the scale of the

raining set is relatively small, it is difficult to effectively represent

he test samples by using this training set. Therefore, increasing

he number of training samples is an effective method to improve

he recognition result on complicated data sets. This is one of mo-

ivations of our KCDVD algorithm. 
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Fig. 7. Recognition rates on the GT database. 

Fig. 8. Recognition rates on the LFW database. 
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.6. Computational time of KCDVD 

As mentioned above, the SRCVF, ESRC and our KCDVD algo-

ithms are the sparse representation for classification (SRC) based

ethods, and all of them use virtual samples. Compared with the

RCVF and ESRC algorithms, KCDVD achieves the best recognition

esults. Moreover, its computational time complexity is the lowest
mong these three algorithms. To justify this statement, we run

hese algorithms on each training subset of the databases used in

he previous experiments. All the experiments are run on the same

latform with Intel Core(TM) i7 2.3 GHz CPU and 8.0GB RAM by

atlab R2011b software. Tables 5–8 report the computational time

f the three algorithms on the GT, CMU, LFW and FERET databases,

espectively. 
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Fig. 9. Recognition rates on the FERET database. 

Fig. 10. Recognition rates on the CMU database. 
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From these tables, we can observe that KCDVD is far faster than

the other two algorithms. For example, KCDVD is about 35 times

faster than SRCVF when N = 3 on the GT database. KCDVD needs

only about 0.03 seconds to represent and recognize one test sam-

ple on this database. In all the experiments, our method needs no

more than 1 s to represent and recognize a test sample. As a re-
ult, it is easy to adopt our method for real-time applications. By

ontrast, SRCVF and ESRC spend much more time on representing

nd recognizing a test sample. For example, ESRC needs about 6

econds to represent and recognize one test sample on the FERET

atabase when N = 3. 
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Table 5 

Computational time (s) on the GT database. 

Algorithms N = 2 N = 3 N = 4 N = 5 

SRCVF 559.31 706.87 813.14 841.44 

ESRC 502.18 692.28 802.08 827.83 

KCDVD 19.01 20.26 34.70 42.45 

Table 6 

Computational time (s) on the CMU database. 

Algorithms N = 5 N = 10 N = 15 

SRCVF 2132.33 3196.43 4087.04 

ESRC 2106.53 2221.62 4221.43 

KCDVD 217.10 736.46 1622.22 

Table 7 

Computational time (s) on the LFW 

database. 

Algorithms N = 7 N = 9 

SRCVF 457.73 367.16 

ESRC 819.57 320.52 

KCDVD 182.60 172.69 

Table 8 

Computational time (s) on the FERET 

database. 

Algorithms N = 2 N = 3 

SRCVF 1093.58 1401.19 

ESRC 3192.25 4831.32 

KCDVD 159.90 314.86 
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. Conclusion 

In this paper, we proposed the KCDVD algorithm, a new sparse

epresentation based classification approach for face recognition.

CDVD aims to overcome the drawbacks of the classical SRC al-

orithm. It is performed in the kernel induced feature space and

an consequently capture the nonlinear information that is helpful

or classification. KCDVD introduces the virtual dictionary to build

he sparse representation model more robustly. It can solve the po-

entially undersampling problem when the training data set is of a

mall scale and the data dimensionality is very high. As demon-

trated by many experiments, our KCDVD method can achieve bet-

er recognition rates over the state-of-the-art and has high com-

utational efficiency. The reason for the more accurate recognition

esults is that KCDVD is performed in the RKHS space by using

irtual dictionary. The reason of high computational efficiency is

hat our method exploits the efficient coordinate descent scheme.

oreover, the implementation of the proposed algorithm is very

imple. The basic idea of KCDVD can be conveniently applied to

any other applications. In addition, we can consider other ap-

roaches to yield more virtual dictionaries. For example, we can

xploit small affine transform to distort the images geometrically,

r distort the intensity or color values to yield virtual images in

he future work. 
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